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DI waremanca

Description of CT

How does it work?

m Non-invasive medical procedure (X-ray equipment).
m X-ray beam is assumed to be:
- monochromatic;
- zero-wide;
- not subject to diffraction or refraction.
m Produce cross-sectional images.
m Transmission tomography (emissive tomography, like PET and
SPECT, are not considererd here)

Detectors

Emitters
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DIMRATemATIcA

Description of CT

How does it work?

Flat panel
detectar

Peis of rotation

Heray souroe

Trajectory

m {;4 — line along which the X-ray is moving;

m (t,0) e Rx [0,7) — polar coordinates of line-points;

m f — attenuation coefficient of the body;

m /| — intensity of the X-ray. 6 of 69
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wk.z.a-.ﬁ,./n n

m Discovered by Wihelm Conrad
Réntgen in 1895

m Wavelength in the range
[0.01,10] x 10 ° m

TR

m Attenuation coefficient:

by

A(x) =~ "#pho.sabsorbed/1 mm" TR ED
A 2-10.x) Figure: First X-ray image: Frau

Réntgen left hand.
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CT machine and people

Computerized Tomography (CT)

i . N "‘-.
both got Nobel Price for Medicine and Physiology in 1979
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m A. Cormack and G.
[—— Hounsfield 1970

/ —agp \ m Reconstruction from

X-ray images taken from
160 or more beams at
each of 180 directions

m Beer’s law (loss of

intensity):
Detector X1 I
. f A(x)dx = In (—)
Figure: First generation of CT scanner X0 l
———

design. givenby CT
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Outline

Image Reconstruction from CT

Radon transform

Alg. Rec. Tech. (ART), Kernel approach
m Regularization
m Numerical results
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DI waremanca

Lines in the plane

A line I in the plane, perpendicular to the unit vector ny = (cos 6, sin 0)
and passing through the point p = (t cos 6, t sin 8) = tny, can be
characterized (by the polar coordinates t € R, 6 € [0, 7)), i.e. [ = g

lhy = {x:= (tcos@—ssinb,tsind+ scosb) = (x1(s), x2(s)) s R}

N

\‘( 0,tsin0) X
tcos0), tsin
\\

N\

Figure: A line in the plane.
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Radon transform

definition

The Radon transform of a given function f : Q ¢ R? — R is defined for
each pair of real number (t,0), as line integral

Rf(t,e):f f(x)dx:ff(x1(s),x2(s))ds
ILH R

R

Figure: Left: image. Right: its Radon transform (sinogram)
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Radon tranform

Image reconstruction

A CT scan measures the X-ray projections through the object,
producing a sinogram, which is effectively the Radon transform of
the attenuation coefficient function f in the (t, 6)-plane.

Pt @ diffeinnt sgls
codboriog as wnogen




Radon transform: another example

0° 90° 180°
0

Figure: Shepp-Logan phantom. Figure: Radon transform (sinogram).
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Back projection

m First attempt to recover f from Rf
m The back projection of the function h = h(t, ) is the transform

Bh(x) = - fo h(x1 cos 6 + x2 sin 6, 6) df

i.e. the average of h over the angular variable 6, where
t = x1cos 6 + X2 sin = x' ny.

Figure: Back projection of the Radon transform.
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Important theorems

Theorem (Central Slice Theorem)

For any suitable function f defined on the plane and all real
numbers r, 0
F2f(rcos@,rsin@) = F(Rf)(r,0).

(F> and F are the 2-d and 1-d Fourier transforms, resp.).

Theorem (The Filtered Back-Projection Formula)

For a suitable function f defined in the plane

f(x) = %B{F‘1 [IrIF (RE)(r,0)]}(X), x € R2.
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Fundamental question

Fundamental question of image reconstruction.

Is it possible to reconstruct a function f starting from its Radon
transform Rf? O

Answer (Radon 1917).

