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Motivations and aims

◮ Nearly optimal interpolation points on compacts of K ⊂ Rd :
existence versus computation.

◮ (Weakly) Admissible Meshes for compacts: discrete sets that
contain good interpolation nodes

◮ Computation: greedy algorithms for computing approximate Fekete
points and discrete Leja points.
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Weakly Admissible Meshes (WAMs)

Given a polynomial determining compact set K ⊂ Rd .

Definition

A Weakly Admissible Mesh (WAM) is a sequence of discrete subsets
An ⊂ K such that

‖p‖K ≤ C (An)‖p‖An
, ∀p ∈ P

d
n(K ) (1)

where both card(An) ≥ N := dim(Pd
n(K )) and C (An) grow at most

polynomially with n.

When C (An) is bounded we speak of an Admissible Mesh (AM).
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Main properties of WAMs

P1: C (An) is invariant for affine transformations.

P2: any sequence of unisolvent interpolation sets whose Lebesgue
constant grows at most polynomially with n is a WAM, C (An)
being the Lebesgue constant itself

P3: any sequence of supersets of a WAM whose cardinalities grow
polynomially with n is a WAM with the same constant C (An)

P4: a finite union of WAMs is a WAM for the corresponding union of
compacts, C (An) being the maximum of the corresponding
constants

P5: a finite cartesian product of WAMs is a WAM for the corresponding
product of compacts, C (An) being the product of the corresponding
constants

P7: given a polynomial mapping πs of degree s, then πs(Ans) is a WAM
for πs(K ) with constants C (Ans) (cf. BCLSV Math. Comp.09)
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Main properties of WAMs (continues)

P8: any K satisfying a Markov polynomial inequality like
‖∇p‖K ≤ Mnr‖p‖K has an AM with O(nrd ) points (cf. CL JAT08)

P9: The least-squares polynomial LAn
f on a WAM is such that

‖f − LAn
f ‖K / C (An)

√

card(An) min {‖f − p‖K , p ∈ P
d
n(K )}

P10: The Lebesgue constant of Fekete points extracted from a WAM can
be bounded like Λn ≤ NC (An)

Moreover, their asymptotic distibution is the same of the continuum
Fekete points, in the sense that the corresponding discrete
probability measures converge weak-∗ to the pluripotential
equilibrium measure of K (cf. BCLSV Math. Comp.09)
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AM for convex-compact sets

Assume K ⊂ R2 convex and compact. Marcov inequality holds with
exponent r = 2.
By property P8 we are able to construct an Admissible Mesh, An of K ,
with O(n4) points.
Actually, it is card(An) ≈ n4 A(K )M2 (ex. πn4 for the unit disk),
A(K ): the area of the compact;
M = α(K )/w(K ): with α(K ) ≤ 4 and w(K ) is the minimal distance
between 2 parallel supporting lines of a rectangle that covers K .

Too big to be computed!!!
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WAM for the disk and the triangle

In BSV JCAM 09, it was proved that for the disk and the triangle there
are WAMs with approximately n2 points and still the same growth of
C (An).

◮ UNIT DISK: a symmetric polar WAM is made by equally spaced
angles and Chebyshev-Lobatto pts along diameters.

◮ UNIT SIMPLEX: starting from the WAM of the disk for
polynomials of degree 2n containing only even powers, by the
standard quadratic transformation

(u, v) 7−→ (x , y) = (u2, v2) .

Notice: by affine transformation these WAMs can be mapped to
any other triangle (P1) or polygons (P4).
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WAMs for the disk

Figure: Symmetric polar WAM for the disk for degree n = 10 (left) and
n = 11 (right).
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WAMs for quadrant and the triangle

Figure: A WAM of the first quadrant for polynomial degree n = 16 (left)
and the corresponding WAM of the simplex for n = 8 (right).
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Fekete points
Consider

◮ K ⊂ Rd (or Cd), SN = span(pj)1≤j≤N , {ξ1, . . . , ξN} ⊂ K

◮ Vandermonde-like matrix V (ξ;p) = [pj(ξi )], 1 ≤ i , j ≤ N . Assume
unisolvency.

◮

ℓj(x) =
detV (ξ1, . . . , ξj−1, x , ξj+1, . . . , ξN ;p)

detV (ξ1, . . . , ξj−1, ξj , ξj+1, . . . , ξN ;p)
, j = 1, . . . , N , (2)

◮ ℓ = (ℓ1, . . . , ℓN)t is obtained from the basis p = (p1, . . . , pN)t as
the solution of ℓ = Lp, L := (V (ξ;p))−t .

