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Motivations and aims

Well-distributed nodes: there exist various nodal sets for polynomial
interpolation of even degree n in the square Ω = [−1, 1]2 (C.DeM.V.,

AMC04), which turned out to be equidistributed w.r.t. Dubiner metric
(D., JAM95) and which show optimal Lebesgue constant growth.

Efficient interpolant evaluation: the interpolant should be
constructed without solving the Vandermonde system whose
complexity is O(N3), N =

(

n+2
2

)

for each pointwise evaluation. We
look for compact formulae.
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The Dubiner metric

The Dubiner metric in the 1D:

µ[−1,1](x , y) = | arccos(x) − arccos(y)|, ∀x , y ∈ [−1, 1] .

By using the Van der Corput-Schaake inequality (1935) for trig. polys.

µ[−1,1](x , y) := sup
‖P‖∞,[−1,1]≤1

1

deg(P)
| arccos(P(x)) − arccos(P(y))| ,

with P ∈ Pn([−1, 1]).

This metric generalizes to compact sets Ω ⊂ R
d , d > 1:

µΩ(x, y) := sup
‖P‖∞,Ω≤1

1

(deg(P))
| arccos(P(x)) − arccos(P(y))| .
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The Dubiner metric

Conjecture(C.DeM.V.AMC04):

Nearly optimal interpolation points on a compact Ω are asymptotically
equidistributed w.r.t. the Dubiner metric on Ω.

Once we know the Dubiner metric we have at least a method for
producing candidate points. Letting x = (x1, x2), y = (y1, y2)

Dubiner metric on the square:

max{| arccos(x1) − arccos(y1)|, | arccos(x2) − arccos(y2)|} ;

Dubiner metric on the disk:
∣

∣

∣

∣

arccos

(

x1y1 + x2y2 +
√

1 − x2
1 − x2

2

√

1 − y2
1 − y2

2

)∣

∣

∣

∣

;
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Dubiner points and Lebesgue constant

496 Dubiner nodes (i.e. degree n=30) and the comparison of Lebesgue constants for Random (RND), Euclidean
(EUC) and Dubiner (DUB) points.
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Note: Euclidean pts, max
x∈Ω

min
y∈Xn

‖x − y‖2 .
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Morrow-Patterson points

Let n be a positive even integer. The Morrow-Patterson points
(MP) (cf. M.P. SIAM JNA 78) are the points

xm = cos

(

mπ

n + 2

)

, yk =















cos

(

2kπ

n + 3

)

if m odd

cos

(

(2k − 1)π

n + 3

)

if m even

1 ≤ m ≤ n + 1, 1 ≤ k ≤ n/2 + 1. Note: N =
(

n+2
2

)

.
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Extended Morrow-Patterson points

The Extended Morrow-Patterson points (EMP) (C.DeM.V. AMC
05) are the points

xEMP
m =

1

αn

xMP
m , yEMP

k =
1

βn

yMP
k

αn = cos(π/(n + 2)), βn = cos(π/(n + 3)).
Note: the MP and the EMP points are equally distributed w.r.t.
Dubiner metric on [−1, 1]2 and unisolvent for polynomial
interpolation of degree n.
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Padua points

The Padua points (PD) can be defined as follows (C.DeM.V. AMC
05):

xPD
m = cos

(

(m − 1)π

n

)

, yPD
k =















cos

(

(2k − 1)π

n + 1

)

if m odd

cos

(

2(k − 1)π

n + 1

)

if m even

1 ≤ m ≤ n + 1, 1 ≤ k ≤ n/2 + 1, N = (n + 2)(n + 1)/2.

The PD points are equispaced w.r.t. Dubiner metric on [−1, 1]2.

They are modified Morrow-Patterson points discovered in Padua in
2003 by B.DeM.V.&W.

