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Preface

Function approximation and interpolation play an essential role in most fields of
computational sciences and engineering, such as data processing and numerical
solution of partial differential equations (PDEs), in which the interpolation basis
function is a key component. The traditional basis functions are mostly coordinate
functions, such as polynomial and trigonometric functions, which are computa-
tionally expensive in dealing with high-dimensional problems due to their
dependency on geometric complexity. Instead, radial basis functions (RBFs) are
constructed in terms of a one-dimension distance variable, irrespective of
dimensionality of problems, and appear to have a clear edge over the traditional
polynomial basis functions.

RBFs were originally introduced in the early 1970s to multivariate scattered
data approximations and function interpolations. Now, it is broadly employed in
the neural network and machine learning, multivariate scattered data processing,
and in the recent two decades, the fast emerging applications in numerical PDEs.
Notably, in contrast to the traditional meshed-based methods such as finite dif-
ference, finite element, and boundary element methods, the RBF collocation
methods are mathematically simple and truly meshless, which avoid troublesome
mesh generation for high-dimensional problems involving irregular or moving
boundary. In general, the RBF collocation methods can be classified into domain-
and boundary-type categories. For instance, the Kansa method and its variants are
of a classical domain-type scheme, while the boundary-type RBF collocation
methods are usually involved in the fundamental solutions or general solutions of
the governing equation of interest, such as the method of fundamental solutions,
boundary knot method, regularized meshless method, singular boundary method,
and boundary particle method, just to mention a few. Hence, the basis function of
the boundary-type RBF collocation methods is basically satisfied by the governed
equation while the domain-type RBF collocation methods are not.

Despite excellent performances in some numerical experiments, the reported
work has been mostly based on intuitions and the RBF methods still encounter
some notable challenges, such as time-consuming evaluation of large dense RBF
interpolation matrix, the efficient solution of such large-scale matrix equations, and
constructing efficient and reliable basis functions.
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This book is aimed at making a comprehensive survey of the latest advances on
radial basis function (RBF) collocation methods. The content of the book is
focused on basic concepts, numerical algorithms, and engineering applications.
This book is intended to provide a wide selection of RBF collocation methods for
scientists, engineers, and graduate students who are interest to apply the state-of-
the-art RBF meshless techniques for solving real-life problems.

Some useful supplements and computer codes, based on the RBF collocation
methods described in this monograph, are provided from the following websites:

http://em.hhu.edu.cn/chenwen/html/distance.htm
http://em.hhu.edu.cn/ccms/fuzj/rbfe.html
http://em.hhu.edu.cn/ccms/fuzj/BPM.htm.

June 2013 Wen Chen
Zhuo-Jia Fu
C. S. Chen
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Chapter 1
Introduction

Abstract Radial basis functions (RBFs) are constructed in terms of one-dimen-
sional distance variable and appear to have certain advantages over the traditional
coordinates-based functions. In contrast to the traditional meshed-based methods,
the RBF collocation methods are mathematically simple and truly meshless, which
avoid troublesome mesh generation for high-dimensional problems involving
irregular or moving boundary. This opening chapter begins with the introduction
to RBF history and its applications in numerical solution of partial differential
equations and then gives a general overview of the book.

Keywords Radial basis functions � Collocation method � Meshless � Partial
differential equation

The functions expressed in the distance variable are usually termed as radial basis
functions (RBFs) in the literature. The strengths of the RBFs are easy-to-imple-
ment and independent of dimensionality and geometric complicity. In recent
decades, various RBF-based methods have gained fast growing attention from a
broad range of scientific computing and engineering applications, such as multi-
variate scattered data processing [1], numerical solutions of partial differential
equations (PDEs), neural networks [2], and machine learning [3, 4], just to men-
tion a few. This book focuses on the latest advances of the RBF collocation
solution of PDEs, which has become a hot research topic since the early 1990s.

The history of RBFs goes back to 1971. Hardy [5] innovated probably the most
famous RBF, multi-quadratics (MQ) function, to deal with surface fitting on
topography and irregular surfaces, and later considered the MQ as a consistent
solution of biharmonic solution [6] to give a physical interpretation of its prowess.
In 1975, Duchon [7] proposed another famous RBF, thin-plate splines (TPS), by
employing the minimum bending energy theory of the surface of a thin plate. In
1982, Franke [8] extensively tested 29 different algorithms on the typical bench-
mark function interpolation problems, and ranked the MQ-RBF and TPS-RBF as
two of the best candidates based on the following criteria: timing, storage, accu-
racy, visual pleasantness of the surface, and ease of implementation. Since then,

W. Chen et al., Recent Advances in Radial Basis Function Collocation Methods,
SpringerBriefs in Applied Sciences and Technology, DOI: 10.1007/978-3-642-39572-7_1,
� The Author(s) 2014

1



the RBFs have become popular in the scientific computing community, such as
computer graphics, data processing [9], and economics [10].

In 1990, Kansa [11, 12] first developed an RBF collocation scheme for solving
PDEs of elliptic, parabolic, and hyperbolic types, in particular, using the MQ. The
methodology is now often called the Kansa method. This pioneering work kicks
off a research boom in the RBFs and their applications to numerical PDEs. The
Kansa method is meshless and has distinct advantages compared with the classical
methods, such as superior convergence, integration-free, and easy implementation.

It is interesting to point out that, prior to Kansa’s pioneer work, Nardini and
Brebbia [13] in the early 1980s, without knowing the RBFs, applied the function
1þ r, an ad hoc RBF, as the basis function in the dual reciprocity method (DRM)
for effectively eliminating domain integral in the context of the boundary element
methods (BEM). This original work gives rise to currently popular dual reciprocity
BEM (DR-BEM).

On the other hand, the method of fundamental solutions (MFS) was first pro-
posed by Kupradze and Aleksidze [14], also known as the regular BEM, the
superposition method [15], desingularized method [16], the charge simulation
method [17], etc. The MFS uses the fundamental solutions of the governing
equation of interest as the basis functions. It is noted that fundamental solutions of
radially invariant differential operators, like the Laplace or the Helmholtz operator,
have radial form with respect to origin and appear like the RBFs. Thus, we can
consider the fundamental solutions as a special type of the RBFs. Unlike the Kansa
method, the MFS only requires the discretization at boundary nodes to solve the
homogeneous problems. Hence the MFS is classified as a boundary-type RBF
collocation method.

For nonhomogeneous problems, the MFS should be combined with additional
techniques to evaluate the particular solution, i.e., Monte Carlo method [18], radial
integration method [19], dual reciprocity method (DRM) [20], and multiple reci-
procity method (MRM) [21], and so on. In the past decade, the DRM and the
MRM have emerged as two promising techniques to handle nonhomogeneous
term. For instance, the so-called DR-BEM and MR-BEM are very popular in the
BEM community.

Being meshless and dimensionality-independent, quite a few RBF-based
schemes for numerical solutions of PDEs have been developed in the last two
decades. In contrast to the traditional meshed-based methods such as finite dif-
ference, finite element, and boundary element methods, the RBF collocation
methods are mathematically very simple to implement and truly meshless, which
avoid troublesome mesh generation for high-dimensional problems involving
irregular or moving boundary. In general, the RBF-based methods can be classified
into domain-type and boundary-type categories, such as the above-mentioned
Kansa method and the MFS.

Despite numerous successful applications in a wide range of fields, the tradi-
tional RBFs still encounter some disadvantages compared with the other numerical
techniques. In implementation, the construction and the use of efficient and stable

2 1 Introduction



distance functions are often intuitive and largely based on experiences. For
instance, although the MQ enjoys the reputation of spectral accuracy, the deter-
mination of its optimal shape parameter is often problem-dependent and remains
an open issue, and no mature mathematical theory and methodology are so far
available for its applications to various problems. The compactly supported RBFs
(CS-RBFs) are a recent class of potentially important RBFs. Although in theory
the CS-RBFs can result in a sparse interpolation matrix, their lower order of
accuracy causes some concern to its practical use. Recently, the Green second
identity was found to be a powerful alternative tool to create and analyze the
kernel-based RBFs. In addition, one can find several books [22–24] on the
mathematical analysis of the RBFs.

In the recent two decades, the RBF collocation methods have gained consid-
erable attention in engineering and applied mathematics. Based on the above-
mentioned pioneer works, various improved RBF collocation methods have been
proposed and applied to scientific computing and engineering simulation. This
book makes the first attempt to survey the latest advances on RBF collocation
methods for numerical solutions of PDEs. In Chap. 2, we start with an introduction
of traditional RBFs, such as globally supported RBFs and compactly-supported
RBFs. Following this, several operator-dependent RBFs, such as fundamental
solutions, general solutions, harmonic functions, and particular solutions, are
presented. After that, based on the second Green identity, the kernel RBFs are
introduced to construct the appropriate problem-dependent RBFs. In Chap. 3, the
basic procedure of the Kansa method is described in detail, followed by its
improved formulations, such as the Hermite collocation method, the modified
Kansa method, the method of particular solutions, the method of approximate
particular solutions, and the localized RBF methods. In Chap. 4 we introduce the
basic concepts of the method of fundamental solutions and the other novel
boundary-type RBF collocation schemes. The latter ones are presented to avoid the
fictitious boundary outside the physical domain, a perplexing drawback of the
MFS. Such new techniques include the boundary knot method, the regularized
meshless method, the singular boundary method, just to mention a few here. To
evaluate the particular solution in the boundary-type RBF collocation methods, the
recursive composite multiple reciprocity method (RC-MRM) is introduced for
solving nonhomogeneous problems. The RC-MRM is an improved MRM and has
great flexibility to handle a variety of nonhomogeneous terms without requiring
inner nodes. In the conclusion, Chap. 5 discusses some open issues and perspec-
tives on RBF collocation methods.

At the end of this introduction we would like to remind readers that everything
presented here is the result of a selection, not comprehensive, of course, from our
personal point of view. It is inevitable that some relevant materials will be left out
as a consequence.
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Chapter 2
Radial Basis Functions

Abstract The traditional basis functions in numerical PDEs are mostly coordinate
functions, such as polynomial and trigonometric functions, which are computa-
tionally expensive in dealing with high dimensional problems due to their
dependency on geometric complexity. Alternatively, radial basis functions (RBFs)
are constructed in terms of one-dimensional distance variable irrespective of
dimensionality of problems and appear to have a clear edge over the traditional
basis functions directly in terms of coordinates. In the first part of this chapter, we
introduces classical RBFs, such as globally-supported RBFs (Polyharmonic
splines, Multiquadratics, Gaussian, etc.), and recently developed RBFs, such as
compactly-supported RBFs. Following this, several problem-dependent RBFs,
such as fundamental solutions, general solutions, harmonic functions, and partic-
ular solutions, are presented. Based on the second Green identity, we propose the
kernel RBF-creating strategy to construct the appropriate RBFs.

Keywords Globally-supported RBFs � Compactly-supported RBFs � Operator-
dependent � Kernel RBFs

The functions expressed in the Euclidean distance variable are usually termed as
the radial basis functions (RBFs) in literatures. This is due to the fact that all such
RBFs are radially isotropic due to the rotational invariant, and have become de
facto the conventional distance functions of the widest use today. However, there
do exist some quite important anisotropic and inhomogeneous RBFs, for instance,
the spherical RBFs in handling geodesic problems and the so-called time–space
RBFs. It is obvious that all these so-called anisotropic RBFs are not radially
isotropic.

In terms of PDE kernel solutions, we have distance functions using three kinds
of distance variables underlying (1) rotational invariant, (2) translation invariant,
and (3) a scalar product of two vectors with the ridge function. The traditional
rotational invariant RBFs do not cover the latter two. In addition, there are many
other distance variables in the area of neural network and machine learning.

W. Chen et al., Recent Advances in Radial Basis Function Collocation Methods,
SpringerBriefs in Applied Sciences and Technology, DOI: 10.1007/978-3-642-39572-7_2,
� The Author(s) 2014
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In most literature, the term ‘‘RBF’’ is, however, often simply used indiscrimi-
natingly for the rotational and translation invariants distance variables and func-
tions. Thus, this book extends the definition of RBF to general distance functions.

This chapter begins with an introduction of traditional RBFs for multivariate
data interpolation, such as globally-supported RBFs and compactly-supported
RBFs. In addition, several problem-dependent RBFs, such as fundamental solu-
tions, general solutions, harmonic functions, and particular solutions, are also
presented for the use in the following chapters. In the end, we introduce the kernel
RBF-creating strategy.

2.1 Traditional RBFs

2.1.1 Globally-Supported RBFs

RBFs are mostly multivariate functions, and their values depend only on the
distance from the origin, so that /ðxÞ ¼ /ðrÞ 2 R; x 2 Rn; r 2 R; or alternatively
on the distance from a point of a given set xj

� �
, and /ðx� xjÞ ¼ /ðrjÞ 2 R: Any

function / satisfying the property /ðxÞ ¼ /ðjjxjj2Þ is a radial function. The norm
rj ¼ jjx� xjjj2 is usually the Euclidean distance. Certainly, the other distance
functions [1] are also possible. Some commonly used globally-supported RBFs are
shown in Table 2.1.

Our interest lies in the RBF interpolation of a continuous multivariate function,
f xð Þ; x 2 X � Rn, where X is a bounded domain. Given N interpolation function

values fyigN
i¼1 2 R at data location fxigN

i¼1 2 X � Rn, then f xð Þ can be approxi-
mated by a linear combination of RBFs, namely,

f xð Þ �
XN

j¼1

aj/ x� xj

�� ��
2

� �
; x 2 X; ð2:1Þ

Table 2.1 Commonly used globally-supported RBFs

RBFs /ðxÞ CPD order (m)

Polyharmonic spline r2k�1; k 2 N

r2k ln rð Þ; k 2 N

�
k=2½ � þ 1

Thin plate splines (TPS) r2 ln rð Þ 2
MQ ðr2 þ c2Þk; k [ 0; k 62 N k½ � þ 1

IMQ ðr2 þ c2Þ�k; k [ 0; k 62 N 0

Gaussian e� r2=c2ð Þ 0

k½ � denotes the nearest integers less than or equal to k, and N the natural number, c a positive
constant which is known as the shape parameter, and CPD denotes the m-order conditionally
positive definite functions [2]
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where aj

� �
are the unknown coefficients to be determined. By the collocation

method, we have

yi ¼ f xið Þ ¼
XN

j¼1

aj/ xi � xj

�� ��
2

� �
; i ¼ 1; � � � ;N: ð2:2Þ

The above linear system of equations can be expressed in the following matrix
form

Aa ¼ b; ð2:3Þ

in which a ¼ ða1; a2; . . .; aNÞT is an unknown coefficient vector to be determined,

b ¼ ðy1; y2; . . .; yNÞT is the right-hand side vector, and the RBF interpolation
matrix is given by

A ¼ ½Uij� ¼ ½/ðjjxi � xjjj2Þ�1� i;j�N : ð2:4Þ

However, some RBFs are conditionally positive definite functions as listed in
Table 2.1, such as MQ and TPS. Hence polynomials are augmented to Eq. (2.1) to
guarantee that the resultant interpolation matrix is invertible. Such a formulation is
expressed as follows

f ðxÞ ¼
XN

j¼1

aj/ðjjx� xjjj2Þ þ
XM

i¼1

aNþipiðxÞ; ð2:5Þ

with constraints

XN

j¼1

ajpiðxjÞ ¼ 0; i ¼ 1; 2; � � � ;M; ð2:6Þ

in which pi 2 Pm�1; i ¼ 1; 2; � � � ;M, where Pm represents the polynomial space
that all polynomials of total degree less than m in n variables,

M ¼ N þ m� 1
m� 1

� 	
.