Definition

The points that maximize the (absolute value of the) Vandermonde-like
determinant in KN are the Fekete points.
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Fekete points

Then it follows:

◮ ‖ℓj‖∞ ≤ 1 for every j .

◮ the norm of the operator LSN
: C (K ) → SN is bounded as follows

‖LSN
‖ = max

x∈K

N
∑

j=1

|ℓj(x)| = max
x∈K

‖Lp(x)‖1 ≤ N . (3)

◮ Λn := ‖LSN
‖ is the Lebesgue constant at the point set ξ.

◮ Fekete pts and Lebesgue constant are preserved by affine maps.

◮ The bound (3) is pessimistic.
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Known open problems with Fekete points

◮ Analytically known only in the interval (Gauss-Lobatto pts), the
complex circle (equispaced pts) and the cube (tensor product of
Gauss-Lobatto pts);

◮ Their asymptotic spacing (i.e. equidistributed w.r.t. the
pluripotential equilibrium measure of K ) is known only in few cases
(cf. BLW In. Math. 08).

◮ Numerical computations are a very large scale nonlinear
optimization problem in N × d variables, solved for triangle, sphere
and low degrees.
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Approximated Fekete Pts and Discrete Leja Pts

An approximate solution can be given by one of the following 2 greedy
algorithms, A1, A2, given in Matlab-like notation, which compute what
we call Discrete Extremal Sets(cf. BCLSV09, BDMSV09).

A1: Approximate Fekete Points (AFP):
• V = V (a,p); ind = [ ];
• for k = 1 : N “select ik : vol V ([ind , ik ] , 1 : N) is maximum”;
ind = [ind , ik ]; end
• ξ = a(i1, . . . , iN)

A2: Discrete Leja Points (DLP):
• V = V (a,p); ind = [ ];
• for k = 1 : N “select ik : |det V ([ind , ik ] , 1 : k)| is maximum”;
ind = [ind , ik ]; end
• ξ = a(i1, . . . , iN)
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Remarks

◮ A2 depends on the ordering of the polynomial basis. In 1-d it
produces the Leja points.

◮ A1 does not depend on the ordering. It is based on the notion of
volume generated by the rows of a rectangular matrix.

◮ DLP form a sequence. Once we have computed the points for
degree n, we have automatically at hand (nested) interpolation sets
for all lower degrees.
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Algorithm 1

The core in A1

select ik : vol V ([ind , ik ] , 1 : N) is maximum

can be implemented as

select the largest norm row rowik (V ) and remove from every row of V its
orthogonal projection onto rowik

This process is then equivalent to the QR factorization with column

pivoting.
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Algorithm 2

The core in A2

select ik : |det V ([ind , ik ] , 1 : k)| is maximum

can be implemented as

one column elimination step of the Gaussian elimination process with
standard row pivoting.

This process is then equivalent to the LU factorization with row

pivoting
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Discrete Extremal Sets
The computation of such sets can be done by basic linear algebra
operations

◮ the QR factorization with column pivoting of the transposed
Vandermonde matrix (cf. SV09-1).

◮ LU factorization with row pivoting of the Vandermonde matrix (cf.
SDM09).

This is summarized in the following Matlab-like scripts.

A1-AFP :
• W = (V (a,p))t ; b = (1, . . . , 1)t ∈ CN ; w = W \b ;
ind = find(w 6= 0); ξ = a(ind)

A2-DLP:
• V = V (a,p); [L, U, σ] = LU(V , “vector”); ind = σ(1, . . . , N);
ξ = a(ind)
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Theorem

Theorem

(cf. BCLSV Math. Comp. 09)
Suppose that K ⊂ C d is compact, non-pluripolar, polynomially convex
and regular (in the sense of Pluripotential theory) and that for
n = 1, 2, . . . , An ⊂ K is a WAM. Let {ξ1, . . . , ξN} be the AFP selected
from An by the algorithm A1-AFP, using any polynomial basis
p = {p1, . . . , pN} or the DLP selected from An by the algorithm
A2-DLP using any basis of the form p=Le where e={e1, ..., eN} is any
ordering of the standard monomials xα consistent with the degree and
L ∈ CN × CN is lower triangular. Then

◮ lim
n→∞

|vdm(ξ1, . . . , ξN)|1/mn = τ(K ), the transfinite diameter of K

(mn = dnN/(d + 1) is the sum of the degrees of the N monomials
of degree ≤ n);

◮ the discrete probability measures µn := 1
N

∑N
j=1 δξj

converge weak-*
to the pluripotential-theoretic equilibrium measure dµK of K .
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Example1: AMs for a circular sector

◮ In the case of a quadrant, an AM has card(An) ≈ 7n
4.