Moreover, there are four families which correspond to successive
rotations of 90 degrees, clockwise for even degrees and
counterclockwise for odd degrees.
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Graphs of MP, EMP, PD pts and their Lebesgue constants
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Left: the graphs of MP, EMP, PD for n = 8. Right: the growth of the corresponding Lebesgue constants.
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An interpolation formula for MP points

L. Bos in a note described an interpolation formula for MP points.
Letting,

Lm,k(x , y) :=

n
∑

j=0

PT
j (xMP

m , yMP
k )Pj (x , y), 1≤m≤n+1, 1≤k≤n/2+1 , (1)

where

Pj(x , y) =











U0(x)Uj(y)
U1(x)Uj−1(y)

...
Uj(x)U0(y)











Us being the Chebyshev polynomials of second type, so that

Lm,k(xs , yr ) = 0, (s, r) 6= (m, k).
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An interpolation formula for MP points

ℓm,k(x , y) :=
1

∑n
j=0 PT

j (xMP
m , yMP

k )Pj (xMP
m , yMP

k )
Lm,k(x , y) , (2)

m = 1, . . . , n + 1 ; k = 1, . . . , n/2 + 1, are the fundamental
Lagrange polynomials;

∑n

j=0 PT
j (xMP

m , yMP
k )Pj (x

MP
m , yMP

k ) ≥ 1 . He
also gave a naive upper bound (overestimate) for the Lebesgue
constant

ΛMP
n :=

n+1
∑

m=1

n/2+1
∑

k=1

|ℓm,k(x , y)| ≤ c1n
6,

for appropriate c1 > 0, while from our numerical results the growth
is O(n2) (≈ (0.7n + 1)2).

The computational cost for evaluating the interpolant at any (x , y)
is O(N2).
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Generating curves

For MP points

γMPn
(t) =

[

cos

(

tπ

n + 2

)

, cos

(

(n + 3 − t)π

n + 3

)]

, 0 ≤ t ≤ (n+2)(n+3) ;

(3)

For the PD points of the first family

γPDn
(t) =

[

− cos
( tπ

n

)

,− cos

(

π − tπ

n + 1

)]

, 0 ≤ t ≤ n(n+1) .

(4)
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The interpolant of the PD pts

Let Aj = (xj , yj) ∈ [−1, 1]2 be a PD, it belongs to the curve,
x = − cos (n + 1)t, y = − cos nt , 0 ≤ t ≤ π.

Kn(x, y) = Dn(θ1 + φ1, θ2 + φ2) + Dn(θ1 + φ1, θ2 − φ2) + (5)

+ Dn(θ1 − φ1, θ2 + φ2) + Dn(θ1 − φ1, θ2 − φ2) ,

x = (cos θ1, cos θ2), y = (cosφ1, cosφ2) ,

where the function Dn is defined by

Dn(α, β) =
1

2

cos((n + 1/2)α) cos(α/2) − cos((n + 1/2)β) cos (β/2)

cosα− cosβ
.

(6)
The Lagrange polynomials are

lj(x , y) = wj {Kn((x , y),Aj ) − Tn(xj)Tn(x)}

and the coefficients wj are the corresponding cubature weights.
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The interpolant of the PD pts

wj =
1

n(n + 1)







1/2 vertex pts
2 interior pts
1 boundary pts

Kn is the reproducing kernel of Pn([−1, 1]2) (Xu, JAT 95)
equipped with the scalar product

< f , g >=
1

π2

∫

[−1,1]2
f (x , y)g(x , y)

dx√
1 − x2

dy
√

1 − y2

holds the reproducing property

< p(x , y),Kn((x , y),A) >= p(A), ∀p ∈ Pn(R
2)

and A = (a, b) ∈ [−1, 1]2.
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The Xu points and the Xu interpolant

Given the Chebyshev-Lobatto points on the interval [−1, 1] (cf. Xu,
JAT 95)

ξk = ξk,n = cos
kπ

n
, k = 0, . . . , n, n = 2m ,

the Xu interpolation points on the square Q = [−1, 1]2 are the
two-dimensional Chebyshev array XN = {zr,s} of dimension
N = n(n + 2)/2

z2i ,2j+1 = (ξ2i , ξ2j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m − 1 ,

z2i+1,2j = (ξ2i+1, ξ2j), 0 ≤ i ≤ m − 1, 0 ≤ j ≤ m .