Then, Eqs. (2.5) and (2.6) yield a matrix system of ðM þ NÞ � ðM þ NÞ

A P
PT 0


 �
a½ � ¼ b

0


 �
: ð2:7Þ

To illustrate the stability and efficiency of the RBF interpolation, without loss of
generality, we consider the following test functions on the 2D unit square domain

f1 ¼ fa þ fb; ð2:8Þ

f2 ¼ sin
px

6

� �
sin

7px

4

� 	
cos

3py

4

� 	
cos

5py

4

� 	
; ð2:9Þ
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where

fa ¼
3
4

exp
� 9x� 2ð Þ2

4
� 9y� 2ð Þ2

4

 !

þ 3
4

exp
� 9xþ 1ð Þ2

49
� 9yþ 1ð Þ2

10

 !

; ð2:10Þ

fb ¼
1
2

exp
� 9x� 7ð Þ2

4
� 9y� 3ð Þ2

4

 !

� 1
5

exp � 9x� 4ð Þ2� 9y� 7ð Þ2
� �

: ð2:11Þ

Figure 2.1 shows the profiles of these two test functions. Note that f1 is the
well-known Franke’s function [3]. We conduct numerical experiments via the MQ.
This study defines the normalized root-mean-square error (Rerr) and the normal-
ized maximum error (Mrerr) as

Rerr ¼ 1
max

1� i�NT
fe xið Þj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NT

XNT

i¼1

f xið Þ � fe xið Þj j2
vuut ; ð2:12Þ

Mrerr ¼ 1
max

1� i�NT
fe xið Þj j max

1� i�NT
f xið Þ � fe xið Þj j; ð2:13Þ

where fe xið Þ and f xið Þ are the analytical and numerical solutions evaluated at xi,
respectively, and NT ¼ 10; 201 is the total number of 101� 101 uniformly dis-
tributed test points in a unit square domain.

In this study, we place the interpolation points with uniform spacing, h, for easy
comparisons. From the numerical errors presented in Table 2.2, one can observe
that

(a) The error decreases with the grid refinement.
(b) The condition number of RBF interpolation matrix increases with the grid

refinement.
(c) The shape parameter c is very sensitive to the test functions and the grid size.

Fig. 2.1 Profiles of test functions a Eq. (2.8), b Eq. (2.9)
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(d) The accuracy in function f1, with the grid size h ¼ 0:1, is poor because the grid
is too coarse to perform a more accurate solution.

From the above numerical experiments, we observe that the numerical accuracy
depends on the grid size, the shape parameter, the complexity of the given func-
tions, and the other potential factors. Great efforts have been made to find the
relationship between the RBF interpolation’s accuracy and that of various influ-
ential factors [4–8]. Duchon [9], Madych and Nelson [10–12], Wu and Schaback
[13], and Cheng [14] made contributions to estimate the error of RBF interpola-
tion. Wendland [15] made a summary of these estimates for different RBFs with
respect to grid size h, which is presented in Table 2.3.

Theoretical analysis and empirical formulas for RBF interpolation are also
proposed in literature but remain underdeveloped. Based on Madych’s theoretical
analysis [16], the error estimates of MQ, IMQ, and Gaussian RBFs are made up of
the product of two rival terms. Namely, one part grows exponentially, and the
other decays exponentially as the shape parameter c increases

e	O eackc=h
� �

; 0\k\1; a [ 0; ð2:14Þ

or

e	O eac2
kc=h

� �
; 0\k\1; a [ 0: ð2:15Þ

Huang et al. [6] proposed an empirical error estimate for the IMQ RBF

e	O eac3=2
kc1=2=h

� �
; 0\k\1; a [ 0: ð2:16Þ

Table 2.2 Numerical errors using MQ RBF based on grid size h ¼ 0:1 and h ¼ 0:05

Functions Grid size (h) Optimal shape parameter (c) Condition number Mrerr Rerr

f1 0.1 0.16 3.4e ? 05 1.2e-02 1.4e-03
f1 0.05 0.31 3.8e ? 14 2.8e-05 3.1e-06
f2 0.1 1.16 3.2e ? 17 8.5e-05 1.1e-05
f2 0.05 0.78 6.6e ? 19 3.4e-06 4.7e-07

Table 2.3 Error estimates of different RBFs with respect to grid size h

RBFs /ðxÞ Error estimate

Polyharmonic spline r2k�1; k 2 N

r2k ln rð Þ; k 2 N

�
hk

Thin plate splines (TPS) r2 ln rð Þ h2

MQ ðr2 þ c2Þk; k [ 0; k 62 N e�a=h

IMQ ðr2 þ c2Þ�k; k [ 0; k 62 N e�a=h

Gaussian e� r2=c2ð Þ e�a ln h=h
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Following Madych’s formula, Cheng [14] established the following estimate for
the Gaussian RBF

e	O eac4
kc=h

� �
; 0\k\1; a [ 0: ð2:17Þ

From the above-mentioned error estimates, one can derive different explicit
formulas for the optimal c. According to Eq. (2.15), the optimal c can be
approximated by

copt	O � ln k=2ahð Þ: ð2:18Þ

Similar to Eq. (2.18), the optimal c for IMQ RBF in terms of Eq. (2.16) is

copt	O � ln k=3ahð Þ: ð2:19Þ

The optimal c for Gaussian RBF can also be obtained from Eq. (2.17)

copt	O � ln kð Þ1=3
.

22=3a1=3h1=3
 �� �

: ð2:20Þ

In recent years, we have witnessed the continued efforts of many to establish the
theory of evaluating the optimal shape parameter c in the MQ interpolation.
However, such an explicit formula is only available in special cases. Conse-
quently, numerically determining the optimal c proves to be essential. And
numerical experiments find that the best c, via a numerical scheme, may not be
theoretically optimal.

Since the condition number of the MQ interpolation matrix grows rapidly as
c increases, the optimal c is the largest value at which it can be utilized before the
instability of matrix calculation occurs due to the machine precision. We draw the
following conclusions upon the above discussions.

Among the advantages of Globally-supported RBFs are

(a) Highly accurate and often converge exponentially.
(b) Easy to apply to high dimensional problems.
(c) Meshless in the approximation of multivariate scattered data, and easy to

improve the numerical accuracy by adding more points around large gradient
regions.

On the other hand, the downside is that the interpolation matrix is fully pop-
ulated and ill-conditioned, and thus sensitive to shape parameter. As a result, it is
computationally very expensive to apply the traditional RBF interpolation to large-
scale problems.
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2.1.2 Compactly-Supported RBFs

Following a similar methodology in the corrected reproducing kernel approxi-
mation [17], Wu [18] and Wendland [19] proposed a new type of RBFs to make
the interpolation matrix sparse, which is defined as compactly-supported positive
definite RBFs (CS-RBFs). The popular Wendland’s CS-RBFs [19] are listed below
in Table 2.4.

Note that the cut-off function rð Þþ is defined to be r if 0� r� 1 and to be zero
elsewhere. Furthermore, another class of CS-RBFs constructed by Buhmann [20]
is reminiscent of the popular thin plate splines. Three examples of these CS-RBFs
are given below

/ðxÞ ¼ 2r4 logðrÞ � 7r4
�

2þ 16r3
�

3� 2r2 þ 1=6
 �

þ; x 2 R3; ð2:21Þ

/ðxÞ ¼ 112r9=2
�

45þ 16r7=2
�

3� 7r4 � 14r2
�

15þ 1=9
 �

þ; x 2 R2; ð2:22Þ

/ðxÞ ¼ 1=18� r2 þ 4r3
�

9þ r4
�

2� 4r3 logðrÞ
�

3
 �

þ; x 2 R2: ð2:23Þ

Wu employs convolution to construct another kind of CS-RBFs as shown in
Table 2.5. Wu’s functions can be derived by the following formula

uk;s¼Dk usð Þ; d� 2kþ1; ð2:24Þ

where differential operator D is defined as

Table 2.4 Wendland’s CS-RBFs

Dimension /ðxÞ Continuity of function

d ¼ 1 1� rð Þþ C0

1� rð Þ3þ 3r þ 1ð Þ C2

1� rð Þ5þ 8r2 þ 5r þ 1ð Þ C4

d ¼ 2; 3 1� rð Þ2þ C0

1� rð Þ4þ 4r þ 1ð Þ C2

1� rð Þ6þ 35r2 þ 18r þ 3ð Þ C4

1� rð Þ8þ 32r3 þ 25r2 þ 8r þ 1ð Þ C6

Table 2.5 Wu’s CS-RBFs

k uk;3ðxÞ Continuity of
function

0 1� rð Þ7þ 5r6 þ 35r5 þ 101r4þ147r3 þ 101r2 þ 35r þ 5
 �

C6

1 1� rð Þ6þ 5r5 þ 30r4þ72r3 þ 82r2 þ 36r þ 6
 �

C4

2 1� rð Þ5þ 5r4þ25r3 þ 48r2 þ 40r þ 8ð Þ C2

3 1� rð Þ4þ 5r3 þ 20r2 þ 29r þ 16ð Þ C0

2.1 Traditional RBFs 11



Duð Þ rð Þ¼ � u0 rð Þ=r; r
 0; ð2:25Þ

and the strictly positive definite function us rð Þ is stated as

us rð Þ¼ u � uð Þ 2rð Þ¼
Z 1

�1
1� t2
 �s

þ 1� 2r � tð Þ2
� �s

þ
dt: ð2:26Þ

The CS-RBFs can result in a sparse banded interpolation matrix and effectively
avoids the ill-conditioned and dense matrix in the classical RBF interpolation and
consequently reduces computational costs. However, the discouraging lower order
of accuracy causes a major impediment to its practical use. To overcome the ill-
conditioned problems and reduce the computational costs without loss of accuracy,
several alternative localized approaches have been proposed and will be intro-
duced in Chap. 3.

2.2 Problem-Dependent RBFs

As the RBF collocation methods attract growing attention in the field of numerical
PDEs in the recent two decades, various solutions of PDEs and their variants
emerge to be a powerful approach in the construction of the problem-dependent
RBFs. This section introduces several problem-dependent RBFs. Consider the
following elliptic PDEs

<u ¼ f xð Þ; x 2 X;
Bu ¼ g xð Þ; x 2 C;

ð2:27Þ

where < and B denote the linear partial differential operator and boundary oper-
ators. X � Rn is a bounded domain, and C denotes its boundary.

2.2.1 Fundamental Solutions

The fundamental solutions of radially invariant differential operator have the radial
form with respect to origin and are of a radial function. The fundamental solution
/F satisfies the governing differential equation of interest

< /Ff g ¼ �di; ð2:28Þ

where di is the Dirac delta function.
The fundamental solutions of commonly used differential operators are listed in

Table 2.6 [21], where D denotes the Laplace operator, r the gradient operator, D
the diffusivity coefficient, k a real number known as the wave number, v and r the

velocity vector and distance vector, l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vj j=2Dð Þ2þk=D
q

, j foundation stiffness,
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and r the Euclidean norm between the point x and the origin. Y0 and K0 are the
Bessel and modified Bessel functions of the second kind of order zero, respec-
tively. We can see that the two Kelvin functions are the component functions of
the fundamental solutions of the Winkler operator, where Kei represents the
modified Kelvin functions of the second kind, and Ber denotes the Kelvin func-
tions of the first kind. It is worthy noting that the fundamental solutions to a
differential operator may not be unique. For the Laplace operator, a constant may
be included in its fundamental solution.

By utilizing Green second identity, the high-order fundamental solutions of the
Laplace operator Dm [22] can be derived by

/m
F ðxÞ ¼

r2m

2p
Cm ln r � Bmð Þ; x 2 R2

1
2mð Þ!

r2m�1

4p
; x 2 R3

8
>><

>>:
; ð2:29Þ

where

C0 ¼ 1; B0 ¼ 0; Cmþ1 ¼
Cm

4ðmþ 1Þ2
; Bmþ1 ¼

1

4ðmþ 1Þ2
Cm

mþ 1
þ Bm

� 	
:

Itagaki [23] and Chen [24] derived the explicit expressions of high-order fun-
damental solutions of Helmholtz, modified Helmholtz, and steady convection–
diffusion operators. The high-order fundamental solutions of Helmholtz-type

operator Dþ k2 �m
[23, 24] are given by

/m
F ðxÞ ¼ AmðkrÞmþ1�n=2Ym�1þn=2ðkrÞ; x 2 Rn; ð2:30Þ

where Am ¼ Am�1
�

2mk2;A0 ¼ 1, m is the order of operator of interest, and
n denotes dimensionality.

The high-order fundamental solutions of modified Helmholtz-type operator

D� k2 �m
[23, 24] are given by

Table 2.6 Fundamental solutions to commonly used differential operators of two and three
dimensions

< 2D 3D

D ln rð Þ= 2pð Þ 1= 4prð Þ
Dþ k2 Y0ðkrÞ= 2pð Þ cos kr= 4prð Þ
D� k2 K0ðkrÞ= 2pð Þ e�kr

�
4prð Þ

DDþ v � r � k2 K0ðlrÞe�v�r
2D

�
2pð Þ e�lr�v�r

2D

�
4prð Þ

D2 � k4 Y0ðkrÞ þ K0ðkrÞð Þ= 2pð Þ e�kr þ cos kr
 ��

4prð Þ
D2 þ j2 Keið

ffiffiffi
j
p

rÞ þ Berð
ffiffiffi
j
p

rÞ Kei3=2
ffiffiffi
j
p

rð Þ þ Ber3=2
ffiffiffi
j
p

rð Þ
D2 � k2D K0ðkrÞ þ ln rð Þð Þ

�
2pk2 �

e�kr þ 1
 ��

4pk2r
 �

2.2 Problem-Dependent RBFs 13



/m
F ðxÞ ¼ AmðkrÞmþ1�n=2Km�1þn=2ðkrÞ; x 2 Rn: ð2:31Þ

The high-order fundamental solutions of modified convection–diffusion-type

operator DDþ v � r � k2 �m
[24] are given by

/m
F ðxÞ ¼ AmðlrÞmþ1�n=2e�

v�r
2D Km�1þn=2ðlrÞ; x 2 Rn: ð2:32Þ

Furthermore, the high-order composite operator is the product of different types
of commonly used differential operators. For instance, the thin plate vibration
operator is the product of the Laplace and the Helmholtz operators, and the Berger
operator is a composite operator of the Laplace and the modified Helmholtz
operators. And their fundamental solutions of orders are a sum of the solutions of
the corresponding component operators. Recently, Chen [24] derived the high-
order fundamental solutions of thin plate vibration, Berger plate, and Winkler
plate. The high-order fundamental solutions of thin plate vibration-type operator

r4 � k4 �m
are given by

/m
F ðxÞ ¼ AmðkrÞmþ1�n=2 Ym�1þn=2ðkrÞ þ Km�1þn=2ðkrÞ

 �
; x 2 Rn: ð2:33Þ

The high-order fundamental solutions of Berger plate-type operator

r4 � k2r2
 �m

are given by

/m
F ðxÞ ¼

r2m

2p
Cm ln r � Bmð Þ þ AmðkrÞmKmðkrÞ; x 2 R2

1
2mð Þ!

r2m�1

4p
þ AmðkrÞm�1=2Km�1=2ðkrÞ; x 2 R3

8
>><

>>:
: ð2:34Þ

The high-order fundamental solutions of Winkler plate-type operator
r4 þ j2ð Þm are given by

/m
F ðxÞ ¼ Am

ffiffiffi
j
p

r
 �mþ1�n=2

Kein=2
ffiffiffi
j
p

r
 �

þ Bern=2
ffiffiffi
j
p

r
 � �

; x 2 Rn; ð2:35Þ

where m is an odd-integer order of operator, and

/m
F ðxÞ ¼ Am

ffiffiffi
j
p

r
 �mþ1�n=2

Kein=2�1
ffiffiffi
j
p

r
 �

þ Bern=2�1
ffiffiffi
j
p

r
 � �

; x 2 Rn; ð2:36Þ

where m is an even-integer order. Note that we cannot verify the high-order
Winkler plate-type fundamental solutions for more than 5-dimensions (n [ 5)
because of the following reasons:

(a) Equations (2.35) and (2.36) are not applicable for the Winkler operator of
more than 5-dimensions.

