Approximation Theory and Applications, 2015/16

First written test Prof. Stefano De Marchi Padova, February 8, 2016

The candidate should write on **all** sheets surname, name and "registration number". Sheets are supplied by the teacher. Do not use any notes and/or books.

1. Give the definition of **unisovent set of points**.

In \mathbb{R}^2 we have presented the construction of a set of points that satisfies the sufficient condition of unisolvency. Which set is and how is constructed?

- 2. What is the *arc-cosine metric*? Is this metric generalizable to higher dimensions?
- 3. There is a greedy method (or algorithm) that allows to generate points equispaced in a given metric μ . Describe it and give a couple of examples of point sets that can be generated by such an algorithm.
- 4. Prove the following theorem

"Suppose $\Phi : \mathbb{R}^d \longrightarrow \mathbb{R}$ is continuous. Then Φ is positive definite if and only if Φ is even and we have, for all $N \in \mathbb{N}$ and all $c \in \mathbb{R} \setminus \{0\}$ and all pairwise distinct

$$\mathbf{x}_1, \ldots, \mathbf{x}_N$$
, we have $\sum_{i=1} \sum_{j=1} c_i c_j \Phi(\mathbf{x}_i - \mathbf{x}_j) > 0$.".

Provide some examples of positive definite functions, explaining why these functions are PD.

- 5. Suppose Φ is CPD kernel of order 1 with the property $\Phi(0) \leq 0$. Then the matrix A, with $A_{i,j} = \Phi(\mathbf{x}_i \mathbf{x}_j)$, is invertible. Why?
- 6. Describe the Backus-Gilbert method for quasi-interpolation. In particular describe why this method is a Moving Least Squares approximation that reproduces polynomials of degree $\leq d$ in s variables.

 $\Diamond \Diamond$

Time: 2 hours.