Note: the Xu points are exactly equally spaced w.r.t. the Dubiner
metric.
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The Xu points and the Xu interpolant

The Xu interpolant of degree n in Lagrange form of a function f on Q is

LXu

n f (x) =
∑

zr,s∈XN

f (zr,s) ℓn(x, zr,s), ℓn(x, zr,s) :=
K ∗

n (x, zr,s)

K ∗
n (zr,s , zr,s)

, (7)

K ∗
n (zr,s , zr,s) =

1

2
(Kn−1(zr,s , zr,s) + Kn(zr,s , zr,s)) − 1 , (8)

with Kn as defined for the PD points in (5).
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The Xu points and the Xu interpolant

Remarks

In the Xu interpolation formula, the ℓn in (7) are based on the K ∗
n

(cf. (8)), that make use of Kn−1 and Kn: the interpolant based on
the PD points only need the Kn (i.e no K ∗

n ).

On the other hand, the dimension of the corresponding polynomial
space, Vn, is
dim(Pn−1(R

2)) < dim(Vn) := n(n + 2)/2 < dim(Pn(R
2)).

Drawback: numerical instability in computing Dn(α, β) when
cosα ≈ cosβ!
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The Xu points and the Xu interpolant

Stabilization

Dn(α, β) =
1

4
[Un−1(cosφ)Un−1(cosψ) + Un−2(cosφ)Un−2(cosψ)] ,

where φ = (α− β)/2, ψ = (α+ β)/2, Un Chebyshev polynomial of
the second kind computed by the three-term recurrence, with overall
computational cost ≈ 8nN ≈ 11 N3/2 flops.

Hybrid stable formula for Un(cos θ): three-term recurrence whenever
|θ − kπ| ≤ ε, otherwise Un(cos θ) = sin (n + 1)θ/ sin θ. For
ε = 0.01, LXu

n f (x) is computed at machine precision, the recurrence
relation is used globally less than 1%, and for degrees n up to the
hundreds, overall computational cost ≈ 32csin N flops, csin being
the average evaluation cost of the sine function.

In practical applications the computational cost becomes linear in
the number N of Xu points

We made a Fortran implementation of the Xu and PD interpolation
formula: http://profs.sci.univr.it/∼demarchi/software.htm.Stefano De Marchi Interpolation points and interpolation formulae on the square
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|θ − kπ| ≤ ε, otherwise Un(cos θ) = sin (n + 1)θ/ sin θ. For
ε = 0.01, LXu

n f (x) is computed at machine precision, the recurrence
relation is used globally less than 1%, and for degrees n up to the
hundreds, overall computational cost ≈ 32csin N flops, csin being
the average evaluation cost of the sine function.

In practical applications the computational cost becomes linear in
the number N of Xu points

We made a Fortran implementation of the Xu and PD interpolation
formula: http://profs.sci.univr.it/∼demarchi/software.htm.Stefano De Marchi Interpolation points and interpolation formulae on the square
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The Xu points and the Xu interpolant

Implementation details and performance (cf. B.C.DeM.V. ’05):

Comparison with the MPI software by T. Sauer (cf. S. AiCM 95, S.
Xu Math.Comp.95). The MPI software is one of the most efficient
and robust implementations of multivariate interpolation by
polynomials.

We compared the CPU times necessary to build the interpolant and
the interpolation errors for both XU and MPI on many tests
functions.
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The Xu points and the Xu interpolant

Table 1: CPU times (secs.) and interpolation errors on [0, 1]2 for the Franke funct.

n 20 30 40 50 60
XU 2.1 5.2 10.3 17.8 28.4

7.3E-03 3.6E-04 3.1E-06 1.8E-08 2.5E-11
MPI 0.6 Unsolv. Unsolv. Unsolv. Unsolv.