(b) The solutions of the Winkler operator of more than 5-dimensions do not exist.
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2.2.2 General Solutions

It is well known that the fundamental solutions have singularities at origin.
Thereby, the special treatment of these singularities should be handled numeri-
cally. In contrast, Chen [24, 25] proposed the general solutions /G, which are
nonsingular radial functions satisfying the corresponding governing differential
equations in the manner

< /Gf g ¼ 0: ð2:37Þ

It is seen from Eq. (2.37) that the general solutions at origin have a bounded
value rather than infinity as in the fundamental solution case. The general solutions
of differential operator differ essentially from the corresponding fundamental
solutions in that the former are nonsingular, while the latter are singular at origin.

Similarly, the nonsingular general solutions are also one kind of radial func-
tions. Some useful general solutions [24] are listed in Table 2.7, where I0 and J0

represent the Bessel and modified Bessel functions of the first kind of order zero,
respectively, and two Kelvin functions are the component functions of the general
solutions of the Winkler operator, Ber and Bei denote the Kelvin functions of the
first and second kind, respectively. It is noted that the RBF general solution of
Laplace equation is a constant and is not suitable as a basis function. This issue
will be further discussed in the next section.

We can also obtain the high-order RBF general solutions of Helmholtz-type

operator Dþ k2 �m
[24]

/m
GðxÞ ¼ AmðkrÞmþ1�n=2Jm�1þn=2ðkrÞ; x 2 Rn; ð2:38Þ

where Am ¼ Am�1

�
2mk2;A0 ¼ 1, m denotes the order of operator, and n represents

the dimensionality.
The high-order RBF general solutions of modified Helmholtz-type operator

D� k2 �m
[24] are given by

/m
GðxÞ ¼ AmðkrÞmþ1�n=2Im�1þn=2ðkrÞ; x 2 Rn: ð2:39Þ

Table 2.7 Nonsingular RBF general solutions to commonly used differential operators

< 2D 3D

D / /

Dþ k2 J0ðkrÞ= 2pð Þ sin krð Þ= 4prð Þ
D� k2 I0ðkrÞ= 2pð Þ sinh krð Þ= 4prð Þ
DDþ v � r � k2 I0ðlrÞe�v�r

2D

�
2pð Þ e�

v�r
2D sinhðlrÞ= 4prð Þ

r4 � k4 J0ðkrÞ þ I0ðkrÞð Þ= 2pð Þ sin krð Þ þ sinhðkrÞð Þ= 4prð Þ
r4 þ j2 Bei

ffiffiffi
j
p

rð Þ þ Ber
ffiffiffi
j
p

rð Þ Bei3=2
ffiffiffi
j
p

rð Þ þ Ber3=2
ffiffiffi
j
p

rð Þ
r4 � k2r2 I0ðkrÞ þ 1ð Þ

�
2pk2 �

sinh krð Þ þ rð Þ
�

4pk2r
 �
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The high-order RBF general solutions of modified convection–diffusion-type

operator DDþ v � r � k2 �m
[24] are represented by

/m
GðxÞ ¼ AmðlrÞmþ1�n=2e�

v�r
2D Im�1þn=2ðlrÞ; x 2 Rn: ð2:40Þ

The high-order RBF general solutions of thin plate vibration-type operator

r4 � k4 �m
are expressed as

/m
GðxÞ ¼ AmðkrÞmþ1�n=2 Jm�1þn=2ðkrÞ þ Im�1þn=2ðkrÞ

 �
; x 2 Rn: ð2:41Þ

The high-order RBF general solutions of Berger plate-type operator

r4 � k2r2
 �m

are stated as

/m
GðxÞ ¼ Am þ AmðkrÞmþ1�n=2Im�1þn=2ðkrÞ; x 2 Rn: ð2:42Þ

The high-order RBF general solutions of Winkler plate-type operator
r4 þ j2ð Þm are given by

/m
GðxÞ ¼ Am

ffiffiffi
j
p

r
 �mþ1�n=2

Bein=2
ffiffiffi
j
p

r
 �

þ Bern=2
ffiffiffi
j
p

r
 � �

; n ¼ 2; 3; ð2:43Þ

where the order m of operator is an odd integer, and

/m
GðxÞ ¼ Am

ffiffiffi
j
p

r
 �mþ1�n=2

Bein=2�1
ffiffiffi
j
p

r
 �

þ Bern=2�1
ffiffiffi
j
p

r
 � �

; n ¼ 2; 3; ð2:44Þ

where m is an even integer. It should also be mentioned that Eqs. (2.43) and (2.44)
do not establish for the Winkler operators of more than 3-dimensions. It remains
an open issue to find such high-order general solutions.

2.2.3 Harmonic Functions

As mentioned earlier, the general solution of Laplace equation is a constant rather
than a RBF and is not suitable for function interpolation and numerical PDEs.
Chen [26] made an attempt to use the nonsingular general solutions of Helmholtz-
like equation with a small characteristic parameter to replace the constant general
solution of Laplace equation. However, the characteristic parameter such as the
wave number should generally be small to get accurate solution. It is somewhat
sensitive to the domain geometry of problem of interest. And it is not easy to
determine its optimal value as the shape parameter of the MQ.

On the other hand, Hon and Wu [27] applied a translate-invariant 2D harmonic
function as the basis function to devise a simple and efficient numerical scheme for
solving 2D Laplace problems. Hon and Wu’s harmonic function of the two-
dimensional Laplace equation D H0

2ðxi; yiÞ
 �

¼ 0 is given by

H0
2ðxi; yiÞ ¼ expð�cðx2

ik � y2
ikÞÞ cosð2cxikyikÞ; ð2:45Þ
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where c is the shape parameter and is dependent on problem of interest, and
xik ¼ xi � xk, yik ¼ yi � yk.

Compared with the singular fundamental solutions, the harmonic solutions are
nonsingular. Thus, it is appealing to choose harmonic functions, which avoid the
singularities of Laplace fundamental solution. However, this comes at a price one
has to pay that their shape parameter c has to be determined as the MQ shape
parameter [28]. The performances such as accuracy and convergence rate of the
harmonic functions are largely dependent on the problem-dependent parameter c.

The harmonic functions are guaranteed invertibility if the solution is in the
bounded domain or decays to zero at infinite for the unbounded domain. As quoted
from Hon and Wu [27], ‘‘The result in this paper is given for bounded functions
which are harmonic on the upper half plane. This ensures that the functions can be
expressed in the form of Poisson integrals so that the solution can be determined
by its given values on the boundary. The numerical computations, however,
indicate that the result is also valid for unbounded functions (but bounded on the
boundary) which are harmonic on the upper half plane.’’

High-order polyharmonic solutions

Based on Hon and Wu’s work [27], the high-order polyharmonic functions in two-
and three- dimensional problems are constructed by Chen and Fu [29, 30]. The m-
order polyharmonic functions of Dm Hm

2 ðxi; yiÞ
 �

¼ 0 in two-dimension are repre-
sented as

Hm
2 xi; yið Þ ¼ r2m exp �c x2

ik � y2
ik

 � �
cos 2cxikyikð Þ: ð2:46Þ

Three-dimensional harmonic solutions

The harmonic function of three-dimensional Laplace equation D H0
3ðxi; yi; ziÞ

 �
¼

0 can be intuitionally obtained as

H0
3 xi; yi; zið Þ ¼ exp �c x2

ik � y2
ik

 � �
cos 2cxikyikð Þþ

exp �c y2
ik � z2

ik

 � �
cos 2cyikzikð Þ þ exp �c z2

ik � x2
ik

 � �
cos 2czikxikð Þ

ð2:47Þ

Similarly, the m-order polyharmonic functions of Dm Hm
3 xi; yi; zið Þ

 �
¼ 0 in

three dimension are represented as

Hm
3 xi; yi; zið Þ ¼ r2m exp �c x2

ik � y2
ik

 � �
cos 2cxikyikð Þþ

�

exp �c y2
ik � z2

ik

 � �
cos 2cyikzikð Þ þ exp �c z2

ik � x2
ik

 � �
cos 2czikxikð Þ

� ð2:48Þ

2.2.4 Particular Solutions

Another important type of problem-dependent RBFs are particular solutions. A
splitting approach [31] is used to split the solution of the nonhomogeneous gov-
erning Eq. (2.27) into homogeneous solution and particular solution. The key issue
is to construct the particular solutions U rð Þ to satisfy the following equation
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<U rð Þ ¼ / rð Þ: ð2:49Þ

Typically, there are two approaches to construct the particular solutions U rð Þ.
The first approach is utilizing the above-mentioned RBFs as the particular solu-
tions U rð Þ, then deriving the basis functions / rð Þ from Eq. (2.49) by differentiation
process. This scheme is easy to derive the particular solutions, however, such
RBFs / rð Þ may not remain in the positive definite property to guarantee the matrix
invertibility, which depends on the governing differential operator <.

The second approach is utilizing the existing RBFs discussed before as the
functions / rð Þ, then deriving the particular solutions U rð Þ from Eq. (2.49) by
reverse differentiation process. The deriving process in this strategy is far more
challenging than the former one. Nevertheless, the corresponding derived partic-
ular solutions U rð Þ inherit the positive definite property from the existing RBFs. In
virtue of this excellent property, various particular solutions have been derived by
the second approach. Chen and Rashed [32] were the first to extend the derivation
of TPS-based solutions for Helmholtz-type operators. Muleshkov et al. [33] and
Cheng [34] further derived the particular solutions by Polyharmonic splines.
Recently, Muleshkov and Golberg [35], Chen et al. [36], and Tsai et al. [37]
extended the derivation to more composite differential operators. We list some
particular solutions U rð Þ for the traditional RBFs / rð Þ [38] as follows:

(a) The corresponding particular solutions as a prior to satisfy the differential
equation DU rð Þ ¼ / rð Þ.

For MQ, / rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p

, we have the following results

U rð Þ ¼ 4c2 þ r2

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2

p
� c3

3
ln cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2

p� �
ð2:50Þ

in R2, and

U rð Þ ¼ 5c2þ2r2

24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2
p

þ c4 ln rþ
ffiffiffiffiffiffiffiffiffi
c2þr2
pð Þ

8r � c3

3 �
c4 ln cð Þ

8r ; r 6¼ 0
0; r ¼ 0

(

ð2:51Þ

in R3.
For IMQ, / rð Þ ¼ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p

, we obtain

U rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2

p
� c ln cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2

p� �
ð2:52Þ

in R2, and

U rð Þ ¼
ffiffiffiffiffiffiffiffiffi
c2þr2
p

2 þ c2

2r ln rþ
ffiffiffiffiffiffiffiffiffi
c2þr2
p

c

� �
� c

2 ; r 6¼ 0

0; r ¼ 0

(

ð2:53Þ

in R3.
For Polyharmonic splines / rð Þ ¼ rk ln rð Þ; k ¼ 2; 4; 6; . . .; in R2, we derive
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U rð Þ ¼ rkþ2 ln rð Þ
4 k=2þ 1ð Þ2

� rkþ2

4 k=2þ 1ð Þ3
; ð2:54Þ

which can be regarded as high-order fundamental solutions of Laplace operator.
For Polyharmonic splines, / rð Þ ¼ rk; k ¼ 1; 3; 5; . . .; in R3, we get

U rð Þ ¼ rkþ3

k þ 3ð Þ k þ 2ð Þ : ð2:55Þ

(b) The corresponding particular solutions as a prior to satisfy the differential
equation Dþ k2 �

U rð Þ ¼ / rð Þ.
For TPS, / rð Þ ¼ r2 ln rð Þ in R2, we have the following results

U rð Þ ¼ � r2 ln rð Þ
k2 þ 4 ln rð Þþ4

k4 þ 4
k4 K0 krð Þ; r 6¼ 0

4
k4 � 4c

k4 � 4
k4 ln k

2

 �
; r ¼ 0

(

: ð2:56Þ

For Polyharmonic splines of order two, / rð Þ ¼ r4 ln rð Þ in R2, we derive the
following results

U rð Þ ¼ � r4 ln rð Þ
k2 þ 8r2 2 ln rð Þþ1ð Þ

k4 þ 64 ln rð Þþ96
k6 þ 64K0 krð Þ

k6 ; r 6¼ 0
96
k6 � 64c

k6 � 64
k6 ln k

2

 �
; r ¼ 0

(

: ð2:57Þ

For Polyharmonic splines of higher order, / rð Þ ¼ rk ln rð Þ; k ¼ 4; 6; 8; � � � in R2,
we get

U rð Þ ¼ � 1

k2

Xk=2

i¼0

� D

k2

� 	i

rk ln rð Þ � �1ð Þk=2 kð Þ!!2

kkþ2 K0 krð Þ: ð2:58Þ

For TPS / rð Þ ¼ r in R3, we find the following particular solution

U rð Þ ¼ � r
k2 þ 2

k4r
� 2e�kr

k4r
; r 6¼ 0

2
k3 ; r ¼ 0

(

: ð2:59Þ

For Polyharmonic splines / rð Þ ¼ rk; k ¼ 1; 3; 5; � � � in R3, we derive the par-
ticular solution

U rð Þ ¼ �
Xk=2

i¼0

�1ð Þi k þ 1ð Þ!rk�2i

k þ 1� 2ið Þ!k2iþ2 þ
2 �1ð Þi k þ 1ð Þ!

k2kþ4

e�kr

r
: ð2:60Þ

(c) The corresponding particular solutions as a prior to satisfy the differential
equation D� k2 �

U rð Þ ¼ / rð Þ.
For TPS / rð Þ ¼ r2 ln rð Þ in R2, we obtain
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U rð Þ ¼ � r2 ln rð Þ
k2 � 4 ln rð Þþ4

k4 � 4
k4 K0 krð Þ; r 6¼ 0

� 4
k4 þ 4c

k4 þ 4
k4 ln k

2

 �
; r ¼ 0

(

: ð2:61Þ

For Polyharmonic splines of order 2, / rð Þ ¼ r4 ln rð Þ in R2, the corresponding
particular solution is

U rð Þ ¼ � r4 ln rð Þ
k2 � 8r2 2 ln rð Þþ1ð Þ

k4 � 64 ln rð Þþ96
k6 � 64K0 krð Þ

k6 ; r 6¼ 0

� 96
k6 þ 64c

k6 þ 64
k6 ln k

2

 �
; r ¼ 0

(

: ð2:62Þ

For Polyharmonic splines of higher order / rð Þ ¼ rk ln rð Þ; k ¼ 4; 6; 8; � � � in R2,
we have

U rð Þ ¼ � 1

k2

Xk=2

i¼0

D

k2

� 	i

rk ln rð Þ � kð Þ!!2

kkþ2 K0 krð Þ: ð2:63Þ

For TPS / rð Þ ¼ r in R3, we get

U rð Þ ¼ � r
k2 � 2

k4r
þ 2e�kr

k4r
; r 6¼ 0

� 2
k3 ; r ¼ 0

(

: ð2:64Þ

For Polyharmonic splines / rð Þ ¼ rk; k ¼ 1; 3; 5; � � � in R3, we obtain

U rð Þ ¼ �
Xk=2

i¼0

k þ 1ð Þ!rk�2i

k þ 1� 2ið Þ!k2iþ2 þ
2 k þ 1ð Þ!

kkþ3

e�kr

r
: ð2:65Þ

(d) The corresponding particular solutions as a prior to satisfy the differential
equation D2U rð Þ ¼ / rð Þ.

