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Part I

The problem and the first approach

Work with A. Iske, A. Sironi
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Regularization
Numerical results
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Description of CT
How does it work?

Non-invasive medical procedure (X-ray equipment).
X-ray beam is assumed to be:
- monochromatic;
- zero-wide;
- not subject to diffraction or refraction.
Produce cross-sectional images.
Transmission tomography (emissive tomography, like PET and
SPECT, are not considererd here)
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Description of CT
How does it work?

`(t ,θ) −→ line along which the X-ray is moving;

(t , θ) ∈ R × [0, π) −→ polar coordinates of line-points;

f −→ attenuation coefficient of the body;

I −→ intensity of the X-ray. 6 of 69



X-rays

Discovered by Wihelm Conrad
Röntgen in 1895

Wavelength in the range
[0.01, 10] × 10−9 m

Attenuation coefficient:

A(x) ≈ ”#pho.s absorbed/1 mm”

A : Ω→ [0,∞) Figure: First X-ray image: Frau
Röntgen left hand.
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CT machine and people

Computerized Tomography (CT)

modern CT

Allan Mcleod Cormack Godfrey Newbold Hounsfield

both got Nobel Price for Medicine and Physiology in 1979
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Computerized Axial Tomography

Figure: First generation of CT scanner
design.

A. Cormack and G.
Hounsfield 1970

Reconstruction from
X-ray images taken from
160 or more beams at
each of 180 directions

Beer’s law (loss of
intensity):∫ x1

x0

A(x) dx = ln
(
I0
I1

)
︸ ︷︷ ︸

given by CT
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Outline
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Lines in the plane

A line l in the plane, perpendicular to the unit vector nθ = (cos θ, sin θ)
and passing through the point p = (t cos θ, t sin θ) = tnθ, can be
characterized (by the polar coordinates t ∈ R, θ ∈ [0, π)), i.e. l = lt ,θ

lt ,θ = {x := (t cos θ − s sin θ, t sin θ + s cos θ) = (x1(s), x2(s)) s ∈ R}

t,θ

Figure: A line in the plane.
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Radon transform
definition

The Radon transform of a given function f : Ω ⊂ R2 → R is defined for
each pair of real number (t , θ), as line integral

Rf(t , θ) =

∫
lt ,θ

f(x)dx =

∫
R

f(x1(s), x2(s)) ds

t

Figure: Left: image. Right: its Radon transform (sinogram)
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Radon tranform
Image reconstruction

A CT scan measures the X-ray projections through the object,
producing a sinogram, which is effectively the Radon transform of
the attenuation coefficient function f in the (t , θ)-plane.
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Radon transform: another example

Figure: Shepp-Logan phantom. Figure: Radon transform (sinogram).
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Back projection

First attempt to recover f from Rf
The back projection of the function h ≡ h(t , θ) is the transform

Bh(x) =
1
π

∫ π

0
h(x1 cos θ + x2 sin θ, θ) dθ

i.e. the average of h over the angular variable θ, where
t = x1 cos θ + x2 sin θ = xT nθ.

Figure: Back projection of the Radon transform.
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Important theorems

Theorem (Central Slice Theorem)

For any suitable function f defined on the plane and all real
numbers r , θ

F2f(r cos θ, r sin θ) = F(Rf)(r , θ).

(F2 and F are the 2-d and 1-d Fourier transforms, resp.).

Theorem (The Filtered Back-Projection Formula)

For a suitable function f defined in the plane

f(x) =
1
2

B{F−1[|r |F (Rf)(r , θ))]}(x) , x ∈ R2.
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Fundamental question

Fundamental question of image reconstruction.

Is it possible to reconstruct a function f starting from its Radon
transform Rf? �

Answer (Radon 1917).

Yes, we can if we know the value of the Radon transform for all
r , θ. �
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Discrete problem

Ideal case

Rf(t , θ) known for all t , θ

Infinite precision

No noise

Real case

Rf(t , θ) known only on a finite set {(tj , θk )}j,k

Finite precision

Noise in the data
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Fourier-based approach

Sampling: Rf(t , θ)→ RD f(jd, kπ/N)

Discrete transform: e.g.