Yes, we can if we know the value of the Radon transform for all
r,o. O
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Discrete problem

Ideal case
m Rf(t,0) known for all t, 6
m Infinite precision
m No noise
Real case
m RIf(t,0) known only on a finite set {(t;, 6k )}«
m Finite precision
m Noise in the data
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Fourier-based approach

Sampling: Rf(t,6) — Rpf(jd, kx/N)

Discrete transform: e.g.

Bph(x

HMZ

h(x cos (km/N) + y sin (kn/N), kn/N)

Filtering (low-pass): |r| = F¢(r), with ¢ band-limited function

Interpolation: {fs : k € N} — If(x), x e R

19 of 69
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Discrete problem

m Filtered Back-Projection Formula
1 _
f(x) = 5BIF irl - F(RF(r, 0))]}(x)

m Filtering

(%) = SBUF[F(0() - FRIr6)](x) =

= EB{F—1 [F(¢ = Rf(r,6))]}(x)
1
= §B[¢ « Rf(r, 0)](x)
m Sampling and interpolation

4", xg) = BD/[¢ * Rof (1, 06)] (X", x3)
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Discrete problem: an example

Figure: Reconstruction with linear
Figure: Shepp-Logan phantom. interpolation and 180x101 = 18180
samples.
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Outline

Image Reconstruction from CT

Radon transform

Alg. Rec. Tech. (ART), Kernel approach
m Regularization
m Numerical results
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Algebraic Reconstruction Techniques (A

Differently from Fourier-based reconstruction, we consider
G = span{g;, j = 1, ..., n} of n basis functions and we solve the
reconstruction problem on all Radom lines £

Rc(9) = Rc(f)

n
9= cg;.
=

m Asking interpolation, that is

by using

Rg(tk,ek):Rf(tk,Hk), k = 1,...,m
we obtain the linear system Ac = b with
Ak’j = jo(tk,Qk), k = 1,...,m, j: 1,...,”.
m Large, often sparse, linear system

m Solution by iterative methods (Kaczmarz, MLEM, OSEM, LSCG), or
SIRT techniques (see AlRtools by Hansen &Hansen 2012). 5o 69
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ART reconstruction: Example 1

Figure: 64 x 64 = 4096
Figure: Bull's eye phantom. reconstructed image with 4050
samples by Kaczmarz.




ART reconstruction: Example 2

Figure: Shepp-Logan phantom. Figure: The phantom reconstructed
by MLEM in 50 iterations.




Hermite-Birkhoff interpolation

Let A = {A4,...,14,) be a set of linearly independent linear functionals
and f = (A4(f), ..., A,(f))T e R".
The solution of a general H-B reconstruction problem:

H-B reconstruction problem

find g such that g, = f5 or

A(9) = A(f), k=1,....n.
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DI waremanca

Hermite-Birkhoff interpolation

Let A = {A4,...,14,) be a set of linearly independent linear functionals
and f = (A4(f), ..., A,(f))T e R".
The solution of a general H-B reconstruction problem:

H-B reconstruction problem

find g such that g, = f5 or

A(9) = A(f), k=1,....n.

m In our setting the functionals are
A = ka: Rf(tk,gk), k = 1,...,n

m The interpolation conditions
n
Z Cj/lk(gj) = /lk(f), k = 1, ..., n
j=1

that corresponds to the linear system Ac = b as before. 26 of 69
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Hermite-Birkhoff interpolation

Theorem (Haar-Mairhuber-Curtis)

IfQ c RY, d > 2 contains an interior point, there exist no Haar spaces of
continuous functions except the 1-dimensional case.

m The well-posedness of the interpolation problem is garanteed
if we no longer fix in advance the set of basis functions.

m Thus, the basis g; should depend on the data:

gi(x) = ¥ (K(x.y)) [= RIKOCY)](t 0 j=1,....n
with the kernel K such that the matrix
A = (Z (K Y)])ix
is not singular ¥ (t;, 6))

27 of 69
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Positive definite radial kernels

We choose a kernel K : R? x R? — R continuous
m Symmetric K(x,y) = K(y, x)
m Radial K(x,y) = ®(Ix-yll), e>0
m Positive definite (PD)