For MQ, / rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p

in R2, we derive the particular solution

U rð Þ ¼ 1
12

r2c3 � 7
60

c4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2

p
þ 2

45
c2 c2 þ r2
 �3

2

þ 1
225

c2 c2 þ r2
 �5

2þ 2c2 � 5r2

60
ln cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2

p� � ð2:66Þ

For IMQ, / rð Þ ¼ 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ c2
p

in R2, the particular solution is stated as

U rð Þ ¼ � 5c2
ffiffiffiffiffiffiffiffiffi
c2þr2
p

12 þ c2þr2ð Þ
3
2

9 þ cr2

2 þ
2c3�3cr2ð Þ ln cþ

ffiffiffiffiffiffiffiffiffi
c2þr2
pð Þ

12 ; r 6¼ 0
c3

36 6 ln 2cð Þ � 11ð Þ; r ¼ 0

8
<

:
: ð2:67Þ

For Polyharmonic splines / rð Þ ¼ rk; k ¼ 1; 3; 5; � � � in R3, we have

U rð Þ ¼ rkþ4

k þ 2ð Þ k þ 3ð Þ k þ 4ð Þ k þ 5ð Þ ð2:68Þ
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(e) The corresponding particular solutions as a prior to satisfy the differential
equation r4 � k4 �

U rð Þ ¼ / rð Þ.
For Polyharmonic splines of order 2, / rð Þ ¼ r4 ln rð Þ in R2, we get

U rð Þ ¼ � r4 ln rð Þ
k4 � 64 ln rð Þþ96

k8 � 16 K0 krð Þ�pY0 krð Þð Þ
k8 ; r 6¼ 0

� 96
k8 þ 64c

k8 þ 64
k8 ln k

2

 �
; r ¼ 0

(

: ð2:69Þ

For Polyharmonic splines/ rð Þ ¼ rk ln rð Þ; k ¼ 2; 4; 6; � � � in R2, we obtain

U rð Þ ¼ � 1

k4

Xk=2

i¼0

D2

k4

� 	i

rk ln rð Þ � k=2ð Þ!2

kkþ4 2K0 krð Þ þ �1ð Þk=2þ1pY0 krð Þ
� �

:

ð2:70Þ

For Polyharmonic splines / rð Þ ¼ rk; k ¼ 1; 3; 5; � � � in R3, we have

U rð Þ ¼ � 1

k4

Xk�1ð Þ=2

i¼0

D2

k4

� 	i

rkþ2 þ k þ 1ð Þ!
2kkþ5r

e�kr þ �1ð Þ kþ1ð Þ=2
cos krð Þ

� �
: ð2:71Þ

(f) The corresponding particular solutions as a prior to satisfy the differential
equation r4 þ j2ð ÞU rð Þ ¼ / rð Þ.

For Polyharmonic splines / rð Þ ¼ rk ln rð Þ; k ¼ 2; 4; 6; � � � in R2, we have the
following results

U rð Þ ¼

Pk=2

i¼0
� D2

j2

� �i
rk ln rð Þ

j2
þ
�1ð Þk=2 k=2ð Þ!2 2K0

ffiffiffi
j
p

rð Þ þ �1ð Þk=2þ1pY0
ffiffiffi
j
p

rð Þ
� �

jk=2þ2
:

ð2:72Þ

For Polyharmonic splines / rð Þ ¼ rk; k ¼ 1; 3; 5; � � � in R3, we have

U rð Þ ¼

Pk�1ð Þ=2

i¼0
� D2

j2

� �i
rkþ2

j2
þ
�1ð Þ

kþ1
2 k þ 1ð Þ! e�

ffiffi
j
p

r þ �1ð Þ
kþ1

2 cos
ffiffiffi
j
p

rð Þ
� �

2j kþ5ð Þ=2r
ð2:73Þ

2.2.5 Anisotropic RBFs

Numerical methods based on RBFs appear very efficient for isotropic problems.
However, Carlson and Foley [39] found that the isotropic RBFs, such as the MQ
and TPS, do not work well for the so-called track or directional data problems.
This kind of problems characterizes a preferred direction. For directional data, the
anisotropic RBFs can capture the directional property. For instance, consider heat
conduction in anisotropic media
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Xd

i;j¼1

o

oxi
Kij

ou xð Þ
oxj

� 	
¼ 0; x 2 X; ð2:74Þ

where d denotes the dimensionality of problem. K ¼ Kij

� �
1� i;j� d denotes the

matrix of anisotropic material parameter, which has the symmetrical and positive-
definite properties, for example, d ¼ 2, K12 ¼ K21and DK ¼ det Kð Þ ¼
K11K22 � K2

12 [ 0. Typically, there are two approaches to construct the anisotropic
RBFs.

Domain mapping method [40]
The domain mapping method is a transformation technique and can be applied

to the anisotropic problem in field theory. The 2D and 3D direct domain mapping
formulas are represented by

X1 � Xk1

X2 � Xk2

� 	
¼

ffiffiffiffiffiffi
DK
p �

K11 0
�K12=K11 1

� 	
x1 � xk1

x2 � xk2

� 	
; ð2:75Þ

X1 � Xk1

X2 � Xk2

X3 � Xk3

0

@

1

A ¼

ffiffiffiffiffiffi
DK
p �

K11 0 0
�K12=K11 1 0

b1 b2 b3

0

@

1

A
x1 � xk1

x2 � xk2

x3 � xk3

0

@

1

A; ð2:76Þ

where
b1 ¼ K12K13 � K23K11ð Þ=

ffiffiffiffi
w
p

, b2 ¼ K12K23 � K13K22ð Þ=
ffiffiffiffi
w
p

, b3 ¼ DK=
ffiffiffiffi
w
p

,
and w ¼ K11K33DK � K11K22K2

13 þ 2K11K12K13K23 � K2
23K2

11.
Geodesic distance functions [41]
Another strategy is to construct geodesic distance functions. The standard

Euclidean distance rk ¼ x� xkk k2 is replaced by the geodesic distance Rk between
points x ¼ x1; x2; � � � ; xdð Þ and xk ¼ xk1; xk2; � � � ; xkdð Þ defined as below

R2
k ¼

Xd

i¼1

Xd

j¼1

K�1
ij ðxi � xkiÞðxj � xkjÞ ¼ ðx� xkÞT K�1ðx� xkÞ; ð2:77Þ

where K�1 ¼ K�1
ij

h i
is the inverse anisotropic coefficient matrix. In case of iso-

tropic media, K is an identity matrix and the geodesic distance is reduced to the
Euclidean distance.

It is straightforward to construct the anisotropic RBFs from the corresponding
isotropic RBFs described above via the variable transformation Eqs. (2.75), (2.76),
and (2.77).

2.2.6 Time–Space RBFs

In terms of generalized time–space field, an interesting and significant extension
of the RBF concept is to introduce time–space RBFs for time-dependent
problems. One of the proposed methodology defines the interpolation function on
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Rn � T [42], where T is the additional time axis. Hence the time–space RBFs have

the representation form
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2 tj j2

q
. The parameter c reflects a realistic rela-

tionship between space and time. Such a metric considers the time axis being
‘‘orthogonal’’ to all of the space axes but with a different unit.

Yet another type of the time–space RBFs originates from transient fundamental
solution and general solution of time-dependent partial differential equations [43–
45]. Consider the diffusion equation

ouðx; tÞ
ot

¼ kr2uðx; tÞ; x 2 X � Rn; ð2:78Þ

where x is the general spatial coordinate, t the time, k the diffusion coefficient. By
applying the Fourier and the inverse Fourier transforms to Eq. (2.78), the funda-
mental solutions in Rn and the general solutions in R3 can be obtained, respec-
tively, and stated as

/m
F ðx; t; s; sÞ ¼

e
� x�sk k2

2
4kðt�sÞ

4kpðt � sÞð Þn=2
Hðt � sÞ; x 2 Rn; ð2:79Þ

/m
Gðx; t; s; sÞ ¼ e�kðt�sÞ sin x� sk k2

x� sk k2

; x 2 R3; ð2:80Þ

where n is the spatial dimensionality and HðtÞ represents the Heaviside step
function, x denotes the location of the field points, and s means the location of the
source points. t and s are the time of the field and source points, respectively.

2.3 Kernel RBFs

As the motto goes ‘‘the laws of universe are written in the language of partial
differential equation,’’ the construction of an efficient and stable RBF is not an
exception. Building on the firm grounds of integral equation theory (distribution
theory), this section presents a recent approach for constructing the novel RBFs in
terms of the potential theory.

The Green second identity was found to be a powerful alternative tool to create
and analyze efficient RBFs [43, 46, 47]. The kernel solutions of partial differential
equations can be used to create the kernel RBFs. By using the Green second
theorem, the solution of Eq. (2.27) can be expressed as

uðxÞ ¼
Z

X
f ðsÞu�ðx; sÞdXðsÞ þ

Z

C
u
ou�ðx; sÞ

onðsÞ �
ou

onðsÞ u
�ðx; sÞ

� �
dCðsÞ; ð2:81Þ

where u� represents the fundamental solutions of governing operator <, and s
denotes source point. It is noted that the first and second terms of Eq. (2.81) are the

2.2 Problem-Dependent RBFs 23



particular and the homogeneous solutions in the PDE splitting approach [31].
Applying a numerical integral scheme to approximate Eq. (2.81), we have

uðxÞ ¼
XN

j¼1

wðx; xjÞf ðxjÞu� þ
XN

j¼Niþ1

wðx; xjÞ u
ou�

on
� ou

on
u�


 �
; ð2:82Þ

where Ni is the number of the interior knots in X, N the total number of knots in
the domain and on the boundary, and w x; xj

 �
the integration weighting functions.

We can further restate the approximate representation (2.82) as

uðxÞ ¼
XN

j¼1

ajhjðx; xjÞu�f ðxjÞ �
XN

j¼Niþ1

bjpjðx; xjÞu� þ
XN

j¼Niþ1

cjqjðx; xjÞ; ð2:83Þ

where fajg; fbjg and fcjg are unknown expansion coefficients, fhjg and fpjg
represents weighting functions to be specified. hu�f , pu� are in fact the radial basis
functions. Therefore, the first term of Eq. (2.83) suggests that the RBFs can be
constructed using interior source points xj

� �
[43, 46, 47] by

/ðx; xjÞ ¼ hjðx; xjÞu� x; xj

 �
f ðxjÞ: ð2:84Þ

When u� is a singular fundamental solution, hj is an augmented RBF function to
remove the singularities of fundamental solutions and guarantee that the function
/ðx; xjÞ has enough differentiability. Power function hj ¼ rm is a convenient
choose where r denotes the Euclidean distance. For instance, the TPS is a special
case of the kernel RBFs for 2D biharmonic operator. Polyharmonic splines RBFs
are recommended for higher dimensional problems. On the other hand, u� in Eq.
(2.84) can be replaced by nonsingular general solutions [46, 48].

Regarding the boundary source points, we suggest a RBF as

/ðx; xjÞ ¼ pjðx; xjÞu� x; xj

 �
: ð2:85Þ

The weighting function pj ¼ rm is also a simple choice. It is of worthy noting
that the high-order fundamental solutions, general solutions, and harmonic func-
tions in Sects. 2.2.1–2.2.3 are not singular and appear similar to the fundamental
solutions augmented with a power function. Table 2.8 lists some typical kernel
RBFs augmented by a power function [43].

Another strategy is to construct shifted kernel RBFs [43] by replacing
Euclidean distance r in the fundamental solutions with a shifted distance variableffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ r2
p

to remedy the singularity, where c is a dilution shape parameter. For
instance, the MQ RBF can be used as a correcting function to determine local
optimal shape parameter by establishing the reproducing conditions. These shifted
kernel RBFs are especially attractive for multiscale problems. Table 2.9 lists some
shifted kernel RBFs.
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With the help of the kernel solutions of time-dependent PDEs, we can also
construct the time–space kernel RBFs. For instance, consider the wave propaga-
tion equation

o2u

ox2
¼ 1

c2

o2u

ot2
þ f x; tð Þ: ð2:86Þ

Let

s ¼ ict; ð2:87Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

. We have

o2u

ox2
þ o2u

os2
¼ f x; tð Þ: ð2:88Þ

Similar to the definition of Euclidean distance, the generalized time–space
distance is defined by

rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xj

 �2þ s� sj

 �2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xj

 �2�c2 t � tj

 �2
q

: ð2:89Þ

However, such a definition can lead to complex value of distance variable.
Thus, it is better to use

rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xj

 �2þc2 t � tj

 �2
q

: ð2:90Þ

Table 2.8 Kernel RBFs augmented by a power function

Power augmented scheme /ðxÞ
Polyharmonic spline rm; m ¼ 1; 3; 5; � � �

rm ln rð Þ;m ¼ 2; 4; 6; � � �

�

Thin plate spline r2 ln rð Þ
Power exponential functions rme�r2

High-order fundamental solutions See Sect. 2.2.1
High-order RBF general solutions See Sect. 2.2.2
High-order harmonic functions See Sect. 2.2.3

Table 2.9 Shifted kernel RBFs

Shape parameter scheme /ðxÞ
Multiquadric

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p

Shifted logarithm function ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p �

Shifted Polyharmonic spline rm ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p �

Shifted exponential function e�
ffiffiffiffiffiffiffiffiffi
r2þc2
p

Shifted fundamental solutions /m
F ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p

Þ
Shifted RBF general solutions [49] /m

Gð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p

Þ
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Here c is the wave velocity. The RBFs with respect to time–space distance
(2.90) differ from the standard RBFs in that the time variable is handled equally as
the space variables. Time–space RBFs eliminate time dependence directly in the
basis functions. The Green second theory suggests that the time–space kernel
RBFs can be constructed by [46, 47]

/ðrjÞ ¼ hjðrjÞu� rj

 �
f ðxj; tÞ; ð2:91Þ

for interior source points, and

/ðrjÞ ¼ pjðrjÞu� rj

 �
; ð2:92Þ

for boundary source points.
Another strategy is to construct time-dependent kernel RBFs by augmenting

fundamental or general solutions with time power function stated below

/ðrjÞ ¼ t2mu� rj

 �
f ðxj; tÞ; ð2:93Þ

where t2m remedies the singularities of transient fundamental solution u� rj

 �
. The

time–space RBFs in Sect. 2.2.6 can be modified by utilizing shifted RBF formulas
(2.91–2.93). The time–space kernel RBFs have great potential to transient image
data processing such as motion pictures.

The other approaches for constructing the appropriate RBFs are also reported in
literatures, such as combined RBFs [50], oscillatory RBFs [51], Trefftz RBFs [52],
and wavelet-based adaptive RBF method [53]. For more details, the interested
readers may look into the respective papers.
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Chapter 3
Different Formulations of the Kansa
Method: Domain Discretization

Abstract In contrast to the traditional meshed-based methods such as finite
difference, finite element, and boundary element methods, the RBF collocation
methods are mathematically very simple to implement and are truly free of
troublesome mesh generation for high-dimensional problems involving irregular
or moving boundary. This chapter introduces the basic procedure of the Kansa
method, the very first domain-type RBF collocation method. Following this,
several improved formulations of the Kansa method are described, such as the
Hermite collocation method, the modified Kansa method, the method of particular
solutions, the method of approximate particular solutions, and the localized RBF
methods. Numerical demonstrations show the convergence rate and stability of
these domain-type RBF collocation methods for several benchmark examples.