BDh(x) =
1
N

N−1∑
k=0

h(x cos (kπ/N) + y sin (kπ/N), kπ/N)

Filtering (low-pass): |r | = Fφ(r), with φ band-limited function

Interpolation: {fk : k ∈ N} → If(x), x ∈ R
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Discrete problem

Filtered Back-Projection Formula

f(x) =
1
2

B{F−1[|r | · F(Rf(r , θ))]}(x)

Filtering

f(x) =
1
2

B{F−1[F(φ(r)) · F(Rf(r , θ))]}(x) =

=
1
2

B{F−1[F(φ ∗ Rf(r , θ))]}(x)

=
1
2

B[φ ∗ Rf(r , θ)](x)

Sampling and interpolation

f(xm
1 , x

n
2 ) =

1
2

BD I[φ ∗ RD f(rj , θk )](xm
1 , x

n
2 )
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Discrete problem: an example

Figure: Shepp-Logan phantom.
Figure: Reconstruction with linear
interpolation and 180x101 = 18180
samples.
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3 Alg. Rec. Tech. (ART), Kernel approach
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Numerical results
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Algebraic Reconstruction Techniques (ART)
Differently from Fourier-based reconstruction, we consider
G = span{gj , j = 1, ..., n} of n basis functions and we solve the
reconstruction problem on all Radom lines L

RL(g) = RL(f)

by using

g =
n∑

j=1

cjgj .

Asking interpolation, that is

Rg(tk , θk ) = Rf(tk , θk ), k = 1, . . . ,m

we obtain the linear system Ac = b with
Ak ,j = Rgj(tk , θk ), k = 1, . . . ,m, j = 1, . . . , n .

Large, often sparse, linear system

Solution by iterative methods (Kaczmarz, MLEM, OSEM, LSCG), or
SIRT techniques (see AIRtools by Hansen &Hansen 2012).
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ART reconstruction: Example 1

Figure: Bull’s eye phantom.
Figure: 64 × 64 = 4096
reconstructed image with 4050
samples by Kaczmarz.
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ART reconstruction: Example 2

Figure: Shepp-Logan phantom. Figure: The phantom reconstructed
by MLEM in 50 iterations.
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Hermite-Birkhoff interpolation
Let Λ = {λ1, . . . , λn} be a set of linearly independent linear functionals
and fΛ = (λ1(f), . . . , λn(f))T ∈ Rn.
The solution of a general H-B reconstruction problem:

H-B reconstruction problem

find g such that gΛ = fΛ or

λk (g) = λk (f), k = 1, . . . , n .

In our setting the functionals are

λk := Rk f = Rf(tk , θk ), k = 1, . . . , n

The interpolation conditions
n∑

j=1

cjλk (gj) = λk (f), k = 1, . . . , n

that corresponds to the linear system Ac = b as before.
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Hermite-Birkhoff interpolation

Theorem (Haar-Mairhuber-Curtis)

If Ω ⊂ Rd , d ≥ 2 contains an interior point, there exist no Haar spaces of
continuous functions except the 1-dimensional case.

The well-posedness of the interpolation problem is garanteed
if we no longer fix in advance the set of basis functions.

Thus, the basis gj should depend on the data:

gj(x) = λ
y
j (K(x, y)) [= Ry[K(x, y)](tk , θk )] , j = 1, . . . , n

with the kernel K such that the matrix

A = (λx
j [λy

k (K(x, y))])j,k

is not singular ∀ (tj , θj)
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Positive definite radial kernels

We choose a kernel K : R2 × R2 → R continuous

Symmetric K(x, y) = K(y, x)

Radial K(x, y) = Φε(‖x − y‖), ε > 0

Positive definite (PD)

n∑
k ,j=1

cjckλ
x
j λ

y
k K(x, y) ≥ 0

for all set of linear operators λj and for all c ∈ Rn \ {0}
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Positive definite kernels: examples

Gaussian

Φε(‖x‖) = e−(ε‖x‖)2
, PD ∀ x ∈ R2, ε > 0

Inverse multiquadrics

Φε(‖x‖) =
1√

1 + (ε‖x‖)2
, PD ∀ x ∈ R2, ε > 0

Askey’s compactly supported (or radial characteristic function)

Φε(‖x‖) = (1 − ε‖x‖)β+ =

{
(1 − ε‖x‖)β ‖x‖ < 1/ε
0 ‖x‖ ≥ 1/ε

which are PD for any β > 3/2.
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A useful Lemma

Lemma

Let K(x, y) = φ(‖x − y‖) with φ ∈ L1(R). Then for any x ∈ R2 the
Radon transform RyK(x, y) at (t , θ) ∈ R × [0, π) can be expressed

(RyK(x, y))(t , θ) = (RyK(0, y))(t − xT nθ, θ) .

This is the so-called shift invariant property of the Radon transform!
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Problem

Inverse multiquadric kernel

K(x, y) =
1√

1 + ‖x − y‖2
.