3.8E-02 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 2: CPU times and interpolation errors of MPI for the Franke function on different domains by a change of
variables and reordering the points as Leja sequences.

n 20 30 40 50 60
MPI 0.6 4.3 21.0 75.6 Unsolv.

[−1, 1]2 6.3E-03 3.5E-04 2.0E-01 3.8E-02 ∗ ∗ ∗
MPI 0.5 3.7 17.4 62.3 183.4

[−2, 2]2 6.4E-03 1.0E-02 2.7E+02 1.3E+14 1.9E+35
MPI-Leja 0.6 4.3 21.0 75.6 Unsolv.

[−1, 1]2 6.4E-03 3.5E-04 1.1E-04 2.0E-03 ∗ ∗ ∗
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The Lebesgue constant of the Xu points

Since, the maximum is attained at the four vertices of the square, the
computation became ”easy”
Table 1. Lebesgue constants size of different nodal sets on Q:
Morrow-Patterson (MP), Extended Morrow-Patterson (EMP), Padua
points (PD), Xu points (XU).

interp. pts. Λ34 Λ48 Λ62 Λ76

MP 649 1264 2082 3102
EMP 237 456 746 1106
PD 11 13 14 15
XU 10 12 13 14
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The Lebesgue constant of the Xu points

ΛXu
n ≤ 2

{

2 + 4

(

2

π
log n + 5

)2
}

= 8

(

2

π
log n + 5

)2

+ 4 .
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The Lebesgue constant of the Xu points

Figure 1. Left: the distribution of 144 Xu points on Q (i.e n = 16). Right: the behavior of the Lebesgue constant

up to degree n = 100.

-1 -0,5 0 0,5 1
-1

-0,5

0

0,5

1

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

Lebesgue constant of Xu points
(0.95+2/π log(n+1))2

(1+2/π*log(n+1))2

Stefano De Marchi Interpolation points and interpolation formulae on the square



From Dubiner metric to Xu and Padua pts
More on Padua pts

Computational aspects of Padua pts
Application of Padua pts to Cubature

Applications of the Xu interpolant

We studied two main applications

1. We compressed a surface given as a large set of scattered data, i.e.
by “interpolated interpolations”.

2. Compression of a Finite Element PDE solution.

Concerning 1. we adopted for sufficiently regular surfaces Xu-like
interpolation of a cubic Shepard-like interpolant (cf. Renka
TOMS99). The compression ratio obtained is

compr. ratio = 3× numb. of scatt. pts.

numb. of Xu nodes
≈ 6× numb. of scatt. pts.

n2
,

where n is the polynomial degree.

Concerning 2. Given a FEM discretization (ex. Delaunay mesh) we
used Xu-like interpolation of the Finite Element solution.

Stefano De Marchi Interpolation points and interpolation formulae on the square



From Dubiner metric to Xu and Padua pts
More on Padua pts

Computational aspects of Padua pts
Application of Padua pts to Cubature

Applications of the Xu interpolant

Table 3. Compression errors (in the max-norm) for the Finite Element solution of the Poisson equation
∆f (x) = −10 , x ∈ Ω ; f (x) = 0 , x ∈ ∂Ω, where Ω is the “lynx-eye” shaped domain in the Fig. below.

mesh size n = 8 n = 12 n = 16 n = 20 n = 24 n = 28 n = 32
41402 1E-1 3E-2 1E-2 5E-3 2E-3 1E-3 1E-3

-1 -0,5 0 0,5 1
-0,5

-0,25

0

0,25

0,5

Left: the distribution of N = 312 Xu-like points (deg n = 24) in the “lynx-eye” shaped domain (generalized

sector). Right: Plot of the Xu-like interpolated solution (deg n = 24: compression ratio ≈ 400:1, compression

error ≈ 2 · 10−3).
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Applications of the Xu interpolant

Recently we applied the Xu interpolation to functions in parametric form f (x(u, v), y(u, v), z(u, v)), where
u ∈ [a, b], v ∈ [c, d ]. Here some interesting pictures

Left: Xu points over the cilinder and the function to be interpolated f (x, y, z) = y(x2 + z2). Right: The same for

the sphere.
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Applications of the Xu interpolant
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Bivariate interpolation problem and Padua Pts

Let P
2
n be the space of bivariate polynomials of total degree ≤ n.