Keywords Kansa method � Hermite collocation method � Modified Kansa
method � Method of particular solutions � Method of approximate particular
solutions � Localized formulations

In the last two decades, much effort has been devoted to developing a variety of
meshless schemes for numerical discretization of partial differential equations. The
driving force behind the scene is that mesh-based methods such as the standard
FEM and BEM often require excessive computational effort to mesh or remesh the
computational domain for high-dimensional, moving boundary, or complex-
shaped boundary problems. Many of the meshless techniques available today are
based on moving least squares (MLS). However, in some cases, shadow elements
are still required for the numerical integration. Therefore, these methods are not
entirely meshless. In contrast, the RBF collocation methods are exceedingly
simple for numerical implementation and are truly meshless and integration-free
because of their independency of dimensionality and complexity of problem
geometry. Nardini and Brebbia in 1982 have actually applied the RBF concept to
develop the popular dual reciprocity BEM without a notion of ‘‘RBF.’’ Only after
Kansa’s pioneer work in 1990 [1, 2], the research on the RBF method for PDEs has

W. Chen et al., Recent Advances in Radial Basis Function Collocation Methods,
SpringerBriefs in Applied Sciences and Technology, DOI: 10.1007/978-3-642-39572-7_3,
� The Author(s) 2014
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become very active. In general, RBF collocation methods can be classified into
domain- and boundary-type categories. This chapter focuses primarily on the
domain-type RBF collocation methods.

The Kansa method [1, 2] is the very first domain-type RBF collocation scheme
with easy-to-use merit, but the method lacks symmetric interpolation matrix due to
the boundary collocation of mixed boundary conditions. The Hermite collocation
method (HCM) [3] alleviates the unsymmetrical drawback. Similar to the Kansa
method, however, the HCM suffers relatively lower accuracy in boundary-adjacent
region. Namely, the numerical accuracy in the vicinity of boundary deteriorates by
one to two orders compared with those in the central region. By using the Green
second identity, Chen presented the symmetric domain-type modified Kansa
method (MKM) [4] to significantly improve the numerical accuracy in the region
near the boundary.

Inspired by the boundary collocation RBF techniques, the method of particular
solutions (MPS) [5, 6] and the method of approximate particular solutions (MAPS)
[5, 7] are developed to use the particular solution RBFs for the solution of PDEs.

The ill-conditioning and fully-populated interpolation matrix is the main
challenge for the application of the traditional Kansa method and its variants
mentioned above to large-scale problems. In addition, it remains an opening issue
to determine the optimal shape parameter using the MQ-RBF in a global inter-
polation. To remedy these two perplexing problems, a number of the localized
RBF methods [8–18] have been proposed in recent years and have attracted great
attention in the science and engineering communities.

Let X be a bounded and connected domain, and oX ¼ C1 [ C2; C1 \ C2 ¼ ;.
Without loss of generality, we make a straightforward illustration of these methods
through the following elliptical partial differential equation:

< u xð Þf g ¼ f xð Þ; x 2 X � Rn;

B1u xð Þ ¼ R xð Þ; x 2 C1;

B2u xð Þ ¼ N xð Þ; x 2 C2;

ð3:1Þ

where < is governing differential operator, B1;B2 boundary differential operators,
and f xð Þ;R xð Þ;N xð Þ are given functions.

3.1 The Kansa Method

First, we introduce the well-known Kansa method [1, 2]. The method employs
both the RBFs and the polynomial basis to approximate the PDE solutions.
However, Wertz et al. [19] recently found that it is unnecessary to augment
polynomial term with the RBF approximate representation in solving PDEs. Thus,
this book only introduces the Kansa method without augmented polynomial basis
functions.
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Let fxjgNi
j¼1 be the interior points in the domain X, fxjgNiþN1

j¼Niþ1 2 C1, and

fxjgN
j¼NiþN1þ1 2 C2, where N ¼ Ni þ N1 þ N2. The Kansa method assumes the

solution uðxÞ in Eq. (3.1) can be approximated by a linear combination of the
RBFs at discrete nodes

uðxÞ ’ ~uðxÞ ¼
XN

j¼1

aj/ jjx� xjjj2
� �

; ð3:2Þ

where fajg are unknown coefficients, N the total number of the collocation knots,
and /ðxÞ denotes the RBFs, such as MQ, IMQ, TPS, and Gaussian, etc. Substituting
Eq. (3.2) into Eq. (3.1), the linear equations can be expressed in the following
matrix form:

Aa ¼ b; ð3:3Þ

where a ¼ a1; a2; . . .; aNð ÞT is the unknown vector to be determined, and

b ¼ f x1ð Þ; � � � ; f xNið Þ;R xNiþ1ð Þ; � � � ;R xNiþN1ð Þ;N xNiþN1þ1ð Þ; � � � ;N xNð Þð ÞT :

The RBF interpolation matrix can be of the form

A ¼
<fUg
B1 Uf g
B2 Uf g

2

4

3

5; ð3:4Þ

where U ¼ Uij

� �
¼ / jjxi � xjjj2

� �� �
. The Kansa method has been successfully

applied to various physical and engineering problems, such as fractional diffusion
problems [20], radiative transport problems [21], combustion problems [22],
electromagnetic problems [23], electrostatic problems [24], heat conduction
analysis [25], moving boundary problems [26], plate and shell analysis [27–32],
fluid flow problems [33], Stefan problems [34, 35], microelectromechanical sys-
tem analysis [36], groundwater contaminant transport [37], convection–diffusion
problems [38–40]. However, the Kansa method produces unsymmetric interpola-
tion matrix, and the rigorous mathematical proof of its solvability is still not
available [41]. In addition, the method suffers relatively lower accuracy in
boundary-adjacent region.

3.2 The Hermite Collocation Method

To make a symmetric RBF interpolation matrix, Fasshauer [3] applies the operator
<� and B�1;B

�
2 on both sides of the governing equation and the boundary conditions

in Eq. (3.1), respectively, where <� and B�1;B
�
2 are the self-adjoint operators of <

and B1;B2. We call this modified version of the Kansa method as the Hermite
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collocation method (HCM). The HCM interpolation representation for Eq. (3.1) is
given by

~u xð Þ ¼
XNi

j¼1

aj<�/ jjx� xjjj2
� �

þ
XNiþN1

j¼Niþ1

ajB
�
1/ jjx� xjjj2
� �

þ
XN

j¼NiþN1þ1

ajB
�
2/ jjx� xjjj2
� �

: ð3:5Þ

Its interpolation matrix is expressed as

A ¼
<<� Uf g <B�1 Uf g �

2 Uf g
B1<� Uf g B1B�1U B1B�2 Uf g
B2<� Uf g B2B�1 Uf g B2B�2 Uf g

2

4

3

5: ð3:6Þ

It is worth noting that the matrix A is symmetric. Hence the numerical dis-
cretization equations are always solvable. The HCM is applied to 2D elastostatic
[42], time-dependent [43–46], and nonlinear plate problems [47].

3.3 The Modified Kansa Method

In order to reduce the loss of accuracy near the boundary-adjacent region, Fedoseye
et al. [4] propose the PDE collocation on the boundary (PDECB), which requires an
additional set of nodes inside or outside of the physical domain yet adjacent to the
boundary. It is not a trivial task to optimally place these fictitious boundary nodes
for the best numerical accuracy and stability. Larsson [48] investigated and com-
pared the numerical accuracy of the Kansa method, the HCM, and the PDECB in
the context of the RBF shape parameter and the distribution of nodes.

Zhang et al. [49] also proposed a Hermite-type method to improve the numerical
accuracy of 2D elasticity problems, which collocates both governing equations and
boundary conditions on the same boundary nodes. However, the method is un-
symmetric for mixed boundary problems and lacks the theoretical support.

Based on the Green second identity, Chen [50] developed a symmetric Hermite
formulation, called the modified Kansa method (MKM). As mentioned in Sect. 2.3,
the Green second identity leads to the following solution of a PDE problem

~u xð Þ ¼
Z

X
f sð Þu� x; sð ÞdX sð Þ þ

Z

C
u
ou� x; sð Þ

on sð Þ �
ou

on sð Þ u
� x; sð Þ

� �
dC sð Þ; ð3:7Þ

where u� represents the fundamental solutions of differential operator <. If a
numerical integral scheme is employed to discretize Eq. (3.7), we have

~u xð Þ ¼
XN

j¼1

w x; xj

� �
f xj

� �
u� þ

XN

j¼Niþ1

Q x; xj

� �
u
ou�

on
� ou

on
u�

� �
; ð3:8Þ
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where w x; xj

� �
and Q x; xj

� �
denote the weighting functions dependent on the

integral schemes. Perceiving the RBF as an approximate Green function, we can
restate the representation (3.8) to construct the following interpolation formula:

~u xð Þ ¼
XN

j¼1

aj<�/ jjx� xjjj2
� �

þ
XNiþN1

j¼Niþ1

ajþN1þN2 B�1/ jjx� xjjj2
� �

;

þ
XN

j¼NiþN1þ1

ajþN1þN2 B�2/ jjx� xjjj2
� �

ð3:9Þ

where N1;N2 and N are defined as in Sect. 3.1. Note that the boundary nodes here
are used twice to satisfy both the governing equation and boundary conditions. On
the other hand, the MKM interpolation matrix inherits the symmetrical property of
the HCM. It is noted that the MKM differs from the PDECB in that it no longer
requires auxiliary boundary nodes and is derived naturally from the Green second
identity. Consequently, theoretical and operational ambiguities in the PDECB are
eliminated. At the end of this chapter, some numerical experiments will be
presented to compare the MKM with the Kansa method and the HCM.

3.4 The Method of Particular Solutions

This section introduces the method of particular solutions (MPS). The PDE
splitting approach [51] considers the solution u of Eq. (3.1) a sum of homogeneous
solution uh and particular solutions up

u ¼ uh þ up: ð3:10Þ

Note that the particular solution up satisfies

< up

� 	
¼ f xð Þ; x 2 X; ð3:11Þ

but does not necessarily satisfy boundary conditions. In contrast, the homogeneous
solution has to satisfy not only the corresponding homogeneous equation

< uhf g ¼ 0; x 2 X; ð3:12Þ

but also the updated boundary conditions

uh xð Þ ¼ R xð Þ � up xð Þ; x 2 C1; ð3:13Þ

ouh xð Þ
on

¼ N xð Þ � oup xð Þ
on

; x 2 C2: ð3:14Þ

From Eqs. (3.10–3.14), it can be found that the nonhomogeneous problem is
reduced to a homogeneous problem after the particular solution up is separately
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obtained from Eq. (3.11). One can use the RBFs or some other basis functions [52]
to evaluate the particular solution. In this study, we only consider the RBF
methods.

Let fxjgNk
j¼1 2 X. We first approximate f xð Þ by a finite expansion series

f xð Þ � f̂ xð Þ ¼
XNk

j¼1

aj/ rj

� �
; ð3:15Þ

where fajg are the unknown coefficients to be determined, and rj ¼ x� xj



 


denotes the Euclidean distance between each pair of points x and xj. Then,

f xið Þ ¼ f̂ xið Þ ¼
XNk

j¼1

aj/ rij

� �
; 1� i�Nk: ð3:16Þ

Assuming fajg can uniquely be solved, the approximate particular solution ûp

of Eq. (3.11) is given by

ûp ¼
XNk

j¼1

ajU rj

� �
; ð3:17Þ

where

/ rj

� �
¼ < U rj

� �� 	
: ð3:18Þ

The above evaluation procedure for the particular solution is called reverse
differentiation process, which is introduced in Chap. 2, since the basis functions
U rð Þ in Eq. (3.17) are derived from Eq. (3.18) indirectly [5, 53, 54]. Some par-
ticular solutions U rð Þ are presented in Sect. 2.2.4.

Another technique is called the direct differentiation approach and utilizes a
traditional RBF U rð Þ in Eq. (3.17) as the basis function. Then / rð Þ in Eq. (3.15)
can be easily derived from Eq. (3.18) by a differentiation process. This scheme is
easy to implement, however, / rð Þ may not be positive definite or conditionally
positive definite RBFs to guarantee the invertibility of the resultant matrix in
Eq. (3.16).

By implementing one of the above two approaches, evaluating particular
solution up is reduced to a function interpolation problem. Giving Nk nonhomo-

geneous function values f xj

� �� 	
at all the collocation knots xj

� 	Nk

j¼1, the unknown

coefficients fajg can be determined by using formula (3.16) and then the particular
solution up is obtained via the expression (3.17). After the particular solution is
obtained, the homogeneous solution uh can be approximated by

uh � ûh ¼
XN1þN2

i¼1

bi/h rið Þ ð3:19Þ
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where fbig are the unknown coefficients, N1;N2 are, respectively, the number of
the collocation knots on C1 and C2, /h rj

� �
represents the fundamental solution,

RBF general solution, or harmonic function of the homogeneous governing
equation in Eq. (3.12). For more details of these functions satisfying homogeneous
equation, please see Sect. 2.2.1–2.2.3. Then, substituting Eq. (3.19) into boundary
condition in Eqs. (3.13) and (3.14), the unknown coefficients fbig can be deter-
mined and the approximate homogeneous solution ûh can be calculated via
Eq. (3.19). Finally, the solution of the original PDE can be obtained by using
Eq. (3.10). The above solution procedure is commonly called the two-stage MPS.

More recently, Chen et al. [5, 6] presented one-stage MPS to combine the
particular and homogeneous solutions together in a one-step process for solving
PDEs. This one-stage MPS interpolation formula is given by

~u xð Þ ¼
XNk

j¼1

ajU rj

� �
þ
XN1þN2

i¼1

bi/h rið Þ ð3:20Þ

It should be mentioned that the MPS solution procedure is equivalent to the
boundary-type RBF collocation methods in conjunction with dual reciprocity
method (DRM). However, the MPS conducts the whole domain discretization to
evaluate the particular solutions and is considered a special kind of domain-type
RBF collocation method.

3.5 The Method of Approximate Particular Solutions

Recently, Chen et al. [5, 7] proposed the method of approximate particular solu-
tions (MAPS) to improve the MPS by omitting the homogeneous solution part.
The MAPS approximate solution û of Eq. (3.1) is represented by

û xð Þ ¼
XNk

j¼1

ajU rj

� �
: ð3:21Þ

It is worth noting that the MAPS representation (3.21) appears similar to
Eq. (3.2) in the Kansa method. The major distinction between the MAPS and the
Kansa method is that the MAPS uses the corresponding derived particular solution
RBF by reverse differentiation process. Thus, the MAPS may have more sound
mathematical foundation. Some numerical experiments demonstrate that the
MAPS outperforms the Kansa method in both stability and accuracy, particularly
in the evaluation of partial derivatives.

However, if the governing differential operator < is complicated, it is difficult
to find the integral-derived particular solutions U rð Þ of Eq. (3.18). To implement
the MAPS, we rewrite Eq. (3.1) as

<0 uf g ¼ f xð Þ þ <0 � <ð Þ uf g; x 2 X; ð3:22Þ
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where <0 is a simpler differential operator, and the corresponding formula

<0U rð Þ ¼ / rð Þ; ð3:23Þ

has the known particular solution U rð Þ for the RBF / rð Þ. This approach allows the
MAPS to solve a broad types of linear and nonlinear PDEs [55].

