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1. Give the definition of unisovent set of points.

In R2 we have presented the construction of a set of points that satisfies the sufficient
condition of unisolvency. Which set is and how is constructed?

2. What is the arc-cosine metric? Is this metric generalizable to higher dimensions?

3. There is a greedy method (or algorithm) that allows to generate points equispaced
in a given metric µ. Describe it and give a couple of examples of point sets that can
be generated by such an algorithm.

4. Prove the following theorem

“Suppose Φ : Rd −→ R is continuous. Then Φ is positive definite if and only if
Φ is even and we have, for all N ∈ N and all c ∈ R\{0} and all pairwise distinct

x1, . . . ,xN , we have
N∑
i=1

N∑
j=1

cicjΦ(xi − xj) > 0 .”.

Provide some examples of positive definite functions, explaining why these functions
are PD.

5. Suppose Φ is CPD kernel of order 1 with the property Φ(0) ≤ 0. Then the matrix
A, with Ai,j = Φ(xi − xj), is invertible. Why?

6. Describe the Backus-Gilbert method for quasi-interpolation. In particular describe
why this method is a Moving Least Squares approximation that reproduces polyno-
mials of degree ≤ d in s variables.
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