Applying the previous Lemma we have

Ry[K(0, y)](t , θ) =

∫
R

1
√

1 + t2 + s2
ds = +∞

−→ the basis gj and the matrix A are not well defined←−
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Regularization
Window function

Multiplying the kernel K for a “window function” w such that

R[K(x, y)w](t , θ) < ∞ ∀ (x, y), (t , θ).

This corresponds to use the linear operator Rw in place of R

Rw [f ](t , θ) = R[fw](t , θ).

We consider w radial: w = w(‖·‖)
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Example of window functions

Characteristic function

w(x) = χ[−L ,L ](‖x‖), L > 0

Gaussian
w(x) = e−ν

2‖x‖2 , ν > 0

Compactly supported (Askey’s family)

w(x) = (1 − ν2‖x‖2)+, ν > 0
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Example: gaussian kernel

Gaussian kernel, shape parameter ε

K(x, y) = e−ε
2‖x−y‖2 , ε > 0

Basis function

gj(x) = Ry[K(x, y)](tj , θj) =

√
π

ε
e−ε

2(tj−xT vj)
2

with vj = (cos θj , sin θj)

Matrix A = (ak ,j)

ak ,j = R[gj](tk , θk ) = +∞, if θj = θk
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Example: gaussian kernel

Gaussian window function

w(x) = e−ν
2‖x‖2 , ν > 0

Matrix A becomes

ak ,j = R[gj w](tk , θk ) =
π exp [−ν2(t2

k + ε2b2

ε2a2+ν2 )]

ε
√
ε2a2 + ν2

where a = sin (θk − θj) and b = tj − tk cos (θk − θj)
which is never vanishing!
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Example: gaussian kernel reconstruction

Figure: Crescent-shaped phantom.
Figure: 256 × 256 = 65536
reconstructed image with n = 4050
samples.
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A numerical experiment

Gaussian kernel Φε and gaussian weight wν

Comparison with the Fourier-based reconstruction (relying on the
FBP)

Reconstructions from scattered Radon data and noisy Radon data

Root Mean Square Error

RMSE =
1
J

√√√ J∑
i=1

(fi − gi)2

J is the dimension of the image, {fi}, {gi} the greyscale values at the
pixels of the original and the reconstructed image.
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Kernel-based vs Fourier based: I

� Test phantoms

Figure: crescent shape Figure: bull’s eye Figure: Shepp-Logan
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Geometries

Figure: Left: parallel beam geometry, 170 lines (10 angles and 17 Radon
lines per angle). Right: scattered Radon lines, 170 lines.
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Kernel-based vs Fourier based: II

Using parallel beam geometry, i.e. θk = kπ/N, k = 0, . . . ,N − 1
and tj = jd, j = −M, . . . ,M, with sampling spacing d −→ 0,
(2M + 1) × N regular grid of Radon lines.

No noise on the data.

With N = 45, M = 40, ε = 60 we got

Phantom optimal ν kernel-based Fourier-based
crescent 0.5 0.102 0.120
bull’s eye 0.4 0.142 0.134

Table: RMSE of kernel-based vs Fourier-based method
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Kernel-based vs Fourier based: III

Using scattered Radon data, with increasing randomly chosen
Radon lines n = 2000, 5000, 10000, 20000.

No noise on the data.

With ε = 50 and ν = 0.7

Phantom 2000 5000 10000 20000
crescent 0.1516 0.1405 0.1431 0.1174
bull’s eye 0.1876 0.1721 0.2102 0.1893

Table: RMSE of kernel-based vs different number n of Radon lines
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Kernel-based vs Fourier based: IV
These experiments are with noisy Radon data, i.e. we add a gaussian
noise of zero mean and variance σ = 1.e − 3 to each of the three
phantoms.

Parallel beam geometry, same ε and ν

Phantom kernel-based Fourier-based
crescent 0.1502 0.1933
bull’s eye 0.1796 0.2322

Table: RMSE of kernel-based vs Fourier-based with noisy data

Scattered Radon data, same ε and ν

Phantom noisy noisy-free
crescent 0.2876 0.1820
bull’s eye 0.3140 0.2453

Table: RMSE with noisy and noisy-free data
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Window function parameter

Gaussian kernel; Gaussian window function

K(x, y) = e−ε
2‖x−y‖2 w(x) = e−ν

2‖x‖2

(a) RMSE (b) k−1(A)

Figure: Bull’s eye phantom, ε = 30.

Trade-off principle (Schaback 1995)
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Kernel shape parameter

Multiquadric kernel, Gaussian window

K(x, y) =
√

1 + ρ2‖x − y‖2 e−ε
2‖x−y‖2

(a) Crescent-shaped phantom (b) Shepp-Logan phantom

Figure: Optimal values depend on the data.
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Comparison with FBP Formula

Figure: FBP and Gaussian
kernel reconstruction (with
optimal parameters ε∗, ν∗).