3.6 Localized RBF Methods

In the previous sections, the RBF numerical solution of a PDE of interest is
interpolated by all the collocation points in the whole physical domain and
boundary. Such methods are called global approximation. As a result, the resultant
matrices are fully populated and thus ill-conditioned. This leads to unstable
computation. In addition, the dense matrix equation is also computationally very
expensive to solve. These RBF collocation methods are not applicable for large-
scale problems.

In recent decades, several techniques have been developed to overcome the
above-mentioned difficulties. The singular value decomposition (SVD) [56] per-
forms well to regularize the ill-conditioning of the moderate-size RBF dense
interpolation matrix [57–59]. Alternatively, one could also utilize the multi-grid
approach [60], the greedy algorithm [61, 62], the extended precision arithmetic
[63]. If a large number of interpolation points are required, the fast matrix com-
putational algorithms have been introduced in the RBF collocation methods to
significantly reduce computing costs and ill-conditioning, such as preconditioning
methods [64, 65], Fast Multipole Methods (FMM) [66, 67], H-matrix [68],
Domain Decomposition Method (DDM) [69–74], pre-corrected Fast Fourier
Transform (pFFT) [75], and Adaptive Cross Approximation (ACA) [76].

Different from the above-mentioned methodologies and inspired by the idea of
CS-RBFs, a number of localized RBF methods [8–18] have been proposed to
alleviate the ill-conditioning of the resultant matrix, costly dense matrix of the
RBF interpolation, and the uncertainty of the selection of the optimal shape
parameter.

Consider the elliptical PDE (3.1) again and let xsf gN
s¼12 X, the solution u xð Þ

can be approximated by a localized formulation as follows:

~u xsð Þ ¼
Xn

j¼1

as
j/ jjxs � xs

j jj2
� ffi

; ð3:24Þ

where n is the number of nearest neighboring points xs
j

n on

j¼1
surrounding collo-

cation point xs, including the collocation point itself. as
j

n o
are the unknown

coefficients to be determined, / xð Þ is an RBF. If all the collocation points are
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distinct, it can be proved that the RBF interpolation matrix U ¼ / jjxs
i � xs

j jj2
� ffi� ffi

is nonsingular if / xð Þ is a positive definite RBF. Hence, the unknown coefficients
in Eq. (3.24) have the following matrix form:

as ¼ U�1us; ð3:25Þ

where as ¼ as
1; . . .; as

n

� �T
, us ¼ u xs

1

� �
; � � � ; u xs

n

� �� �T
. Then the approximate solu-

tion ~u xsð Þ can be rewritten in terms of the given nodal values u xs
j

� ffi
at its n-nearest

neighboring points

~us ¼ Usas ¼ UsU�1us ¼ Wsus; ð3:26Þ

where Us ¼ / jjxs � xs
j jj2

� ffi� ffi
and Ws ¼ UsU�1 ¼ ws

j

n o
.

It stresses to point out that the number of selected nearest neighboring points for
a specified collocation point is far smaller than the total number of collocation
points, namely, n� N. If we rewrite Eq. (3.26) in terms of the approximate
solution ~u xj

� �
at all of the collocation points, it has

~us ¼ Wu; ð3:27Þ

where W is a N 	 N sparse matrix only having N 	 n nonzero elements. Substi-
tuting Eq. (3.27) into Eq. (3.1) yields

<W
B1W
B2W

2

4

3

5~u ¼ b½ 
: ð3:28Þ

Then, solving the above linear sparse system of equations, we get the
approximate solutions ~u at all of the collocation points. Comparing with the
aforementioned global RBF collocation schemes, a wide variety of efficient sparse
matrix solvers can be utilized to solve the localized RBF formulation of very large
scale in a far more efficient manner.

Concerning the localized RBF methods, an important issue is an efficient
algorithm to search the nearest neighboring source points surrounding a given
collocation point from a large number of collocation points in a high-dimensional
space. Lee et al. [15] defined an influence domain for each collocation point as the
cut-off function, and then the nearest n neighbors of a given collocation point are
located inside this influence domain. Chen and Yao [16, 17] employed the kd-tree
algorithm [77, 78] for the method of approximate particular solutions (MAPS) to
solve large-scale problems, for example, calcium dynamics in ventricular
myocytes [79]. In computer science, there exist several other search algorithms to
deal with this issue such as the quad-tree algorithm, the locality sensitive hashing
algorithm [80], and the R-tree algorithm [81].

For reasons of limitations of space, we will only mention a few more RBF
domain methods for numerical PDEs, such as the radial basis function network
method [82, 83], global and local integrated radial basis function collocation
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method [84, 85], the MQ quasi-interpolation method [86], the local MQ-DQ
method [87–89], the RBF-FD method [90–93], the RBF pseudo-spectral method
[94], and the radial point interpolation method [95, 96], the Hermite-type radial
point interpolation method [97], and the subdomain RBF collocation method [98].

3.7 Numerical Experiments

In this section, we first investigate the accuracy, stability, and convergence rate of
the Kansa method, the Hermite collocation method (HCM), and the modified
Kansa method (MKM) for some benchmark examples. In the following, Aerr
represents the L2 absolute error, Lerr represents the L2 relative error, which are
defined as follows:

Aerr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NT

XNT

i¼1

u xið Þ � ~u xið Þð Þ2
vuut ; ð3:29Þ

Lerr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NT

XNT

i¼1

u xið Þ � ~u xið Þ
u xið Þ

� �2
vuut ; ð3:30Þ

where NT is the total number of test points in the domain and on the boundary. In
the following tests, the MQ-RBF / rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p

is chosen as the basis function.
First, we compare the convergence rate and stability of the three schemes in the

unit square domain. Figure 3.1 shows the mixed-type boundary conditions covered
by uniform and random collocation points, respectively. In this case, the MQ shape
parameter c ¼ 16

� ffiffiffiffi
N
p

is selected and the test point is 51	 51 uniform mesh grid,
namely, NT ¼ 2; 601.

Example 3.1: Consider the 2D Poisson equation in the unit square domain shown
in Fig. 3.1

Du ¼ 3þ 4x2
� �

ex2þy; x ¼ x; yð Þ 2 X; ð3:31Þ

whose boundary conditions are assigned in terms of the analytical solution

u ¼ ex2þy. C1 and C2 shown in Fig. 3.1 denote Dirichlet and Neumann boundary
conditions, respectively.

Figure 3.2 depicts the accuracy variation of these three methods with respect to
the number of uniform and random collocation points. In all three methods, the
numerical accuracy improved with the increasing number of collocation points
N. We observe that the HCM numerical result is as accurate as the Kansa method.
The MKM performs much better than both the Kansa method and the HCM using
the same number of collocation points. Figure 3.3 shows the condition number
Cond of the interpolation matrix A ¼ Aij

� �
of the three methods verses the number
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Fig. 3.1 Mixed-type boundary problem in square domain with (a) uniform and (b) random
collocation points

Fig. 3.2 Convergence rates with (a) uniform and (b) random collocation points in Example 3.1

Fig. 3.3 Condition numbers with (a) uniform and (b) random collocation points in Example 3.1
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of collocation points N. We can see that all the condition numbers of these three
methods increase rapidly when N becomes large.

Example 3.2: Consider the following 2D modified Helmholtz equation in multi-
connected domain shown in Fig. 3.4

D� 2ð Þu ¼ 2� 4xð Þe� xþyð Þ; x ¼ x; yð Þ 2 X: ð3:32Þ

The mixed-type boundary conditions can be easily derived from the analytical
solution u ¼ x2e� xþyð Þ, where C1 and C2 shown in Fig. 3.4 denote Dirichlet and
Neumann boundary conditions, respectively. In the numerical implementation, we
choose MQ shape parameter c ¼ 12

� ffiffiffiffi
N
p

and NT ¼ 1; 510.
Figure 3.5 displays the convergence rates and condition number curves by these

three schemes. Both the Kansa method and the HCM produce similar results.
Although having the largest condition number, the MKM performs the most
accurate solutions among these three schemes. The numerical accuracy of the
MKM is almost one order of magnitude better than the other two schemes.
Figure 3.6 shows the profile of the analytical solution and relative errors by these
three RBF schemes. Figure 3.6b–d illustrates that the errors are smaller on the
boundary and the maximum error appears in the boundary-adjacent region.
Compared with the other two methods, it can be observed from Fig. 3.6 that the
MKM obtains better accuracy at close-to-boundary nodes by almost one order of
magnitude.

Example 3.3: Plate bending of the simply-supported unit square plate

The governing equation of a simply-supported thin plate under uniform loading is

r4w ¼ q0

D
; ð3:33Þ

Fig. 3.4 The profile of the
multi-connected domain
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Fig. 3.5 (a) Accuracy and (b) condition numbers versus collocation points N in Example 3.2

Fig. 3.6 (a) The profile of analytical solution. (b–d) The relative numerical errors of Kansa,
HCM, and MKM, respectively
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with boundary conditions

w ¼ 0; ð3:34Þ

Mn ¼ �D mr2wþ 1� mð Þ cos2 h
o2w

ox2
þ sin2 h

o2w

oy2
þ sin 2h

o2w

oxoy

� �� �
¼ 0;

ð3:35Þ

where w represents the deflection of the middle surface of the plate,r4 denotes the
biharmonic operator, and D ¼ Eh3

�
12 1� m2ð Þ½ 
 is the flexural rigidity of the plate,

n ¼ cos h; sin h½ 
 the unit outward normal vector. The parameter values are
E ¼ 2:1	 1011, h ¼ 0:01, m ¼ 0:3, q0 ¼ 106. We choose MQ-RBF with shape
parameter c ¼ 40=Ni. This case study will also investigate convergence rate and
stability.

Numerical accuracy variation of these three methods with respect to the number
of unknown coefficients is shown in Fig. 3.7a. The numerical accuracy improves
with the increasing number of points. We observe from Fig. 3.7a that the HCM
achieves similar accuracy as the Kansa method, but eliminates the error oscillation
with the increasing number of points. It is noted that the MKM obtains the most
accurate results among these three methods. On the other hand, the condition
numbers of interpolation matrixes increase rapidly with the increasing number of
points. This ill-conditioning problem may affect the numerical stability of these
RBF collocation methods. It is necessary to introduce the additional techniques to
mitigate the effect of ill-conditioning as mentioned in Sect. 3.5.

Fig. 3.7 (a) Numerical accuracy variations and (b) condition numbers versus the number of
unknown coefficients in Example 3.3
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Example 3.4: This example compares the method of approximate particular
solutions (MAPS) with the Kansa method of a 2D convection–diffusion problem

Duþ x2 þ y2
� �

uþ y cos yð Þ ou

ox
þ sin h xð Þ ou

ox
¼ f x; yð Þ; x; yð Þ 2 X; ð3:36Þ

u ¼ R x; yð Þ; x; yð Þ 2 C; ð3:37Þ

where the physical domain X is a star-shaped region as shown in Fig. 3.8 and its
boundary is defined by the following parametric equation:

C ¼ x; yð Þ x ¼ q cos h; y ¼ q sin h; 0� h\2pjf g; ð3:38Þ

in which q ¼ 1þ cos 4hð Þð Þ2. The given functions f x; yð Þ;R x; yð Þ are easily
derived from the following analytical solution

u x; yð Þ ¼ sin pxð Þ cosh yð Þ � cos pxð Þ sinh yð Þ: ð3:39Þ

Tsai et al. [99] employed a golden search method to find the good shape
parameter c in the MQ RBF. Table 3.1 shows the comparison of the absolute
errors Aerr by the MAPS and the Kansa method. The MAPS achieves the similar
accuracy as the Kansa method using the same placement of the collocation points.

Example 3.5: Let us consider the localized RBF formulations in the solution of
the following Poisson problem:

Du ¼ f x; yð Þ; x; yð Þ 2 X
u ¼ R x; yð Þ; x; yð Þ 2 oX

; ð3:40Þ

Fig. 3.8 Profiles of
computational domain of
Example 3.4 (Reprinted from
Ref. [99], Copyright 2012,
with permission from
Elsevier)
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where the physical domain X is a rectangular 0; 1½ 
 	 0;H½ 
. The given functions
f x; yð Þ;R x; yð Þ are given based on the following analytical solution:

u x; yð Þ ¼ 1:25þ cos 5:4yþ 2:7ð Þ
6 1þ 3xþ 0:5ð Þ2
� ffi ð3:41Þ

In the numerical implementation, all the interior and boundary points are dis-
tributed uniformly. The number of internal nodes is N ¼ S2

n H � 1ð Þ þ Sn � 1ð ÞH,
and the number of boundary nodes is Ni ¼ 2 Sn � 1ð Þ H þ 1ð Þ. n is the number of
nearest neighbor points, and Sn denotes the number of partition in [0,1]. Table 3.2
lists numerical results obtained by the Localized Kansa method (LKM) and the
Localized MAPS (LMAPS) using various number of nearest neighbor points and
H ¼ 20; Sn ¼ 25. We observe that the LKM and the LMAPS have similar accu-
racy with the optimal shape parameter in Table 3.2. As n increases, the accuracy of
the localized RBF formulations improves while the computational efficiency
decreases. Therefore, n ¼ 9 is fixed to apply the localized formulations to the
large-scale problems with millions of points. Table 3.3 shows numerical errors of
the LKM and the LMAPS with various values H for n ¼ 9; Sn ¼ 30. It should be
mentioned that 30	 30 uniform nodes are distributed inside
0; 1½ 
 	 i� 1; i½ 
; i ¼ 1; � � � ;H. Since the same collocation nodes in each square
0; 1½ 
 	 i� 1; i½ 
 are used, the optimal shape parameter c is stable and independent

on H. From Table 3.3, it can be found that the localized methods can solve the
problem with 900,000 interpolation points and obtain good accuracy. In Fig. 3.9
we present the errors Aerr with respect to the shape parameter c by the global
MAPS (GMAPS) and the LMAPS with n ¼ 9; Sn ¼ 10;H ¼ 1. In Fig. 3.9 the
shape parameter c in the LMAPS is more stable than the GMAPS. Hence the

Table 3.1 Comparison of Aerr by the MAPS and the Kansa method for Example 3.4

N Ni MAPS Kansa

Aerr Optimal c Aerr Optimal c

213 113 1.68e-4 2.45 1.08e-4 2.94
313 193 4.74e-5 1.48 2.47e-5 2.17
401 261 2.48e-5 1.34 1.35e-5 1.89

Table 3.2 Numerical results obtained by Localized Kansa and Localized MAPS with various
number of nearest neighbor points using Sn ¼ 25;H ¼ 20 for Example 3.5

n Localized MAPS Localized Kansa (MQ)

Aerr Optimal c Aerr Optimal c

7 9.46e-5 9.3 5.87e-5 0.8
9 5.88e-5 5.3 8.34e-5 0.5
11 1.10e-4 2.4 8.29e-5 0.4
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LMAPS alleviates the difficulty of choosing the shape parameter c in the tradi-
tional RBF approaches. In this example it also reveals that the localized RBF
formulation can provide highly accurate results for large-scale problems.
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Chapter 4
Boundary-Type RBF Collocation Methods

Abstract The mesh generation in the standard BEM is still not trivial as one may
imagine, especially for high-dimensional moving boundary problems. To over-
come this difficulty, the boundary-type RBF collocation methods have been pro-
posed and endured a fast development in the recent decade thanks to being
integration-free, spectral convergence, easy-to-use, and inherently truly meshless.
First, this chapter introduces the basic concepts of the method of fundamental
solutions (MFS). Then a few recent boundary-type RBF collocation schemes are
presented to tackle the issue of the fictitious boundary in the MFS, such as
boundary knot method (BKM), regularized meshless method, and singular
boundary method. Following this, an improved multiple reciprocity method
(MRM), the recursive composite MRM (RC-MRM), is introduced to establish a
boundary-only discretization of nonhomogeneous problems. Finally, numerical
demonstrations show the convergence rate and stability of these boundary-type
RBF collocation methods for several benchmark examples.

