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Motivations

◮ Finding Padua points in the cube (in the square Bos&al
JAT06) .... so far, only attempts... no general answers.

◮ In Caliari&al. JCAM 08, we studied hyperinterpolation
in the cube on MPX × Chebyshev points.

◮ In Sommariva&al. NA 08, the authors studied a
non-tensorial Clenshaw-Curtis cubature in the square,
integrating the hyperinterpolant on MPX and Padua
points.

◮ Does exist any ”suitable” set of points for near-minimal
(Chebyshev and Clenshaw-Curtis formulae) cubature in
the cube ?
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Cubature formulae (1)

A cubature formula of degree of exactness 2n + 1 with N
nodes w.r.t. a measure dµ supported on a set Ω takes the
form∫

Ω
p(x) dµ =

∑

ξ∈Xn

wξ p(ξ) forall p ∈ Πd
2n+1(Ω) , (1)

where the weights {wξ}, are (positive) numbers; the nodes

ξ := (ξ1, ξ2, . . . , ξd) ∈ Xn ⊂ Ω (2)

with card(Xn) = N, and Πd
m denotes the subspace of

d-variate polynomials of total degree ≤ m restricted to Ω.

For a cubature formula of degree 2n + 1 to exist, it is
necessary that

N := card(Xn) ≥ dim(Πd
n (Ω)) =

(
n + d

d

)
=

nd

d !
(1 + o(1)).

(3)
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Cubature formulae (2)

A challenging problem is to construct cubature formulae with
fewer nodes, that is, with N close to the lower bound (3).

In this work we consider the case that the measure is given
by the product Chebyshev weight function

dµ = Wd(x) dx , Wd(x) :=
1

πd

d∏

i=1

1√
1 − x2

i

(4)

on the cube Ω := [−1, 1]d . Our main result is a new family
of cubature formulae that uses N ≈ nd/2d−1 many nodes.

◮ d = 1: Gauss formulae are the minimal, N = n + 1.

◮ d = 2: these formulae are known to have minimal
number of nodes.

◮ d ≥ 3: they are still far from the lower bound, but they
appear to be the best ones known at the moment.
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Hyperinterpolation (1) (cf. Sloan JAT (1995))

Hyperinterpolation is an approximation method constructed
by applying the cubature formula to the Fourier coefficients
of the orthogonal projection operator.

For every function f ∈ C (Ω) the µ-orthogonal projection of
f on Πd

n(Ω) is

Snf (x) =
∑

|α|≤n

aα pα(x), aα :=

∫

Ω
f (x) pα(x) dµ , (5)

where x is a d-dimensional point, α is a d-index of length
|α| and the polynomials {pα , 0 ≤ |α| ≤ n} is any
µ-orthonormal basis of Πd

n(Ω) with pα of total degree |α|.

Clearly, Snp = p for every p ∈ Πd
n(Ω)
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Hyperinterpolation (2)

Given a cubature formula (1) of degree ≤ 2n we can
construct an hyperinterpolant as follows.

◮ From (5), the polynomial approximation of degree n can
be obtained by the discretized Fourier coefficients {cα},
i.e.

f (x) ≈ Lnf (x) :=
∑

|α|≤n

cα pα(x) , cα :=
∑

ξ∈Xn

wξ f (ξ) pα(ξ) ,

(6)
where cα = aα and thus Lnp = Snp = p for every
p ∈ Πd

n(Ω).

◮ Moreover, for every f ∈ C (Ω), the basic estimate holds:

‖f −Lnf ‖L2
dµ(Ω) ≤ 2

√
µ(Ω)En(f ) → 0 , n → ∞ , (7)

where En(f ) := inf {‖f − p‖∞ , p ∈ Πd
n (Ω)}, so that it

converges in mean.
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Minimal cubature formulae: from the square to the cube

◮ Bojanov&Petrova (JCAM 1997) derived minimal
cubature formulae in the square for the product
Chebsyhev measure, splitting the Gauss-Lobatto
quadrature into two sums, over even indices and odd
indices, respectively.

◮ This factorization method was also used for d > 2 and
yields a cubature formula of degree 2n − 1 for Wd with
roughly nd/2d/2 many nodes.

