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For the today’s exercises we need the following tools and some of the Matlab files downloadable at the
link

http://www.math.unipd.it/∼demarchi/TAA2010.

• Halton sequence: low-discrepancy set of points for the hypercube [0, 1]s, s ≥ 1.

• Fill-distance (or mesh size) hX,Ω of a set of points X ⊂ Ω and Ω ⊆ Rs .

hX,Ω = sup
x∈Ω

min
xj∈X

‖x− xj‖2 , (1)

• Root Mean Square Error (RMSE) between a function f and its interpolant Pf evaluated on a set of
M distinct points in any dimension

RMSE :=
‖f − Pf‖2√

M
. (2)

• We also consider the functions

fs(x) = 4s
s∏

k=1

xk(1− xk), x = (x1, . . . , xs) ∈ [0, 1]s (3)

sinc(x) =

s∏
k=1

sin(πxk)

πxk
. (4)

1 Proposed exercises

1. By using the built-in function haltonset.m, determine the Halton points for dimensions s = 1, 2, 3.
Extract 100, 200 and 500 points, and for any such set, compute the corresponding fill-distance,
hX,Ω.

To this aim, hX,Ω can be determined with the Matlab command hX=max(min(DME’)), where DME is the
distance matrix constructed by using DistanceMatrix.m on an evaluation set of points (for instance
a finer equispaced grid of the data-sites X).

2. Show graphically the nested property of the Halton sequence,

Hs,M ⊂ Hs,N , M < N . (5)

3. By using the function DistanceMatrix.m on Halton points for s = 2 compute the its condition number
cond. What do you see?
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4. Again for s = 2, but using the function DistanceMatrixFit.m, construct the RBF interpolant with
basis φk(x) = ‖x− xk‖2 (i.e the translates at xk of the basic function ϕ(r) = r), of the functions (3)
e (4). Compute also the RMSE. How does the RMSE behave on changing the evaluation set?

5. Repeat the exercise for the gaussian ϕ(r) = e−ε
2r2 , ε > 0 again for s = 2. For this exercise use the

function RBFInterpolation2D.m which generalizes DistanceMatrixFit.m.
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