Keywords Meshless � Integration-free � Collocation � Fundamental solutions �
Singularity � Method of fundamental solutions � Boundary knot method � Regu-
larized meshless method � Singular boundary method � Boundary particle method

During the past two decades we have witnessed a research boom on the boundary-
type meshless techniques since the construction of a mesh in the standard BEM is
not trivial. Among the typical techniques are the boundary node method, the local
boundary integral equation method, the boundary cloud method, the boundary
point method, the boundary point interpolation method (BPIM), and the method of
fundamental solutions (MFS). The essence of all these techniques, excluding the
MFS and BPIM, is basically a combination of the moving least square (MLS)
technique with various boundary element schemes, whereas the MFS is a
boundary-type RBF collocation scheme.

Such MLS-based methods involve singular integration and are mathematically
complicated, and their low-order approximations also depress computational
efficiency. The numerical integration requires a background mesh, and thus the
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methods of this type are not truly meshless. In addition, accurate numerical
integration of kernel transcendental functions is computationally very expensive.

In contrast, the boundary-type RBF collocation methods are integration-free,
spectral convergence, easy-to-use, and inherently truly meshless. This chapter is
aimed at a survey of the latest advances regarding these numerical schemes. The
MFS [1] is a popular boundary-type RBF collocation method in the past two
decades, which distributes the source nodes on fictitious boundary outside the
physical domain to avoid the singularities of fundamental solutions. However,
such a fictitious boundary is often arbitrary and hinders its practical applicability.
In the case of complex-shaped boundary and multiple connected domain problems,
a tricky placement of source knots in terms of boundary conditions and geometry
is required and often leads to severe ill-conditioning of the resulting interpolation
matrix and even failure of numerical solution.

The boundary knot method (BKM) [2] was proposed as an alternative bound-
ary-type RBF collocation method to overcome the artificial boundary issue in the
MFS, in which the nonsingular RBF general solutions are employed to replace the
singular fundamental solutions. However, the BKM encounters severely ill-con-
ditioned interpolation matrix as the MFS and cannot apply to the problems whose
general solutions do not exist. Young et al. [3–5] proposed an alternative meshless
method, namely the regularized meshless method (RMM), to remedy this draw-
back of the MFS. By employing the desingularization of subtracting and adding-
back technique, the RMM can place the source points on the real physical
boundary. In addition, the ill-conditioned interpolation matrix of the MFS is also
circumvented in the RMM. However, the original RMM requires the uniform
distribution of nodes and severely reduces its applicability to complex-shaped
boundary problems. Similar to the RMM, Sarler [6] proposes the modified method
of fundamental solutions (MMFS) to solve potential flow problems. However, the
MMFS demands a complicate calculation of the diagonal elements of interpolation
matrix. Recently, Chen and his research group [7, 8] introduced an inverse
interpolation technique (IIT) to regularize the singularities of the fundamental
solutions upon the coincidence of the source and collocation points, which named
as origin intensity factors or source intensity factors, and then proposed a novel
improved RBF formulation, the singular boundary method (SBM). This method
has better accuracy than the RMM and the MMFS. Recently, some analytical
formulas were also derived to accurately calculate the origin intensity factors of
the SBM.

For nonhomogeneous problems, the boundary-type RBF collocation methods
should be combined with an additional technique to evaluate the particular solu-
tion. The dual reciprocity method (DRM) [9] and multiple reciprocity method
(MRM) [10] have emerged as two promising particular solution techniques. The
DRM has become de facto the method of choice in conjunction with boundary-
type RBF collocation methods to evaluate the particular solutions. However, it
requires the inner nodes to guarantee the convergence and stability in the calcu-
lation of the particular solution. The MRM has the advantage over the DRM in that
it does not demand using inner nodes at all. However, comparing to the DRM, the
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MRM has more restrictions in that the standard MRM is computationally much
more expensive in the construction of the different interpolation matrices by using
high-order fundamental or general solutions [11, 12] and has limited applicability
for general nonhomogeneous problems due to its conventional use of high-order
Laplacian operators in the annihilation process. To remedy this problem, an
improved MRM, the recursive composite multiple reciprocity method (RC-MRM)
[13], has been proposed to handle various nonhomogeneous terms in the governing
equation.

To clearly illustrate these approaches, without loss of generality, we consider
the following problem

<fug ¼ f ðxÞ; x 2 X � Rn; ð4:1Þ

uðxÞ ¼ RðxÞ; x 2 C1; ð4:2Þ

ouðxÞ
on
¼ N xð Þ; x 2 C2 ð4:3Þ

where < is a differential operator, X is a bounded and connected domain, C1 [
C2 ¼ oX; C1 \ C2 ¼ [ : f xð Þ;R xð Þ; and N xð Þ are known functions.

4.1 Homogeneous Problems

First we consider the homogeneous PDE, namely, Du ¼ 0 in (4.1). The governing
equation (4.1) becomes

< uf g ¼ 0; x 2 X: ð4:4Þ

For homogeneous problem (4.4), (4.2), and (4.3), the following section will
introduce several efficient and accurate boundary-type RBF collocation schemes
which attract growing attention and appear promising in some areas.

4.1.1 The Method of Fundamental Solutions

The MFS was first proposed by Kupradze and Aleksidze [1] which is also known
as the regular BEM, the superposition method [14], desingularized method [15],
and the charge simulation method [16], to name just a few.

Since the MFS utilizes the fundamental solutions /FðxÞ which satisfy the
governing differential equation of interest, the approximate solution ~uðxÞ can be
expressed only in terms of boundary knots
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u xð Þ � ~u xð Þ ¼
XN

j¼1

aj/F x� sj

�� ��
2

� �
; x 2 X; ð4:5Þ

where ~uðxÞ is the approximate solution, sj

� �N

j¼1 are the source points located on the
fictitious boundary outside the domain to avoid the singularities of the fundamental

solutions, fajg the unknown coefficients to be determined. Let xj

� �N1

j¼12
C1; xj

� �N1þN2þ1
j¼N1þ1 2 C2 be the collocation knots on the physical boundary oX. A list

of commonly used fundamental solutions is shown in Sect. 2.3.1. By the collo-
cation method, we have

R xið Þ ¼
XN

j¼1

aj/Fð xi � sj

�� ��
2
Þ; i ¼ 1; 2; � � � ;N1;

N xið Þ ¼
XN

j¼1

aj
o

on
/Fð xi � sj

�� ��
2
Þ; i ¼ N1 þ 1;N1 þ 2; � � � ;N:

ð4:6Þ

The MFS interpolation matrix can be of the following form

A ¼ UF
o
on UF

� �
; ð4:7Þ

where UF ¼ /F xi � sj

�� ��
2

� �� �

1� i;j�N
.

The MFS is a simple and efficient scheme and has been widely applied to
various engineering and science problems, such as heat conduction [17–19],
acoustics [20, 21], diffusion–reaction [22, 23], axisymmetric elasticity [24], stokes
problem [25–28], and free vibration [29–31], just to mention a few. Furthermore,
Smyrlis and Karageorghis [32–36], Drombosky [37], Marin [38], and Lin et al.
[39] presented some fundamental theoretical analysis about the MFS. More details
about the MFS can be found from an excellent review report by Fairweather and
Karageorghis [40, 41], and editorial book by Liu [42] and Chen et al. [6].

4.1.2 The Boundary Knot Method

Despite the great effort of past several decades, the placement of the fictitious
boundary outside the physical domain in the MFS remains a perplexing issue when
one deals with complex-shaped boundary or multiconnected domain problems. It
is noted that the location of the fictitious boundary is vital to the accuracy of the
MFS solution. Therefore, great attention is paid to the placement of fictitious
boundary or simple eliminations.

The BKM, proposed by Chen [2], surpasses the MFS in that it employs the
nonsingular RBF general solutions instead of the singular fundamental solutions
and thus no longer requires the troublesome fictitious boundary. Namely, the BKM
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places both source and collocation knots on the physical boundary. The BKM
interpolation formula can be written as follows

~u xð Þ ¼
XN

j¼1

aj/G x� xj

�� ��
2

� �
; x 2 X; ð4:8Þ

where /GðxÞ is RBF general solutions satisfying the governing equation. Let xj

� �

be the N collocation knots on the physical boundary C ¼ oX. The BKM differs
from the MFS in that nonsingular RBF general solutions are employed to replace
singular fundamental solutions as the interpolation basis functions and thus avoids
the fictitious boundary at all. The BKM keeps all the features of the MFS which
are meshless, integration-free, and easy-to-use. Chen [43] also proposed a sym-
metrical BKM as follows

~u xð Þ ¼
XN1

j¼1

aj/G x� xj

�� ��
2

� �
�
XN

j¼N1þ1

aj

o/G x� xj

�� ��
2

� �

on
: ð4:9Þ

The above formulation will result in a symmetric BKM interpolation matrix for
self-adjoint equation problems with mixed boundary conditions. The BKM has
been applied to various problems such as Helmholtz [44], convection–diffusion
[45, 46], membrane vibration [47], plate vibration [48]. The key issue in the BKM
is to construct the nonsingular RBF general solutions satisfying the governing
equation, which has been discussed in Sect. 2.3.2. It should be mentioned that the
nonsingular RBF general solutions are not available in some cases. For instance,
the Laplace equation has no suitable nonsingular RBF general solution. As a result,
some remedies have been proposed, such as the translate-invariant 2D harmonic
functions by Hon and Wu [49] and the nonsingular general solutions of Helmholtz-
like equations by Chen et al. [3].

4.1.3 The Regularized Meshless Method

It is a difficult task to find efficient RBF nonsingular general solutions for certain
PDEs. Another strategy is to remain using the singular fundamental solution
without the fictitious boundary. Young et al. [3–5] proposed an alternative RBF
collocation meshless method, called RMM. The method uses the outward normal
derivative of fundamental solutions o/F=ons at source points sj

� �
as the inter-

polation basis functions, also called double-layer potentials in the MFS literatures
[3–5]. Similar to the MFS and BKM, the corresponding approximate formulations
can be expressed by
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~u xð Þ ¼
XN

j¼1

aj

o/F x� sj

�� ��
2

� �

ons
; x 2 X; ð4:10Þ

~q xð Þ ¼ o~u xð Þ
on
¼
XN

j¼1

aj
o

on

o/F x� sj

�� ��
2

� �

ons

0

@

1

A; x 2 X; ð4:11Þ

where ns denotes the unit outward normal at source point sj

� �
on the boundary.

As an example, we consider the potential problem. The differential operator in
Eq. (4.4) is the Laplace operator D, and its 2D fundamental solution is ln rij

	 

.

Then the corresponding kernel functions in Eqs. (4.10) and (4.11) can be repre-
sented as follows

M xi � sj

�� ��
2

� �
¼

o/F xi � sj

�� ��
2

� �

ons
¼ �

xi � sj

	 

; nsð Þj

D E

r2
i j

; ð4:12Þ

T xi � sj

�� ��
2

� �
¼ o

on

o/F xi � sj

�� ��
2

� �

ons

0

@

1

A

¼
2 xi � sj

	 

; nsð Þj

D E
xi � sj

	 

; nð Þi

� ffi

r4
i j

�
nsð Þj nð ÞTi

r2
i j

;

ð4:13Þ

where the notation �; �h i denotes the inner product of vectors. Apparently, when
the collocation point xi approaches the source point sj, Eqs. (4.12) and (4.13) tend
to be singular and even hyper-singular. By subtracting and adding-back regulari-
zation technique, the following null-field integral equations can be employed to
remove the singularities in Eqs. (4.12) and (4.13)

Z

C

M Eð Þ x
Eð Þ

i ; s
� �

dC sð Þ ¼ 0; x
Eð Þ

i 2 D Eð Þ; ð4:14Þ

Z

C

T Eð Þ x
Eð Þ

i ; s
� �

dC sð Þ ¼ 0; x
Eð Þ

i 2 D Eð Þ; ð4:15Þ

where the superscript ðEÞ denotes the exterior domain. When the point x
ðEÞ
i

approaches the collocation point xi, Eqs. (4.14) and (4.15) can be discretized as
follows

XN

j¼1

MðEÞ xi; sj

	 

lj

  ¼ 0; xi 2 oD; ð4:16Þ
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XN

j¼1

TðEÞ xi; sj

	 

lj

  ¼ 0; xi 2 oD; ð4:17Þ

where lj
  is the distance between points sj�1=2 and sjþ1=2 defined in Ref. [11].

sj�1=2 denotes the midpoint of sj�1 and sj on boundary C, while sjþ1=2 represents
the midpoint in between sj and sjþ1 on boundary C.

In terms of the dependency of the normal vectors on inner and outer boundaries
[3], the relationships of the double-layer kernel functions in interior and exterior
problems can be given by

MðIÞ xi; sj

	 

¼ �MðEÞ xi; sj

	 

; i 6¼ j

MðIÞ xi; sj

	 

¼ MðEÞ xi; sj

	 

; i ¼ j;

�
ð4:18Þ

TðIÞ xi; sj

	 

¼ T ðEÞ xi; sj

	 

; for any i; j; ð4:19Þ

where the superscript ðIÞ denotes the interior domain. When the distribution of
source nodes is uniformly distributed, we can obtain the diagonal elements of the
interpolation matrix, which are originally singular or hyper-singular, via
Eqs. (4.16)–(4.19) by the desingularization of subtracting and adding-back tech-
nique [3]

MðIÞðxi; siÞ ¼
XN

j¼1;j 6¼i

MðIÞðxi; sjÞ; ð4:20Þ

TðIÞ xi; sið Þ ¼ �
XN

j¼1;j 6¼i

T ðIÞ xi; sj

	 

; ð4:21Þ

for interior problems and

MðEÞ xi; sið Þ ¼ �
XN

j¼1;j6¼i

MðEÞ xi; sj

	 

; ð4:22Þ

TðEÞ xi; sið Þ ¼ �
XN

j¼1;j 6¼i

T ðEÞ xi; sj

	 

; ð4:23Þ

for exterior problems.
However, it is not an easy task to generate uniformly distributed boundary knots

in 3D problems, especially with complex-shaped surface. To tackle this issue, the
weighted RMM [50] is proposed and the diagonal elements of interpolation matrix
for interior problems are given by

MðIÞ xi; sið Þ ¼ 1
lij j
XN

j¼1;j 6¼i

MðIÞ xi; sj

	 

lj

 ; ð4:24Þ
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T ðIÞ xi; sið Þ ¼ � 1
lij j
XN

j¼1;j 6¼i

TðIÞ xi; sj

	 

lj

 : ð4:25Þ

Similarly, we can obtain the following diagonal elements for exterior problems
[51]

MðEÞ xi; sið Þ ¼ � 1
lij j
XN

j¼1;j 6¼i

MðEÞ xi; sj

	 

lj
 ; ð4:26Þ

T ðEÞ xi; sið Þ ¼ � 1
lij j
XN

j¼1;j 6¼i

TðEÞ xi; sj

	 

lj

 : ð4:27Þ

It is worth noting that lj

  can be easily determined via the numerical integra-
tion. Upon regular domain problems with a uniform distribution of boundary
nodes, the weighted RMM is reduced to the traditional RMM. Thanks to the
desingularization of subtracting and adding-back technique, the RMM places the
source points on the real physical boundary to circumvent the fictitious boundary
of the MFS. In addition, the RMM also cures the ill-conditioned interpolation
matrix of the MFS and the BKM. The RMM has so far been applied to acoustic
eigenproblem [52], exterior acoustics [53], antiplane shear problem [54], and
antiplane piezoelectricity problem [55]. Similar to the RMM, Sarler [6] proposes
the MMFS to solve potential flow problems.