◮ A close inspection to the Bojanov&Petrova’s technique
allowed us to derive cubature formulae of degree 2n − 1

for Wd with roughly 2

(
n

2

d
)

=
nd

2d−1
many nodes.
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Recalls from 1d Gauss-Lobatto

◮ The 1d Gauss-Lobatto formula for w(= W1) on [−1, 1] is

∫ 1

−1

f (x)w(x)dx =
1

n



1

2
f (−1) +

n−1∑

j=1

f
(
cos jπ

n

)
+

1

2
f (1)



 := Inf ,

(8)

◮ We factor this rule depending on n even or odd.

n = 2m :

IE
n f :=

1

n



1

2
f (−1) +

m−1∑

j=1

f
(
cos 2jπ

n

)
+

1

2
f (1)





IO
n f :=

1

n

m∑

j=1

f
(
cos (2j−1)π

n

)

(9)

... similarly for odds, n = 2m − 1.

◮ Then, the quadrature (8) becomes
∫ 1

−1

f (x)w(x)dx = IE
n f + IO

n f , ∀f ∈ Π2n−1 ,
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A key lemma

Lemma

Let Tk be the Chebyshev pol. of deg. k. For n ≥ 0 and k ∈ Z,

IE
n Tk =

{
0, k 6= 0 mod n
1
2 , k = 0 mod n

and IO
n Tk =





0, k 6= 0 mod n
1
2 , k = 0, 2n, 4n, . . .

− 1
2 , k = 0, n, 3n, . . . .

Proof. ... from elementary trig. identities. For instance, n = 2m, IOn Tk = sin kπ

2n sin kπ
n

from which

IOn Tk = 0 for k 6= 0 mod n.
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... to dimension d

Let σ ∈ {E ,O}d , so that
σ = (σ1, . . . , σd) with σi = E or σi = O. We then define the
sum

Iσ1
n · · · Iσd

n f

as a d-fold multiple sum in which Iσk
n is applied to the k-th

variable of f . Let us define

σ̃i =

{
E σi = O
O σi = E

(10)

For each σ ∈ {E ,O}d , we then define

Iσ
n,d f := Iσ1

n . . . Iσd
n f + I σ̃1

n . . . I σ̃d
n f . (11)
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Main theorem

Theorem

For d ≥ 1 and each σ ∈ {E ,O}d , the cubature formula

∫

[−1,1]d
f (x)Wd(x)dx = 2d−1Iσ

n,d f (12)

is exact for f ∈ Πd
2n−1 and its number of nodes, N, satisfies

N = 2
(⌊n

2

⌋)d

(1 + o(n−1)) .
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What the theorem says ...

◮ For d = 2, we have 2 distinct cubature formulae of degree
2n − 1 (cf. Morrow&Patterson (SIAM J. Numer. Anal.
1978); Y. Xu (JAT 1996), and Bojanov&Petrova (JCAM
1997)).:

1. σ = (E , E ) and N = dim(Π2
n−1) + ⌊ n

2 ⌋ many nodes;
2. σ = (E , O) and N + 1 nodes.

◮ For d = 3, there are 4 distinct formulae for
σ = (E , E , E ), (E , E , O), (E , O, E ), (O, E , E ), respectively.
For n = 2m, the number of nodes is

N =
(n + 1)3 + (n + 1)

4

for σ = (E , E , E ) and

N =
(n + 1)3 − (n + 1)

4

for σ = (E , E , O), (E , O, E ), (O, E , E ), respectively.
Asymptotically n3/4.
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A Matlab code for generating the points

n= input(’Give me the degree = ’);

fam=input(’Which family = ’);

zn = -cos([0:n]*pi/n);

E=zn(1:2:length(zn)); O=zn(2:2:length(zn));

switch(fam)

case 1 [X1,Y1,Z1]=meshgrid(E,E,E);

[X2,Y2,Z2]=meshgrid(O,O,O);

case 2 [X1,Y1,Z1]=meshgrid(E,E,O);

[X2,Y2,Z2]=meshgrid(O,O,E);

case 3 [X1,Y1,Z1]=meshgrid(E,O,O);

[X2,Y2,Z2]=meshgrid(O,E,E);

case 4 [X1,Y1,Z1]=meshgrid(O,O,O);

[X2,Y2,Z2]=meshgrid(E,E,E);

end

---> Plot of the points <---

http://profs.sci.univr.it/∼demarchi/software/Hyper3
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The points

Points for n=5 and family (E,E,E)

First grid
Second grid

-1
-0.5

0
0.5

1

-1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

Figure: These are the cubature points for n = 5 in the 3-cube
[−1, 1]3. They are 54 i.e the union of two grids, both formed by 33

points.
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Example: new cubature versus tensor-product ones

0 200 400 600 800 1000 1200 1400
10

−15
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0

Number of function evaluations

Cubature rel. errors for exp(x+y+z)

 

 
Our formula
Tens.−prod. Gauss−Chebsyhev
Tens.−prod. Gauss−Chebyshev−Lobatto

0 0.5 1 1.5 2 2.5 3

x 10
4

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Number of function evaluations

Cubature rel. errors for (x2+y2+z2)3/2

 

 
Our formula
Tens.−prod. Gauss−Chebsyhev
Tens.−prod. Gauss−Chebyshev−Lobatto

Figure: Relative cubature errors versus the number of function
evaluations for the exponential (left) and a C 2 function (right).
Here, σ = (E , E , E ).