Z c,ck/lxxlyK (x,y) >

for all set of linear operators 1; and for all c € R" \ {0}

28 of 69




Positive definite kernels: examples

m Gaussian
O (Ixl) = e~ ™* PDV x eRZ >0

m Inverse multiquadrics

]
S (IX]) = ——=, PDVXxeR? €>0
1+ (ellx|)2

m Askey’s compactly supported (or radial characteristic function)

_ 5 [ (1€’ IIxl<1/e
O (lIxll) = (1 - ellxllY} = { : il = 1e

which are PD for any g > 3/2.
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A useful Lemma

Lemma

Let K(x,y) = #(lIx — yll) with ¢ € L'(R). Then for any x € R? the
Radon transform RYK(x,y) at (t,6) € R x [0, ) can be expressed

(RYK(x.Y))(t.6) = (RYK(0,y))(t — x"ny,0).
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DIMRATemATIcA

A useful Lemma

Lemma

Let K(x,y) = #(lIx — yll) with ¢ € L'(R). Then for any x € R? the
Radon transform RYK(x,y) at (t,6) € R x [0, ) can be expressed

(RYK(x.Y))(t.6) = (RYK(0,y))(t — x"ny,0).

This is the so-called shift invariant property of the Radon transform!
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Problem

m Inverse multiquadric kernel
1
V1 +lx -yl

Applying the previous Lemma we have

K(x,y) =

RY[K(0,y)](t.6) = f ds = oo

1
V1412 + 82

— the basis g; and the matrix A are not well defined «—
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Regularization

Window function

m Multiplying the kernel K for a “window function” w such that
R[K(x,y)w](t,0) < o ¥V (x,y),(t,6).
m This corresponds to use the linear operator Ry, in place of R
Rw[f](t,0) = R[fw](t,0).

m We consider w radial: w = w(]|-]|)
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Example of window functions

m Characteristic function

w(x) =y (lIxll), L >0

m Gaussian

—v2x[?
b

w(x) =e v>0

m Compactly supported (Askey’s family)

w(x) = (1 =v2IXIP)4. v>0
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Example: gaussian kernel

m Gaussian kernel, shape parameter
2 2
K(x,y) = e ® VI ¢ 0

m Basis function

Vr

e_gz(tj_xij)z
&

9i(x) = RY[K(x. y)I(t;,6) =

with v; = (cos 6;,sin )
m Matrix A = (ax)

axj = RIg](t, k) = +oo, if ;= Ok

34 of 69
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Example: gaussian kernel

m Gaussian window function

2 2
=V7|IX
oI

w(x) = ,v>0

m Matrix A becomes

rexp [~V (12 + 5]

eVe2a? +y2

where a = sin (6x — ;) and b = t; — tx cos (6k — 6;)
which is never vanishing!

agj = R[gj W](tk,ek) =

35 of 69
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Example: gaussian kernel reconstruction

Figure: 256 x 256 = 65536
Figure: Crescent-shaped phantom. reconstructed image with n = 4050
samples.
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A numerical experiment

m Gaussian kernel ®. and gaussian weight w,

m Comparison with the Fourier-based reconstruction (relying on the
FBP)

m Reconstructions from scattered Radon data and noisy Radon data

m Root Mean Square Error

RMSE = (i — 9i)?

J i=1

1 J
i=

J is the dimension of the image, {f;}, {g;} the greyscale values at the
pixels of the original and the reconstructed image.
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Kernel-based vs Fourier based: |

o Test phantoms

C

Figure: crescent shape Figure: bull’s eye Figure: Shepp-Logan




Geometries

Figure: Left: parallel beam geometry, 170 lines (10 angles and 17 Radon
lines per angle). Right: scattered Radon lines, 170 lines.
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Kernel-based vs Fourier based: Il

m Using parallel beam geometry, i.e. 6y = kxn/N, k =0,...,N—1
and tj = jd, j = -M, ..., M, with sampling spacing d — 0,
(2M + 1) x N regular grid of Radon lines.