Question: is there a set Ξ ⊂ [−1, 1]2 of points such that:

card(Ξ) = dim(P2
n) = (n+1)(n+2)

2 ;

the problem of finding the interpolation polynomial on Ξ of
degree n is unisolvent;

the Lebesgue constant Λn behaves like log2 n for n → ∞.

Answer: yes, it is the set Ξ = Padn of Padua points.
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Padua points

Let us consider n + 1 Chebyshev–Lobatto points on [−1, 1]

Cn+1 =

{

zn
j = cos

(

(j − 1)π

n

)

, j = 1, . . . , n + 1

}

and the two subsets of points with odd or even indexes

C odd

n+1 =
{

zn
j , j = 1, . . . , n + 1, j odd

}

C even

n+1 =
{

zn
j , j = 1, . . . , n + 1, j even

}

Then, the Padua points are the set

Padn = C odd

n+1 × C even

n+2 ∪ C even

n+1 × C odd

n+2 ⊂ Cn+1 × Cn+2
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The generating curve

There exists an alternative representation as self-intersections and
boundary contacts of the generating curve

γ(t) = (− cos((n + 1)t),− cos(nt)), t ∈ [0, π]
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The generating curve γ(t) (n = 4)

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

t = 0

Stefano De Marchi Interpolation points and interpolation formulae on the square



From Dubiner metric to Xu and Padua pts
More on Padua pts

Computational aspects of Padua pts
Application of Padua pts to Cubature

The generating curve γ(t) (n = 4)
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t ∈
[

0, 4π
(n(n+1))

]
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4)
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The generating curve γ(t) (n = 4), is a Lissajous curve
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Lagrange polynomials

The fundamental Lagrange polynomials of the Padua points are

Lξ(x) = wξ (Kn(ξ, x) − Tn(ξ1)Tn(x1)) , Lξ(η) = δξη, ξ,η ∈ Padn

where

wξ =
1

n(n + 1)
·















1

2
if ξ is a vertex point

1 if ξ is an edge point

2 if ξ is an interior point

(Note:{wξ} are weights of cubature formula for the prod. Cheb. measure, exact ”on almost” Πn
2n([−1, 1]2)), i.e.

pol. orthogonal to T2n(x1)

Kn(x, y) =

n
∑

k=0

k
∑

j=0

T̂j(x1)T̂k−j(x2)T̂j(y1)T̂k−j(y2) , (9)

T̂j is the normalized Chebyshev polynomial of degree j .
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(Note:{wξ} are weights of cubature formula for the prod. Cheb. measure, exact ”on almost” Πn
2n([−1, 1]2)), i.e.

pol. orthogonal to T2n(x1)

Kn(x, y) =

n
∑

k=0

k
∑

j=0

T̂j(x1)T̂k−j(x2)T̂j(y1)T̂k−j(y2) , (9)

T̂j is the normalized Chebyshev polynomial of degree j .
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Reproducing kernel

Kn(x, y) is the reproducing kernel of P
2
n([−1, 1]2) equipped with the inner

product

〈f , g〉 =

∫

[−1,1]2
f (x1, x2)g(x1, x2)

dx1

π
√

1 − x2
1

dx2

π
√

1 − x2
2

,

with reproduction property

∫

[−1,1]2
Kn(x, y)pn(y)w(y)dy = pn(x), ∀pn ∈ P

2
n

w(x) = w(x1, x2) =
1

π
√

1 − x2
1

1

π
√

1 − x2
2
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Lebesgue constant

The Lebesgue constant

Λn = max
x∈[−1,1]2

λn(x), λn(x) =
∑

ξ∈Padn

|Lξ(x)|

is bounded by
Λn ≤ C log2 n

(optimal order of growth on a square).
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Interpolant