Note: the superiority for less smooth functions arises for even n.
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Hyperinterpolation in the cube (1)
Having the cubature formula (12) of Theor. 1, we can construct the hyperinterpolant.

◮

pα(x) = T̂α1
(x1)T̂α2

(x2)T̂α3
(x3) , (13)

where T̂k (·) =
√

2 cos(k arccos(·)), k > 0 and T̂0(·) = 1.

◮

Cn =

{
cos

kπ

n
, k = 0, ..., n

}

be the set of n + 1 Chebyshev-Lobatto points, and CE
n , CO

n its restriction to even and odd
indices, respectively. Then,

Xn =
(
C

σ1
n+1 × C

σ2
n+1 × C

σ3
n+1

)
∪

(
C

σ̃1
n+1 × C

σ̃2
n+1 × C

σ̃3
n+1

)
, (14)

with (σ1, σ2, σ3) ∈ {E , O}3, see (10).

◮ The weights of the cubature formula (12) for ξ ∈ Xn , are

wξ =
4

(n + 1)3
·






1 if ξ is an interior point
1/2 if ξ is a face point
1/4 if ξ is an edge point
1/8 if ξ is a vertex point

(15)

Note: since

dim(Π
3
n(Ω)) = (n + 1)(n + 2)(n + 3)/6 < N = card(Xn) ≈ n

3
/4 ,

the polynomial Lnf in (6) is not interpolant.
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Hyperinterpolation in the cube (2)

◮

F (ξ) = F (ξ1, ξ2, ξ3) =





wξf (ξ) ξ ∈ Xn

0 ξ ∈ (Cn+1 × Cn+1 × Cn+1)\Xn

(16)

◮ Then, we can write

cα =
∑

ξ∈Xn

wξf (ξ)pα(ξ)

=




3∏

s=1

βαs




n+1∑

i=0




n+1∑

j=0




n+1∑

k=0

Fijk cos
kα1π

n + 1



 cos
jα2π

n + 1



 cos
iα3π

n + 1
,

where

α = (α1, α2, α3) ∈ {0, 1, . . . , n}3
, βαs =

{ √
2 αs > 0

1 αs = 0
, s = 1, 2, 3 .

◮ Hence, {cα} is a scaled Discrete Cosine Tranform of the array

Fijk = F

(
cos

iπ

n + 1
, cos

jπ

n + 1
, cos

kπ

n + 1

)
, 0 ≤ i, j, k ≤ n , (17)

where we eventually pick up only the (n + 1)(n + 2)(n + 3)/6 ≈ n3/6 hyperinterpolation
coefficients corresponding to |α| = α1 + α2 + α3 ≤ n.
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Hyperinterpolation in the cube (3)

Algorithm: Fast total degree hyperinterpolation in the
3-cube.

(i) construct the point set Xn as union of the two subgrids in
(14);

(ii) compute the cubature weights in (15);

(iii) compute the array {Fijk} at the complete grid
Cn+1 × Cn+1 × Cn+1 by (16) (notice: f is evaluated only at
Xn);

(iv) compute the array of coefficients {cα} by three nested
applications of the 1-dimensional Real(FFT(·));

(v) select the coefficients {cα} corresponding to the triples
α = (α1, α2, α3) such that |α| = α1 + α2 + α3 ≤ n.

Remarks

◮ the number of hyperinterpolation nodes, or function
evaluations, is equal to card(Xn) ≈ n3/4;

◮ the number of hyperinterpolation coefficients is
dim(Π3

n) ≈ n3/6.
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An example
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Figure: Hyperinterpolation relative errors (to the max. function
deviation from its mean!) versus the number of function
evaluations again for the exponential and a C 2 function.

Remarks

◮ Errors are computed on a uniform grid

◮ Total degree hyperinterpolation is superior to the
tensor-product one for smooth functions.
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function.
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Application to surface compression

Here we report the compression errors, obtained by
hyperinterpolating the cubic spline interpolant, S3f (·), of our two
test functions, sampled on a grid, say Cm, consisting of
m3 = 203 = 8000 points.

E = ‖f − Lnf ‖∞,Cm
.