No noise on the data.

m With N =45, M = 40, ¢ = 60 we got

Phantom || optimal v | kernel-based | Fourier-based
crescent 0.5 0.102 0.120

bull’s eye 0.4 0.142 0.134

Table: RMSE of kernel-based vs Fourier-based method
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Kernel-based vs Fourier based: Il

m Using scattered Radon data, with increasing randomly chosen
Radon lines n = 2000, 5000, 10000, 20000.

No noise on the data.
m Withe=50andv =10.7
Phantom H 2000 \ 5000 \ 10000 \ 20000

crescent || 0.1516 | 0.1405 | 0.1431 | 0.1174
bull's eye || 0.1876 | 0.1721 | 0.2102 | 0.1893

Table: RMSE of kernel-based vs different number n of Radon lines
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Kernel-based vs Fourier based: |V

These experiments are with noisy Radon data, i.e. we add a gaussian
noise of zero mean and variance o = 1.e — 3 to each of the three
phantoms.

m Parallel beam geometry, same € and v

Phantom || kernel-based | Fourier-based
crescent 0.1502 0.1933

bull’s eye 0.1796 0.2322

Table: RMSE of kernel-based vs Fourier-based with noisy data

m Scattered Radon data, same ¢ and v

Phantom || noisy | noisy-free
crescent || 0.2876 0.1820
bull’s eye || 0.3140 0.2453

Table: RMSE with noisy and noisy-free data
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Window function parameter

m Gaussian kernel; Gaussian window function

K(x y) — e—SZHX—YHZ W(x) — e_V2||xH2
10°
10” \\\
.
107 05 1 15 2
(a) RMSE (b) k~'(A)

Figure: Bull's eye phantom, &£ = 30.

m Trade-off principle (Schaback 1995) 43 of 69
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Kernel shape parameter

m Multiquadric kernel, Gaussian window
K(X, y) = 1+ p2||x — y”2 efszlleyﬂ2

0.42

0.4
0.38

w

% 0.36
0.34

0.32

0'30 05 1 15 2

P

(a) Crescent-shaped phantom (b) Shepp-Logan phantom

Figure: Optimal values depend on the data.

m Optimal values depend on data. o 69
B




Comparison with FBP Formula

(@) (b)

Figure: FBP and Gaussian Figure: Crescent-shaped: (a) FBP; (b)
kernel reconstruction (with Gaussian kernel.
optimal parameters &*, v*).
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Comparison with FBP Formula

* RMSE of the same order (ok!)
* More computational time and memory usage (not so well!)

20

e
§15 Vs
e s
£40 e
3 ad
3 A/
3 5 /.”
o2
.’,"
oL
0 1000 2000 3000 4000
number of data
(a) FBP (b) Multiquadric kernel

Figure: Computational time.
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Part Il

Double weighted kernel-method

Work with A. Iske and G. Santin
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Outline

Anisotropic kernels
m Anisotropic basis funtions
m Reconstruction matrix entries

Netwon Bases
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Isotropic and anisotropic kernels

m Isotropic (radially symmetric) kernel

K(x,y) = ¢(Ix - yIP), (xy)eR?

m Anisotropic (symmetric) kernel

K(x,y) = ¢(lIx - yIP)w(lIxI?)w(llyl®), (x,y) eR® (1)

where w : [0, 0) — [0, c0) suitable weight function
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Well definitness of the basis functions g; .

Consider the Schwartz space (cf. Iske 94)
S:={y e C°(R%R) : DPy(x)x? — 0, ¥ p,q e NI}

i.e. the set of rapidly decaying C* functions.

