Master degree course on Approximation Theory and Applications, Lab exercises on Estimating the "optimal" shape parameter Prof. Stefano De Marchi November 22, 2016

1. Find the optimal shape parameter ϵ_{opt} by using the *trial & error* approach for the following univariate functions

(a)

$$f_1(x) = \operatorname{sinc}(x) = \frac{\sin \pi x}{\pi x}$$

(b)

$$f_2(x) = \frac{3}{4} \left(e^{-(9x-2)^2/4} + e^{-(9x+1)^2/49} \right) + \frac{1}{2} e^{-(9x-7)^2/4} - \frac{1}{10} e^{-(9x-4)^2},$$

is a variant of the classical Franke function;

(c)

$$f_3(x) = (1 - |x - 0.5|)^5 (1 + 5|x - 0.5| - 27(x - 0.5)^2) ,$$

this is an oscillatory C^2 compactly supported RBF known as *Gneiting function* (here centered in x = 0.5).

For each f_i , i = 1, 2, 3 create a table of the form

N	$\ P_{f_i} - f_i\ _{\infty}$	ϵ_{opt}
3		
$\begin{array}{c} 3\\ 5\\ 9\end{array}$		
9		
17		
$\begin{array}{c} 33 \\ 65 \end{array}$		
65		

where for each fixed N, ϵ_{opt} is the point of minimum of the error curves (in the ∞ -norm) varying $\epsilon \in [0, 10]$. As radial function for constructing the interpolant, consider the Gaussian basic function.

- 2. The second approach makes use of the *power function* (PF), $P_{\Phi,X}$.
 - (a) By using the formula $P_{\Phi,X}(x) = \sqrt{\Phi(x,x) (b(x))^t A^{-1} b(x)}$ with A the usual collocation matrix $A_{i,j} = \Phi(x_i, x_j)$ and $b(x) = [\Phi(\cdot, x_1), \cdots, \Phi(\cdot, x_N)]^t$, plot $||P_{\Phi,X}||_{\infty}$ by varying $\epsilon \in [0, 10]$, using the bivariate gaussian kernel

this time we do the experiments in 2-dimension for N = 9, 25, 81, 100. Both as centers and evaluation points, take equipaced points. As a check that the method works, by increasing the number of centers the maximum of the PF will decrease.

Use the purpouse the M-function Powerfunction2D.m.

- (b) Make a table similar to that one of the previous exercise, but instead of the error column use the values cond(A) corresponding to ϵ_{opt} .
- 3. Apply the Leave-One-Out Method Cross-Validation (LOOCV) approach on the following functions
 - (a) The modified 1d Franke function

$$f(x) = \frac{3}{4} \left(\mathsf{e}^{-(9x-2)^2/4} + \mathsf{e}^{-(9x+1)^2/49} \right) + \frac{1}{2} \mathsf{e}^{-(9x-7)^2/4} - \frac{1}{10} \mathsf{e}^{-(9x-4)^2} \,,$$

by using the C^2 Wendland radial function $\varphi_{3,1}(r) = (1-r)_+^4(4r+1)$ (use DistanceMatrixCSRBF_new.m), on equispaced and Chebyshev points. Make the plot of the error curves for $\epsilon \in [0, 20]$ and $N = 3, \ldots, 65$, as in the Table of exercise 1.

(b) As in (a), this time for the 2-dimensional function

$$f(x,y) = \texttt{sinc}(x)\texttt{sinc}(y)$$

by using the gaussian kernel.

The corresponding script in 2D is LOOCV2D.m.

The Matlab functions can be dowloaded at the link http://www.math.unipd.it/~demarchi/TAA2010