Function n = 10 n = 15 n = m = 20 ”true” error
ex+y+z 4.1E-3 4.0E-4 1.7E-5 1.1E-4√

(x2 + y2 + z2)3 1.1E-3 3.4E-4 6.3E-5 1.2E-4

Table: Compresssion errors compared with the ”true” ones

1. The ”true” error is the error obtained by the cubic spline on
a finer grid (bigger and different of Cm).

2. The compression ratio is given by 6 m3

(n+1)(n+2)(n+3) . In this

example, the ratios are: 36 : 1, 12 : 1, 5 : 1, respectively.
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A ”new” Clenshaw-Curtis like cubature formula

◮ In Sommariva&al. NA2008, has been shown that
hyperinterpolation can be used to construct new cubature
formulae in the square [−1, 1]2.

◮ Given h ∈ L2
dµ(Ω) and f ∈ C (Ω), we can approximate∫

Ω h(x) f (x) dµ as

∫

Ω

h(x)Lnf (x) dµ =
∑

|α|≤n

cα mα =
∑

ξ∈Xn

λξ f (ξ) , (18)

where the generalized “orthogonal moments” {mα} and the
weights {λξ} are defined by

mα :=

∫

Ω

h(x) pα(x) dµ , λξ := wξ

∑

|α|≤n

pα(ξ)mα . (19)

◮ The cubature formula (18) is exact for every f ∈ Πd
n(Ω), and

{mα} are just Fourier coefficients of h w.r.t. the
µ-orthonormal basis {pα}.
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Stability and convergence

Concerning stability and convergence of such cubature
formulae, the following result has been proved in
Sommariva&al. NA2008 (in the square and nontensorial
Clenshaw-Curtis):

Theorem

Let all the assumptions for the construction of the cubature
formula (18) be satisfied, and in particular let h ∈ L2

dµ(Ω).
Then the sum of the absolute values of the cubature weights
has a finite limit

lim
n→∞

∑

ξ∈Xn

|λξ| =

∫

Ω
|h(x)| dµ . (20)
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”new” Clenshaw-Curtis cubature ... continue

◮ Applying (18)-(19) when

dµ = w(x) dx , w ∈ L1
dx(Ω) , with h =

1

w
∈ L1

dx(Ω) ,

(21)
(since then h2 = 1/w 2 ∈ L1

dµ(Ω)) we obtain, via
hyperinterpolation, a cubature formula for the standard
Lebesgue measure from an algebraic cubature formula for
another measure.

◮ Specializing this approach to the 1-dimensional Chebyshev
measure gives the popular Clenshaw-Curtis quadrature
formula.

◮ An extension to dimension 2 has been studied in
Sommariva&al. (NA 2008).

◮ Here we apply the method in dimension 3, obtaining a new
nontensorial Clenshaw-Curtis-like cubature formula in
the 3-cube.
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An example
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Figure: Relative cubature errors versus the number of cubature
points for the exponential and a C 2 function.

Remark

◮ Nontensorial Clenshaw-Curtis cubature is superior to all the
tensor-product ones, on less smooth functions (non-entire)
(for d = 1 see N. L. Trefethen, Siam Rev. 2008).
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Work to do

1. Compute numerically the Lebesgue constant
(reproducing kernel?)

2. Find bound(s) for the Lebesgue constant growth

3. Make the software more efficient (based on Trefethen’s
definition: 10 digits, 5 sec. and 1 page!)

4. Understand the very good behavior of the nontensorial
Clenshaw-Curtis cubature formulae;

5. Extensions to d > 3 (it seems ”easy” to pass to
d = 4, 5.)
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First announcement

2nd Dolomites Workshop on Constructive
Approximation and Applications

Alba di Canazei, 3-9 Sept. 2009 (?)
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Dolomites Research Notes on Approximation (DRNA)

Dolomites Research Notes on Approximation publishes, in open
source access, papers and/or slides of the talks presented at the
annual Dolomites Research Weeks and Workshops organized
regularly (since 2006) by the Padua-Verona research group on
Constructive Approximation and its Applications (CAA), at the
summer courses site of the University of Verona in Alba di Canazei
(Trento, Italy). The journal also publishes, on invitation, survey
papers and summaries of Ph.D. theses on approximation theory,
algorithms and applications.

◮ Editor in chief: Stefano De Marchi and Marco Vianello.

◮ Editorial Board: Borislav Bojanov, Leonard Peter Bos, Martin
Buhmann, Armin Iske, Robert Schaback, Shayne Waldron,
Holger Wendland and Yuan Xu

◮ web site (provisional):
http://meneghetti.univr.it/ojs/index.php/DRNA/
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Thank you for your attention!
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