◮ By Properties P1 and P4 we get an AM of the 3/4-circular sector
as union of 3 meshes of the three quadrants, with cardinality
card(An) ≈ 3× 7 n

4 = 21 n
4.
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Example 1:

Figure: N = 28 AFP (Approximate Fekete Points, circles) and DLP
(Discrete Leja Points, asterisks) for degree n = 6 extracted from an AM
of a circular sector.

We used the Koornwinder orthogonal basis of the unit disk for setting the Vandermonde matrix.
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Remarks for this first example

1. The computation of DLP is 3 times faster than that of AFP.

2. The quality of AFP is better than that of DLP.

For example, in the case n = 6 and the quadrant(s), the AFP not
only do they appear more evenly distributed than the DLP, but in
addition the absolute value of the Vandermonde determinant and
the Lebesgue constant (numerically evaluated) are |vdm| ≈ 2 · 104

and Λ6 ≈ 4 for the AFP, whereas |vdm| ≈ 7 · 102 and Λ6 ≈ 12 for
the DLP. Notice that both the Lebesgue constants are much below
the theoretical bound for Fekete points extracted from an AM,
namely Λn ≤ CN .
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Example 2: WAMs for a nonregular convex hexagon

Here the WAMs are generated by 2 different triangulations, barycentric
by the ”ear-clipping alg.”, and minimal with 6− 2 = 4 triangles), and the
Chebyshev product basis of the minimal including rectangle.
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Figure: N = 45 AFP (circles) and DLP (asterisks) for degree n = 8 extracted from 2 WAMs of an hexagon

(dots). The first WAM has 6n2
− 2 points and the second one has 4n2 + n − 1 points.
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Example 2: Lebesgue constants and interpolation errors

Table: Lebesgue constants for AFP and DLP extracted from two WAMs
of a nonregular convex hexagon (WAM1: barycentric triangulation,
WAM2: minimal triangulation; see Fig. 4).

mesh points n = 5 n = 10 n = 15 n = 20 n = 25 n = 30
WAM1 AFP 6.5 18.9 20.4 40.8 73.3 73.0

DLP 7.1 19.6 49.8 58.3 108.0 167.0
WAM2 AFP 6.8 12.3 34.2 52.3 49.0 80.4

DLP 10.7 48.4 62.0 91.6 86.6 203.0

Table: Max-norm of the interpolation errors with AFP and DLP
extracted from WAM2 for two test functions: f1 = cos (x1 + x2);
f2 = ((x1 − 0.5)2 + (x2 − 0.5)2)3/2.

function points n = 5 n = 10 n = 15 n = 20 n = 25 n = 30
f1 AFP 6E-06 5E-13 3E-15 3E-15 3E-15 4E-15

DLP 8E-06 2E-12 2E-15 4E-15 3E-15 4E-15
f2 AFP 3E-03 2E-04 1E-04 4E-05 2E-05 1E-05

DLP 3E-03 3E-04 1E-04 3E-05 2E-05 5E-06
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Example 3: Sommariva’s left hand
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Figure: The hand has 39 sides. By the ”ear-clipping algorithm” we
computed 37 triangles. The WAM has 37n2 points for degree n. For
degree n = 15 we obtained N = 136 AFP (circles) and DLP (asterisks).
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Some applications

1. Numerical cubature. If in A1-AFP we take as RHS
b = m =

∫

K
p(x) dµ (the moments), the vector w(ind) gives

directly the weights of an algebraic cubature formula at the
corresponding AFP. The same holds for A2-DLP.

2. Weighted polynomial interpolation (cf. SV09-3 with AFP). One
considers a basis wp for the Vandermonde matrix, w being a
suitable weight function. Examples: approximation with weighted
norm for the construction of digital filters.

3. Solution of PDEs by spectral and high-order methods. Here one
needs to locate good points for polynomial approximation on
polygonal regions/elements.
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To Borislav Bojanov

On the top of Piz Boè, 3152 m., September 6th, 2006.
This is my simple tribute to Borislav.
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Third DOLOMITES RESEARCH WEEK ON APPROXIMATION
Alba di Canazei, Trento (Italy), September 6-9, 2010
http://www.math.unipd.it/∼demarchi/dwcaa10/
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THANK YOU
FOR YOUR KIND ATTENTION
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