(a) (b)

Figure: Crescent-shaped: (a) FBP; (b)
Gaussian kernel.
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Comparison with FBP Formula

* RMSE of the same order (ok!)

* More computational time and memory usage (not so well!)

(a) FBP (b) Multiquadric kernel

Figure: Computational time.
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Part II

Double weighted kernel-method

Work with A. Iske and G. Santin
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Outline

4 Anisotropic kernels
Anisotropic basis funtions
Reconstruction matrix entries

5 Netwon Bases

48 of 69



Isotropic and anisotropic kernels

Isotropic (radially symmetric) kernel

K(x, y) = ϕ(‖x − y‖2), (x, y) ∈ R2

Anisotropic (symmetric) kernel

K(x, y) = ϕ(‖x − y‖2)w(‖x‖2)w(‖y‖2), (x, y) ∈ R2 (1)

where w : [0,∞)→ [0,∞) suitable weight function
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Well definitness of the basis functions gj

Consider the Schwartz space (cf. Iske 94)

S := {γ ∈ C∞(Rd ;R) : Dpγ(x)xq → 0, ∀ p, q ∈ Nd
0}

i.e. the set of rapidly decaying C∞ functions.

Definition
A continuous and symmetric function K : Rd × Rd −→ R is said to be
positive definite on S, K ∈ PD(S) iff∫

Rd

∫
Rd

K(x, y)γ(x)γ(y)dxdy > 0

for all γ ∈ S \ {0}.
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Construction of the anisotropic basis: I

For the weighted kernels with K anisotropic, the basis functions are

gt ,θ(x) = Ry
t ,θ

[
ϕ(‖x − y‖2)w(‖y‖2)

]
w(‖x‖2) (t , θ) ∈ R × [0, π)

where Rt ,θ is the Radon transform on the line ` = `t ,θ.

Simplyfing notation

g(x) = ht ,θ(x)w(x)

where

ht ,θ(x) = Ry
t ,θ

[
ϕ(‖x − y‖2)w(‖y‖2)

]
=

∫
`t ,θ

ϕ(‖x − y‖2)w(‖y‖2)dy
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Construction of the anisotropic basis: II

Introducing the rotation matrix

Qθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
= [nθ,n⊥θ ]

and letting xθ = Q−1
θ x = QT

θ x = [xT nθ, xT n⊥θ ] ∈ R2 we get

ht ,θ(x) =

∫
`t ,θ

ϕ(‖x − y‖2)w(‖y‖2)dy =

=

∫
`t ,0

ϕ(‖x − Qθy‖2)w(‖Qθy‖2)dy

=

∫
`t ,0

ϕ(‖Q−1
θ x − y‖2)w(‖y‖2)dy =

=

∫
`t ,0

ϕ(‖xθ − y‖2)w(‖y‖2)dy
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Construction of the anisotropic basis: III

Any y ∈ `t ,0 has the form y = [t , s]T ∈ R2 for a parameter s ∈ R.
Setting vt ,s = [t , s]T = y we have

ht ,θ(x) =

∫
R

ϕ((xT nθ − t)2 + (xT n⊥θ − s)2)w(‖vt ,s‖
2)ds

Proposition

For any anisotropic kernel K of the our form, the basis functions gt ,θ have
the form

gt ,θ(x) =

[∫
R

ϕ((xT nθ − t)2 + (xT n⊥θ − s)2)w(‖vt ,s‖
2)ds

]
w(‖x‖2) . (2)

Hence for (ϕw)(| · |)2 ∈ L1(R) the functions gt ,θ : R2 → [0,∞) are
well-defined.
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Reconstruction matrix entries: I

The reconstruction problem RL(g) = RL(f) amounts to solving a
linear system Ac = b with matrix entries

a t ,θ
r ,φ := Rx

r ,φ[gt ,θ(x)] = Rx
t ,φ

[
Ry

t ,θ

[
ϕ(‖x − y‖2)w(‖y‖2)

]
w(‖x‖2)

]
.
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Reconstruction matrix entries: II
By using the representation of the basis functions gt ,θ (omitting the
algebra) we get

Proposition

For (t , θ), (r , φ) ∈ R × [0, π) we have

a t ,θ
r ,φ =

∫
R

∫
R

ϕ(‖Qφvr ,s̃ − Qθvt ,s‖
2)w(‖vt ,s‖

2)w(‖vt ,s̃‖
2)ds ds̃

Again, if (ϕw)(| · |2) ∈ L1(R) then the entries are well-defined and the
reconstruction matrix

A =
(
a tj ,θj

rk ,φk

)
1≤j,k≤n

∈ Rn×n

is symmetric positive definite.