Definition
A continuous and symmetric function K : R% x R — R is said to be
positive definite on S, K € PD(S) iff

fRd fR K(x,y)y(x)y(y)dxdy > 0
forall y € S\ {0).
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DIMRATemATIcA

Construction of the anisotropic basis: |

m For the weighted kernels with K anisotropic, the basis functions are

9ue(x) = RY, [e(Ix = yIR)w(lyI?)| w(ixI?) ~ (t.6) € R x [0.7)
where R; 4 is the Radon transform on the line £ = ¢; 4.

m Simplyfing notation

9(x) = hyg(x)w(x)

where

heo(x) = R, [@(Ilx - yIP)w(lyIP)| = f e(lix = yI*)w(llyli*)dy

[Y.(/
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Construction of the anisotropic basis: Il

Introducing the rotation matrix

(6) —sin(6) n
Q —[ sn(®)  cos() ]— (e, ]

and letting x, = Q; 'x = Q/x = [x"ny, x"n;] € R? we get

ho(x) = f[ o(lIx - yIP)w(llyl?)dy =

o(lIx — QuyIP)w(llQuylI*)dy

0

e(I1Q; " x — yIF)w(llyl?)dy =

0

o(lIxo — yIP)w(llylP?)dy

0

I
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Construction of the anisotropic basis: Il

Anyy € ;o has the form y = [t, s]” € R? for a parameter s € R.
Setting v;s = [t,s]" =y we have

hie(x) = fR o((x"ng — )2 + (x"nt — 8)?)w(|Iv;sl?)ds




Construction of the anisotropic basis: Il

Anyy € ;o has the form y = [t, s]” € R? for a parameter s € R.
Setting v;s = [t,s]" =y we have

hie(x) = fR o((x"ng — )2 + (x"nt — 8)?)w(|Iv;sl?)ds

Proposition

For any anisotropic kernel K of the our form, the basis functions g;, have
the form

gre(X) = [ fR e((x"ng = 1)2 + (x"ny - s)z)w(uvt,snz)ds] w(lIxIP). (2)

Hence for (¢ w)(| - )2 € L'(R) the functions gi¢ : R? — [0, o) are
well-defined.

e




Reconstruction matrix entries: |

The reconstruction problem R,(g) = Rz(f) amounts to solving a
linear system Ac = b with matrix entries

als = RXlata(x)] = Ry, | RY, [oUx — yIE)w(liyl?)| w(ixi?)] .




MATEMATICA

Reconstruction matrix entries: Il

By using the representation of the basis functions g;» (omitting the
algebra) we get

Proposition

For (t,0), (r,$) € R x [0, 7) we have

aly = [ [ c1Qovss - Quial)w(iveal)w(ivesl?)s o
R JR

Again, if (pw)(| - |?) € L'(R) then the entries are well-defined and the
reconstruction matrix

_ (400 ) nxn
A= (a’w’k 1<jk<n

is symmetric positive definite.

In particular the diagonal entries are

ayjy = ﬁﬁcp((é - 8)?)w(s? + ?)w(3® + t?)ds ds.
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Example: gaussian kernel

In the case of the Gaussian kernel ¢([|x — y|[2) = e~="I*¥* and weight
w(x) = exp(—v?||x|?) we get
NG

4

~(£% +V2) (2 + IXIP) + 2¢2tng - x 4 (ng -x)?

gre(x) = exp

&
&2 +12

V&2 +v2

Matrix entries [DeMIS15]

For (t,0), (r,$) € R X [0, 7) the entries of the gaussian kernel matrix are
the Radon transform of the gaussian basis g;¢ w.r.t. the line ¢, 4, that is

8jk = Rrg[9ed]

i == ’ = T ¢8V b t, 9’
O )
2 2 2 2\ _ —
¢£,V(r7 t, 0, ¢) _ —2V2(282 + V2) ((8 + Vv )(r +ht )(9 ;‘;‘Zrt COS(H ¢))

he. (6, ¢) 2(s? +12)? — 25* cos?(0 — ¢).




