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1. Find the optimal shape parameter εopt by using the trial & error approach for the following univariate
functions

(a)

f1(x) = sinc(x) =
sinπx

πx
.

(b)

f2(x) =
3

4

(
e−(9x−2)2/4 + e−(9x+1)2/49

)
+

1

2
e−(9x−7)2/4 − 1

10
e−(9x−4)2 ,

is a variant of the classical Franke function;

(c)
f3(x) = (1− |x− 0.5|)5 (1 + 5|x− 0.5| − 27(x− 0.5)2

)
,

this is an oscillatory C2 compactly supported RBF known as Gneiting function (here centered in
x = 0.5).

For each fi, i = 1, 2, 3 create a table of the form

N ‖Pfi − fi‖∞ εopt
3
5
9
17
33
65

where for each fixed N , εopt is the point of minimum of the error curves (in the ∞-norm) varying
ε ∈ [0, 10]. As radial function for constructing the interpolant, consider the Gaussian basic function.

2. The second approach makes use of the power function (PF), PΦ,X .

(a) By using the formula PΦ,X(x) =
√

Φ(x, x)− (b(x))tA−1 b(x) with A the usual collocation matrix
Ai,j = Φ(xi, xj) and b(x) = [Φ(·, x1), · · · ,Φ(·, xN )]t, plot ‖PΦ,X‖∞ by varying ε ∈ [0, 10], using
the bivariate gaussian kernel

this time we do the experiments in 2-dimension for N = 9, 25, 81, 100. Both as centers and
evaluation points, take equsipaced points. As a check that the method works, by increasing the
number of centers the maximum of the PF will decrease.

Use the purpouse the M-function Powerfunction2D.m.
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(b) Make a table similar to that one of the previous exercise, but instead of the error column use the
values cond(A) corresponding to εopt.

3. Apply the Leave-One-Out Method Cross-Validation (LOOCV) approach on the following functions

(a) The modified 1d Franke function

f(x) =
3

4

(
e−(9x−2)2/4 + e−(9x+1)2/49

)
+

1

2
e−(9x−7)2/4 − 1

10
e−(9x−4)2 ,

by using the C2 Wendland radial function ϕ3,1(r) = (1−r)4
+(4r+1) (use DistanceMatrixCSRBF new.m),

on equispaced and Chebyshev points. Make the plot of the error curves for ε ∈ [0, 20] and
N = 3, . . . , 65, as in the Table of exercise 1.

(b) As in (a), this time for the 2-dimensional function

f(x, y) = sinc(x)sinc(y)

by using the gaussian kernel.

The corresponding script in 2D is LOOCV2D.m.

The Matlab functions can be dowloaded at the link
http://www.math.unipd.it/∼demarchi/TAA2010
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