Master degree course on Approximation Theory and Applications,

Lab exercises

Prof. Stefano De Marchi
October 25th, 2016

Plot some strictly positive definite RBF centered at the origin

- Gaussian - Laguerre for n = 1, 2 and s = 1, 2

for $s = 1, x \in [-1, 1]$ while for $s = 2, \mathbf{x} \in [-1, 1]^2$.

- Poisson functions for s=2,3,4 in $[-1,1]^2$ using the shape parameter $\epsilon=10$ (to be introduced in the below definitions)

$$s = 2 \qquad s = 3 \qquad s = 4$$

$$J_0(\|\mathbf{x}\|) \quad \sqrt{\frac{2}{\pi}} \frac{\sin(\|\mathbf{x}\|)}{\|\mathbf{x}\|} \quad \frac{J_1(\|\mathbf{x}\|)}{\|\mathbf{x}\|}$$

where J_p is the Bessel function of first kind and order p (in Matlab besselj(p,z) where z is an evaluation vector of points).

- $Mat\acute{e}rn$ functions in $[-1,1]^2,$ for three values of β (again with $\epsilon=10)$

$$\beta_1 = \frac{s+1}{2} \qquad \beta_2 = \frac{s+3}{2} \qquad \beta_3 = \frac{s+5}{2}$$

$$e^{-\|x\|} \qquad (1+\|x\|) e^{-\|x\|} \qquad (3+3\|x\|+\|x\|^2) e^{-\|x\|}$$

Notice that $Mat\acute{e}rn$ for β_1 is not differentiable at the origin. For β_2 is $\mathcal{C}^2(\mathbb{R}^s)$ and for β_3 is $\mathcal{C}^4(\mathbb{R}^s)$.

- Generalized inverse multiquadrics $\Phi(x) = (1 + ||x||^2)^{-\beta}$, $s < 2\beta$, in $[-1, 1]^2$ (always using $\epsilon = 5$) for $\beta = 1/2$ (Hardy) and $\beta = 1$ (inverse quadrics).
- Truncated powers $\Phi(x) = (1 ||x||)_+^l$ when l = 2, 4 (in $[-1, 1]^2$).
- Whittaker's potentials in $[-1,1]^2$, for the following α , $k \in \beta$

For the plots take $\beta = 1$.

Exercise. Construct the RBF interpolant of the Franke function on a grid 20×20 of Chebyshev points with Poisson and Matérn RBF. Compute also the RMSE.

The Matlab functions can be dowloaded at the usual link http://www.math.unipd.it/~demarchi/TAA2010