MATEMATICA

Example: gaussian kernel

In the case of the Gaussian kernel ¢([|x — y|[2) = e~="I*¥* and weight
w(x) = exp(—v?||x|?) we get
NG

4

—(&® +2) (2 +IIXI?) + 262tng - x 4 (ng - x)2

(x) = ex o
Ite(X) = p 212

V&2 +v2

Matrix entries [DeMIS15]

For (t,0), (r,$) € R X [0, 7) the entries of the gaussian kernel matrix are
the Radon transform of the gaussian basis g;¢ w.r.t. the line ¢, 4, that is
ajk = Rry[gre]

i == ’ = T ¢8V b t, 9’
O )
2 2 2 2\ _ —
¢£,V(r7 t, 0, ¢) _ —2V2(282 + V2) ((8 + Vv )(r +ht )(9 ;‘;‘Zrt COS(H ¢))

he. (6, ¢) 2(s? +12)? — 25* cos?(0 — ¢).

— The matrix results symmetric and positive definite «—



Example: bull-eye phantom

Figure: Bull-eye phantom, 64 x 64.

Left: original.

Right: Approximed with parallel beam, e = 26 and v = 0.3333.
RMSE=1.12e-1, PSNR=67.2




Example: Shepp-Logan phantom

Figure: Shepp-Logan phantom, 64 x 64.

Left: original.

Right: Approximed with parallel beam, e = 26 and v = 0.3333.
RMSE=2.2e-1, PSNR=61.2




Outline

Anisotropic kernels
m Anisotropic basis funtions
m Reconstruction matrix entries

Netwon Bases

59 of 69




Newton Bases [ms Jat2011, PS JcAM2011]

Theorem (Basis factorization)

Any data-dependent basis U arises from a factorization A = Vy, - Cj
where Vy = (Uj(Xi))1<ij<n @nd U(x) = (us(X),--- ,us(x)) e R"is a
data-dependend basis; the coefficient matrix Cy is s.t.

U(x) =T(x)-Cy
where T(x) = (K(x,x1),- -+, K(X, Xn)).

Observation

The matrix Ak, g is sSymmetric and positive definite, A = L - L' (Cholesky
decomposition).
The Cholesky decomposition leads to the Newton basis, say N(x)

N(x) = T(x)- Cy = T(x) - (W)™ ®)




DIMRATemATIcA

Newton Bases

Observation

The Cholesky algorithm is recursive so we can construct the
Newton Basis recursively [PS 2011].

Newton bases allow to:

Properties

m Select the reconstruction lines;
m Solve a smaller system;

m Thanks to the selection of line-points we have a good
compression of data.
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How many Newton Bases ?

RMSE as a function of Newton basis Computation Time as a function of Newton basis
o.

L \ 140
035 \ 120

M
°

Computation tim
8

- 20|

o 500 1500 (] 500

1000 1500
Number of Newton Basis

Number of Newton Basi

Number of (Newton bases) selected lines and computatlon time for
Bull's Eye phantom reconstruction
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Selection Point

SOOmpoinzts are selected for the reconstruction of the Crescent
Shape phantom sinogram instead of 1500




Line selection

500 lines selected for the reconstruction of the Crescent Shape
phantom: the phantom reconstructed with 200 Newton bases.

100
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Double-weighted kernel methods vs ART
methods

Figure: We compare a reconstruction with ART (first image) and the
reconstruction with double-weighted kernel methods with 1500 (full data)
Newton Bases (second image)




DI waremanca

Double-weighted kernel methods vs ART

methods

Figure: Data with noise: we compare a reconstruction with ART (first
image) and the reconstruction with double-weighted kernel methods with
1500 Newton Bases (second image)
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Double-weighted kernel methods vs ART

methods

Figure: Missing Data: we compare a reconstruction with ART and the
reconstruction with double-weighted kernel methods with 1500 Newton
Bases (second image); Missing data: 40 % of Radon data
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Summary and future work

Done
Filtered Back-Projection Formula
m Efficiency
Kernel based reconstruction

m Flexibility: double window function
m Arbitrary scattered Radon data

To be done
More on the error analysis
Conditionally positive definite kernels
Efficiency
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Thank you for your
attention!
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