Given the representation (9) for the reproducing kernel, the interpolant of
a function f : [−1, 1]2 → R is

Lnf (x) =
∑

ξ∈Padn

f (ξ)wξ (Kn(ξ, x) − Tn(ξ1)Tn(x1)) =

=
n

∑

k=0

k
∑

j=0

cj,k−j T̂j(x1)T̂k−j(x2) −
cn,0

2
T̂n(x1)T̂0(x2) ,

where the coefficients

cj,k−j =
∑

ξ∈Padn

f (ξ)wξT̂j(ξ1)T̂k−j(ξ2), 0 ≤ j ≤ k ≤ n

can be computed once and for all.
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Coefficient matrix

Let us define the coefficient matrix

C0 =















c0,0 c0,1 . . . . . . c0,n

c1,0 c1,1 . . . c1,n−1 0
...

... . .
.

. .
. ...

cn−1,0 cn−1,1 0 . . . 0
cn,0

2 0 . . . 0 0















and for a vector S = (s1, . . . , sm), S ∈ [−1, 1]m, the (n + 1) × m

Chebyshev collocation matrix

T(S) =







T̂0(s1) . . . T̂0(sm)
... . . .

...

T̂n(s1) . . . T̂n(sm)






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Coefficient matrix factorization

Letting Cn+1 the vector of the Chebyshev-Lobatto pts

Cn+1 =
(

zn
1 , . . . , z

n
n+1

)

we construct the (n + 1) × (n + 2) matrix

G(f ) = (gr,s) =

{

wξf (zn
r , z

n+1
s ) if ξ = (zn

r , z
n+1
s ) ∈ Padn

0 if ξ = (zn
r , z

n+1
s ) ∈ (Cn+1 × Cn+2) \ Padn

.

Then C0 is essentially the upper-left triangular part of

C(f ) = P1 G(f )PT

2

P1 = T(Cn+1) ∈ R
(n+1)×(n+1) and P2 = T(Cn+2) ∈ R

(n+1)×(n+2).
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Linear algebra approach

The construction of the coefficients is performed by a
matrix-matrix product.

It can be easily (and efficiently) implemented in Fortran77

(by, eventually optimized, BLAS) and in Matlab
R© (based on

optimized BLAS).
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A new approach based on FFT

Since the coefficients are approximated Fourier–Chebyshev
coefficients, they can be computed also by FFT techniques.

FFT is competitive and more stable than the matrix-matrix
multiplication at high degree of interpolation.

Stefano De Marchi Interpolation points and interpolation formulae on the square



From Dubiner metric to Xu and Padua pts
More on Padua pts

Computational aspects of Padua pts
Application of Padua pts to Cubature

A new approach based on FFT

Since the coefficients are approximated Fourier–Chebyshev
coefficients, they can be computed also by FFT techniques.

FFT is competitive and more stable than the matrix-matrix
multiplication at high degree of interpolation.

Stefano De Marchi Interpolation points and interpolation formulae on the square



From Dubiner metric to Xu and Padua pts
More on Padua pts

Computational aspects of Padua pts
Application of Padua pts to Cubature

Matlab
R© code for the FFT approach

Input: G ↔ G(f )

C0 = G;

X = real(fft(C0,max(1,2*(size(G,2)-1)),2));

X = X(:,1:n+1);

Y = real(fft(X,max(1,2*(size(G,1)-1))));

C0 = Y(1:n+1,:);

C0 = 2*C0;

C0(1,:) = C0(1,:)/sqrt(2);