In particular the diagonal entries are

a t ,θ
t ,θ =

∫
R

∫
R

ϕ((s̃ − s)2)w(s2 + t2)w(s̃2 + t2)ds ds̃ .
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Example: gaussian kernel
In the case of the Gaussian kernel ϕ(‖x − y‖2) = e−ε

2‖x−y‖2 and weight
w(x) = exp(−ν2‖x‖2) we get

gt ,θ(x) =

√
π√

ε2 + ν2
exp

[
−(ε2 + ν2)(t2 + ‖x‖2) + 2ε2 tnθ · x +

ε4

ε2 + ν2 (n⊥θ · x)2
]

Matrix entries [DeMIS15]

For (t , θ), (r , φ) ∈ R × [0, π) the entries of the gaussian kernel matrix are
the Radon transform of the gaussian basis gt ,θ w.r.t. the line `r ,φ, that is
aj,k = Rr ,φ[gt ,θ]

aj,k

(
= a t ,θ

r ,φ

)
=

π
√

2√
hε,ν(θ, φ)

exp[Φε,ν(r , t , θ, φ)]

Φε,ν(r , t , θ, φ) = −2ν2(2ε2 + ν2)

(
(ε2 + ν2)(r2 + t2) − 2ε2rt cos(θ − φ)

hε,ν(θ, φ)

)
hε,ν(θ, φ) = 2(ε2 + ν2)2 − 2ε4 cos2(θ − φ).

−→ The matrix results symmetric and positive definite←−
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Example: bull-eye phantom

Figure: Bull-eye phantom, 64 × 64.
Left: original.
Right: Approximed with parallel beam, ε = 26 and ν = 0.3333.
RMSE=1.12e-1, PSNR=67.2
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Example: Shepp-Logan phantom

Figure: Shepp-Logan phantom, 64 × 64.
Left: original.
Right: Approximed with parallel beam, ε = 26 and ν = 0.3333.
RMSE=2.2e-1, PSNR=61.2
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Outline

4 Anisotropic kernels
Anisotropic basis funtions
Reconstruction matrix entries

5 Netwon Bases
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Newton Bases [MS JAT2011, PS JCAM2011]

Theorem (Basis factorization)

Any data-dependent basis U arises from a factorization A = VU · C−1
U

where VU = (uj(xi))1≤i,j≤n and U(x) = (u1(x), · · · , un(x)) ∈ Rn is a
data-dependend basis; the coefficient matrix CU is s.t.

U(x) = T(x) · CU

where T(x) = (K(x, x1), · · · ,K(x, xn)).

Observation
The matrix AKww ,R is symmetric and positive definite, A = L · L t (Cholesky
decomposition).
The Cholesky decomposition leads to the Newton basis, say N(x)

N(x) = T(x) · CN = T(x) · (VN)−t . (3)
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Newton Bases

Observation

The Cholesky algorithm is recursive so we can construct the
Newton Basis recursively [PS 2011].

Newton bases allow to:

Properties

Select the reconstruction lines;

Solve a smaller system;

Thanks to the selection of line-points we have a good
compression of data.
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How many Newton Bases ?
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Bull’s Eye phantom reconstruction
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Selection Point
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500 points are selected for the reconstruction of the Crescent
Shape phantom sinogram instead of 1500
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Line selection
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200 lines selected for the reconstruction of the Crescent Shape
phantom: the phantom reconstructed with 200 Newton bases.
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Double-weighted kernel methods vs ART
methods

Figure: We compare a reconstruction with ART (first image) and the
reconstruction with double-weighted kernel methods with 1500 (full data)
Newton Bases (second image)
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Double-weighted kernel methods vs ART
methods

Figure: Data with noise: we compare a reconstruction with ART (first
image) and the reconstruction with double-weighted kernel methods with
1500 Newton Bases (second image)
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Double-weighted kernel methods vs ART
methods

Figure: Missing Data: we compare a reconstruction with ART and the
reconstruction with double-weighted kernel methods with 1500 Newton
Bases (second image); Missing data: 40 % of Radon data
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Summary and future work

Done
1 Filtered Back-Projection Formula

Efficiency

2 Kernel based reconstruction
Flexibility: double window function
Arbitrary scattered Radon data

To be done

1 More on the error analysis

2 Conditionally positive definite kernels

3 Efficiency
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Thank you for your
attention!
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