C0(:,1) = C0(:,1)/sqrt(2);

C0 = fliplr(triu(fliplr(C0)));

C0(n1,1) = C0(n1,1)/2;

Output: C0 ↔ C0
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Evaluation

Given the point x = (x1, x2) and the coefficient matrix C0, the
polynomial interpolation formula can be evaluated by a double
matrix-vector product

Lnf (x) = T(x1)
T

C0(f )T(x2)
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Franke’s function
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Numerical results

Interpolation on Padn (total degree n) vs. tensor-product
interpolation on TCLn = Cn+1 × Cn+1 (maximum degree n2) for
the Franke’s function:

TCLn Padn TCLn Padn

degree n 25 34 35 48
points 625 630 1225 1225
error 1.2 · 10−3 4.3 · 10−5 2.3 · 10−6 3.3 · 10−8

TCLn Padn TCLn Padn

degree n 45 62 55 76
points 2025 2016 3015 3003
error 1.5 · 10−9 5.4 · 10−12 1.9 · 10−13 1.9 · 10−14

(number of points = number of function evaluations)

Stefano De Marchi Interpolation points and interpolation formulae on the square



From Dubiner metric to Xu and Padua pts
More on Padua pts

Computational aspects of Padua pts
Application of Padua pts to Cubature

Beyond the square

The interpolation formula can be extended to other domains
Ω ⊂ R

2, by means of a suitable mapping of the square. Given

σ : [−1,1]2 → Ω

t 7→ x = σ(t)

it is possible to construct the (in general nonpolynomial)
interpolation formula

Lnf (x) = T(σ←1 (x))TC0(f ◦ σ)T(σ←2 (x))
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Cubature

Integration of the interpolant at the Padua points gives a
nontensorial Clenshaw–Curtis cubature formula

∫

[−1,1]2
f (x)dx ≈

∫

[−1,1]2
Lnf (x)dx

exact for f ∈ P
2
n.

Stefano De Marchi Interpolation points and interpolation formulae on the square



From Dubiner metric to Xu and Padua pts
More on Padua pts

Computational aspects of Padua pts
Application of Padua pts to Cubature

Cubature

Defining

c ′j ,k−j =























1

2
cj ,k−j =

1

2

∑

ξ∈Padn

f (ξ)wξT̂j(ξ1)T̂k−j (ξ2), j = k = n

cj ,k−j =
∑

ξ∈Padn

f (ξ)wξT̂j(ξ1)T̂k−j (ξ2), otherwise

then

Lnf (x) =

n
∑

k=0

k
∑

j=0

c ′j ,k−j T̂j(x1)T̂k−j (x2)
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






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




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Moments

∫

[−1,1]2
Lnf (x)dx =

n
∑

k=0

k
∑

j=0

c ′
j,k−jmj,k−j ,

mj,k−j =

(∫ 1

−1

T̂j(t)dt

) (∫ 1

−1

T̂k−j(t)dt

)

∫ 1

−1

T̂j(t)dt =







2 j = 0
0 j odd
2
√

2
1−j2

j even
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Cubature weights

∫

[−1,1]2
Lnf (x)dx =

n
∑

k=0

k
∑

j=0

c ′j ,k−jmj ,k−j =
∑

ξ∈Padn

λξf (ξ)

where

λξ = wξ

n
∑

k=0

k
∑

j=0

m′
j,k−j T̂j(ξ1)T̂k−j(ξ2), m′

j,k−j =











1

2
mj,k−j , j = k = n

mj,k−j , otherwise

The cubature weights λξ are not all positive. However they satisfy

lim
n→∞

∑

ξ∈Padn

|λξ| = 4

and
∫

[−1,1]2
f (x)dx =

∫

[−1,1]2
Lnf (x)dx + o(n−p), f ∈ Cp([−1, 1]2)
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Cubature weights: stability

∫

[−1,1]2
Lnf (x)dx =

n
∑

k=0

k
∑

j=0

c ′j ,k−jmj ,k−j =
∑

ξ∈Padn

λξf (ξ)

where

λξ = wξ

n
∑

k=0

k
∑

j=0

m′
j,k−j T̂j(ξ1)T̂k−j(ξ2), m′

j,k−j =











1

2
mj,k−j , j = k = n

mj,k−j , otherwise

The cubature weights λξ are not all positive. However they satisfy

lim
n→∞

∑

ξ∈Padn

|λξ| = 4

and
∫

[−1,1]2
f (x)dx =

∫

[−1,1]2
Lnf (x)dx + o(n−p), f ∈ Cp([−1, 1]2)

Stefano De Marchi Interpolation points and interpolation formulae on the square



From Dubiner metric to Xu and Padua pts
More on Padua pts

Computational aspects of Padua pts
Application of Padua pts to Cubature

Cubature weights: stability and convergence

∫

[−1,1]2
Lnf (x)dx =

n
∑

k=0

k
∑

j=0

c ′j ,k−jmj ,k−j =
∑

ξ∈Padn

λξf (ξ)

where

λξ = wξ

n
∑

k=0

k
∑

j=0

m′
j,k−j T̂j(ξ1)T̂k−j(ξ2), m′

j,k−j =











1

2
mj,k−j , j = k = n

mj,k−j , otherwise

The cubature weights λξ are not all positive. However they satisfy

lim
n→∞

∑

ξ∈Padn

|λξ| = 4

and
∫

[−1,1]2
f (x)dx =

∫

[−1,1]2
Lnf (x)dx + o(n−p), f ∈ Cp([−1, 1]2)
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Matlab
R© code for the cubature

Input C0 ↔ C0

k = [0:2:n];

mom = 2*sqrt(2)./(1-k.^2);

mom(1) = 2;

Mmom = mom’*mom;

CM = C0(1:2:n1,1:2:n1).*Mmom;

Int = sum(sum(CM));

Output: Int ↔
∫

[−1,1]2
Lnf (x)dx
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Numerical results

Clenshaw–Curtis cubature on Padn (CCPadn) vs. tensor-product
Gauss–Legendre–Lobatto cubature (TGLLn) for the Franke’s
function:

TGLLn CCPadn TGLLn CCPadn

degree n 6 7 8 10
points 36 36 64 66
error 4.2 · 10−3 3.8 · 10−4 1.3 · 10−4 1.3 · 10−5

TGLLn CCPadn TGLLn CCPadn

degree n 11 14 15 20
points 121 120 225 231
error 5.7 · 10−5 9.4 · 10−6 1.1 · 10−6 1.1 · 10−7

(number of points = number of function evaluations)
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Numerical results

Clenshaw–Curtis cubature on Padn (CCPadn) vs. tensor-product
Gauss–Legendre–Lobatto cubature (TGLLn) for the function
(x2 + y2)3/2:

TGLLn CCPadn TGLLn CCPadn

degree n 6 7 8 10
points 36 36 64 66
error 1.8 · 10−3 3.8 · 10−4 3.1 · 10−4 1.4 · 10−7

TGLLn CCPadn TGLLn CCPadn

degree n 11 14 15 20
points 121 120 225 231
error 7.7 · 10−5 2.8 · 10−7 1.5 · 10−5 9.8 · 10−9

(number of points = number of function evaluations)

Stefano De Marchi Interpolation points and interpolation formulae on the square



From Dubiner metric to Xu and Padua pts
More on Padua pts

Computational aspects of Padua pts
Application of Padua pts to Cubature

Conclusions

We studied different families of point sets for polynomial
interpolation on the square.

The most promising, from theoretical purposes and
computational cost both of the interpolant and Lebesgue
constant growth are the Padua points.

More on Padua points (papers, software, links) at the CAA
research group:
http://www.math.unipd.it/∼marcov/CAA.html

http://en.wikipedia.org/wiki/Padua points.
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