4.1.4 The Singular Boundary Method

Inspired by great success of the RMM, Chen and his collaborators [7, 8] intro-
duced a novel RBF boundary discretization formulation, called the singular
boundary method (SBM). Unlike the RMM, the SBM directly applies the funda-
mental solutions instead of double-layer potentials while it remedies the artificial
boundary problem in the MFS. The main idea in the SBM is to introduce the
concept of origin intensity factors to remove the singularities of fundamental
solutions upon the coincidence of the source and collocation points on physical
boundary. By now the two techniques have been developed to evaluate the origin
intensity factors. The first one is called the inverse interpolation technique (IIT)
[7, 8, 56–58], which numerically evaluates the origin intensity factors. The second
approach is to derive the analytical formula for calculating the origin intensity
factors [59–65].

The SBM allows placing all nodes on the physical boundary. The source points
fsjg and the collocation points fxig are usually the same set of boundary nodes.
The SBM formulation is given by
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u xið Þ ¼
XN

j¼1

aj/S xi; sj

	 

; ð4:28Þ

in which

/S xi; sj

	 

¼ /ii; xi ¼ sj; xi 2 C1 [ X

/F xi; sj

	 

; xi 6¼ sj; xi 2 C1 [ X

�
; ð4:29Þ

o/S xi; sj

	 


on
¼

�/ii; xi ¼ sj; xi 2 C2
o/F xi;sjð Þ

on ; xi 6¼ sj; xi 2 C2

(

; ð4:30Þ

where /ii and �/ii are defined as the origin intensity factors, namely, the diagonal
elements of the SBM interpolation matrix. This method employs a simple
numerical technique, called the IIT, to determine the origin intensity factors.
Taking the Laplace equation as an illustrative case, the first step of the IIT requires
a known sample solution uI of the Laplace problem and locates some sample
points fykg inside the physical domain. It is noted that the sample points fykg do
not coincide with the source points fsjg, and the sample point number NK should
not be less than the physical boundary source node number N. By using the
interpolation Eq. (4.28), we can then determine the influence coefficients fbjg by
the following linear system of equations

UF yk; sj

	 
� �
bj

� �
¼ uI ykð Þ½ �; 1� k�NK; 1� j�N: ð4:31Þ

Replacing the sample points fykg with the boundary collocation points fxig, the
SBM interpolation matrix of the potential problem (homogeneous problem (4.4),
(4.2), and (4.3) with <¼D) can be written as

US xi; sj

	 


o
on US xi; sj

	 

� �

bj

� �
¼ uI xið Þ

o
on uI xið Þ

� �
: ð4:32Þ

The origin intensity factors can be calculated by the following formulations

/ii ¼ uI xið Þ �
XN

j¼1;sj 6¼xi

bj/F xi; sj

	 

0

@

1

A
,

bj; xi ¼ sj 2 C1; ð4:33Þ

�/ii ¼
ouI xið Þ

on
�

XN

j¼1;sj 6¼xi

bj

o/F xi; sj

	 


on

0

@

1

A
,

bj; xi ¼ sj 2 C2: ð4:34Þ

Note that the origin intensity factors depend only on the distribution of the
source points, the fundamental solutions of the governing equation, and the
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boundary conditions. Theoretically, the origin intensity factors calculated by the
IIT remain unchanged with different sample solutions. The origin intensity factors
circumvent the singularities of the fundamental solutions upon the coincidence of
the source and collocation points.

It is worth noting that the SBM performs well for diverse potential problems.
The SBM formulation (4.28) cannot, however, get the correct solution in some
cases whose solution includes a constant potential. For instance, the SBM for-
mulation (4.28) yields the incorrect solution for a Dirichlet problem in a circular
domain with analytical solution u x; yð Þ ¼ ey sinðxÞ þ cosðxÞð Þ [7]. As a result, a
constant term is proposed to add to the SBM approximate Eq. (4.28) to guarantee
the uniqueness of the SBM interpolation matrix in the solution of potential
problems. The modified SBM formulation with a constant term is given by

~u xð Þ ¼
XN

j¼1

aj/S x; sj

	 

þ aNþ1; ð4:35Þ

with the constraint

XN

j¼1

aj ¼ 0: ð4:36Þ

This technique is also called as moment condition in the RBF approximation
[66]. The above SBM formulation (4.35) has successfully been applied to interior
and exterior Laplace [7, 8, 56], Helmholtz [67], and elastostatic [57] problems.

Numerical experiments of 3D cases indicate that the SBM accuracy may be
sensitive to the placement of inner sample nodes in the IIT. To tackle this issue,
Chen and Gu [59, 60, 64] recently used subtracting and adding-back desingular-
ization technique to accurately evaluate origin intensity factors for interior and
exterior potential problems. This is an analytical–numerical technique and does
not require inner sample nodes and employs the null-field and full-field integral
equations to evaluate analytically the origin intensity factors on Neumann
boundary condition for interior and exterior problems, and then uses the IIT to
determine the origin intensity factors on Dirichlet boundary.

When the collocation point xi approaches the source point sj, Eqs. (4.29) and
(4.30) tend to be singular. By adopting the subtracting and adding-back technique,
Eq. (4.30) can be regularized as follows

q xið Þ ¼
XN

j¼1

aj
o/s xi; sj

	 


onx

¼
XN

j¼1

aj � ai

	 
 o/s xi; sj

	 


onx
þ ai

XN

j¼1

o/s xi; sj

	 


onx
þ

o/C
s xi; sj

	 


ons

 !

;

ð4:37Þ
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in which

XN

j¼1

o/C
s xi; sj

	 


ons
¼ 0; ð4:38Þ

where nx and ns represent respectively the outward normal unit vector on the
collocation points xi and source points sj, and /C

s xi; sj

	 

denotes the fundamental

solution of the exterior problems. The derivation of Eq. (4.38) is based on the
discretization of the reduced null-fields equations given in Ref. [3].

According to the dependency of the outward normal vectors on the two kernel
functions of interior and exterior problems, we can obtain the following
relationships

o/s xi;sjð Þ
ons

¼ � o/C
s xi;sjð Þ
ons

; i 6¼ j;
o/s xi;sjð Þ

ons
¼ o/C

s xi;sjð Þ
ons

; i ¼ j;

8
<

:
ð4:39Þ

lim
sj!xi

o/s xi; sj

	 


onx
þ

o/s xi; sj

	 


ons

� �
¼ 0; i ¼ j; ð4:40Þ

when the boundary shape is of a straight line, Eq. (4.40) is explicitly equal to zero
since nx xið Þ ¼ ns sj

	 

at all boundary knots. For a smooth boundary of arbitrary

shape, we assume that the source point sj approaches inchmeal to the collocation
point xi along a line segment, then Eq. (4.40) is tenable.

From Eqs. (4.39) and (4.40), Eq. (4.37) can be rewritten as

q xið Þ ¼
XN

j¼1

aj
o/s xi; sj

	 


onx

¼
XN

j¼1;i6¼j

aj � ai

	 
 o/s xi; sj

	 


onx
þ ai

XN

j¼1;i6¼j

o/s xi; sj

	 


onx
�

o/s xi; sj

	 


ons

� �
:

¼
XN

j¼1;i6¼j

aj
o/s xi; sj

	 


onx
� ai

XN

j¼1;i6¼j

o/s xi; sj

	 


ons

ð4:41Þ

Comparing Eqs. (4.41) and (4.30) at xi ¼ sj, we easily obtain

�/ii ¼ �
XN

j¼1;i 6¼j

o/s xi; sj

	 


ons
; ð4:42Þ

which is the origin intensity factors �/ii for Neumann boundary conditions in
Eq. (4.30). Then the origin intensity factors /ii for Dirichlet boundary conditions
in Eq. (4.29) can be calculated by the IIT. In this strategy, we first choose a simple
particular solution as the sample solution, e.g., uI xð Þ ¼ xþ y in Laplace equation
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case. Then, from Eq. (4.41) we can evaluate the corresponding densities bj

� �
for

all the boundary points. Finally, from Eq. (4.29) we have the following algebraic
equations

Uij

� �
bj

� �
¼ xi þ yi þ cf g; ð4:43Þ

where c is a constant and can be solved by using an arbitrary field point inside the
domain. It is noted that only the origin intensity factors /ii are unknown in the
above Eq. (4.43). And we get the following expression for the diagonal terms
using the known density values bj

� �

/ii ¼ xi þ yi þ c�
XN

j¼1;i 6¼j

bj/s xi; sj

	 

 !,

ai; i ¼ 1; 2; . . .;N: ð4:44Þ

Then, the following standard linear system of equations is formed after

applying either Eqs. (4.29) or (4.30) at all the collocation points fxigN
i¼1

A11 A12 . . . A1N

A21 A22 . . . A2N

..

. ..
. . .

. ..
.

AN1 AN2 . . . ANN

2

6664

3

7775

a1

a2

..

.

aN

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

¼

b1

b2

..

.

bN

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

or Aa ¼ b; ð4:45Þ

where A is the interpolation matrix, a the unknown coefficient vector, and b the
right-hand side vector. Once all aj

� �
in Eq. (4.45) are determined, then the

potentials and their derivatives at any point inside the domain and on the boundary
can be evaluated via Eqs. (4.29) and (4.30).

Note that this improved SBM formulation avoids the inner sampling points in
the traditional SBM by using the desingularization of subtracting and adding-back
technique. The improved SBM formulation has been successfully applied to heat
condition [65, 68] and exterior time-harmonic wave problems [61, 62, 69].

4.2 Nonhomogeneous Problems

By implementing PDE splitting approach [70], the approximate solution of non-
homogeneous Eqs. (4.1)–(4.3) can be expressed as

u ¼ uh þ up; ð4:46Þ

where uh and up are the homogeneous and the particular solution, respectively. The
particular solution up satisfies

< up

� �
¼ f xð Þ; ð4:47Þ
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but does not necessarily satisfy boundary conditions. In contrast, the homogeneous
solution has to satisfy not only the corresponding homogeneous equation

< uhf g ¼ 0; ð4:48Þ

but also the updated boundary conditions

uh xð Þ ¼ R xð Þ � up xð Þ; x 2 C1; ð4:49Þ

o

on
uh xð Þ ¼ N xð Þ � o

on
up xð Þ; x 2 C2: ð4:50Þ

Equations (4.48)–(4.50) can be solved by a boundary-type RBF collocation
method introduced in Sect. 4.1. And then the key issue is to calculate the particular
solution up from Eq. (4.47). During the past two decades, the DRM [9] and MRM
[10] have emerged as two promising techniques to approximate the particular
solution up.

The DRM has become de facto the method of choice in conjunction with the
MFS [71–78], the BKM [2, 12, 43, 45, 79], the RMM [80], and the SBM [58] to
evaluate the particular solution. Since the DRM is actually equivalent to the MPS,
one can find the DRM solution procedure in Sect. 3.4. However, it requires the
additional inner nodes to guarantee the convergence and stability. It is also noted
that the appropriate choice of the RBFs in the DRM is not a trivial task. This is
because it is not easy-to-tailor a RBF to reflecting the properties of both differ-
ential operator and nonhomogeneous function.

Another popular approach is the MRM, which has the advantage over the DRM
in that it does not require using inner nodes at all for evaluating the particular
solution. To take full advantage of its truly boundary-only merit for a more broad
range of problems, Chen [81] developed the MRM-based meshless boundary
particle method (BPM). However, the MRM does also have some disadvantages
compared with the DRM in that the standard MRM is computationally much more
expensive in the construction of the different interpolation matrices by using high-
order fundamental or general solutions [11, 12] and has limited feasibility for
general nonhomogeneous problems due to its conventional use of high-order
Laplacian operators in the annihilation process.

4.2.1 Recursive Composite Multiple Reciprocity Method:
The Boundary Particle Method

Recently, Chen et al. [13] proposed an improved MRM, called RC-MRM tech-
nique, to efficiently handle various inhomogeneous terms in the governing equa-
tion. The RC-MRM has since been successfully applied to inverse Cauchy
problem [82, 83], plate analysis [84, 85]. The technique uses the recursive process
to significantly reduce the computational costs and employs the composite
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differential operator instead of conventional high-order Laplace operators to
eliminate various nonhomogeneous function terms. The RC-MRM differs from the
DRM in that the former evaluates the particular solution up in Eq. (4.46) by a sum
of higher order homogeneous solutions, namely,

up ¼
X1

m¼1

um
h ; ð4:51Þ

where um
h represents the m-order composite homogeneous solutions, i.e.,

Lm � � � L2L1< um
h

� �
¼ 0; x 2 X; ð4:52Þ

where L1; L2; � � � ; Lm are differential operators of the same or different kinds. When
Lm ¼ � � � L2 ¼ L1 ¼ <, this RC-MRM degenerates into the original MRM. Let the
zero-order homogeneous solution u0

h represent the homogeneous solution uh in
Eq. (4.46), then the solution of problem of interest is represented by a sum of
varied-order homogeneous solutions

u ¼ uh þ up ¼
X1

m¼0

um
h : ð4:53Þ

The basic assumption in the composite MRM is

lim
m!1

Lm. . .L2L1 f xð Þf g ! 0: ð4:54Þ

In the practical implementation, the sum of an infinite series Eq. (4.53) has to
be truncated at certain order M. Namely,

u �
XM

m¼0

um
h : ð4:55Þ

To evaluate the homogeneous solutions of various orders, we need to update the
corresponding boundary conditions. First, we have the zero-order boundary con-
dition equation

u0
h xð Þ ¼ R xð Þ � u0

p xð Þ; x 2 C1
o
on u0

h xð Þ ¼ N xð Þ � o u0
p xð Þ; x 2 C2

(

: ð4:56Þ

Equation (4.56) is in fact the DRM formula without any inner nodes. For the m-
order homogeneous solutions, we have the successively higher boundary condition
equations

< u1
h xð Þ

� �
¼ f xð Þ � < u1

p xð Þ
n o

; x 2 C1;

o
on< u1

h xð Þ
� �

¼ o
on f xð Þ � < u1

p xð Þ
n o� �

; x 2 C2;

8
<

:
ð4:57Þ
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Lm�1 � � � L2L1< um
h xð Þ

� �
¼ Lm�1 � � � L2L1 f xð Þf g

�Lm�1 � � � L2L1< um
p xð Þ

n o
; x 2 C1;

o
on Lm�1 � � � L2L1< um

h xð Þ
� �

¼ o
on Lm�1 � � � L2L1 f xð Þf gð Þ

� o
on Lm�1 � � � L2L1< um

p xð Þ
n o� �

; x 2 C2;

8
>>>>>><

>>>>>>:

ð4:58Þ

for m = 2,3,…M. The nonhomogeneous term f xð Þ was repeatedly differentiated as
the Dirichlet and Neumann boundary conditions of the higher order homogeneous
solutions. um

p denotes the m-order particular solutions which are approximated by

um
p ¼

XM

k¼mþ1

uk
h: ð4:59Þ

To numerically solve the homogeneous problems (4.56)–(4.58), the m-order
homogeneous solutions are approximately represented by

um
h xð Þ ¼

XL

k¼1

bm
k /m

F x; xkð Þ; ð4:60Þ

where L is the number of boundary collocation nodes, bm
k the corresponding

unknown coefficients for m-order homogeneous problems, and /m
F the m-order

composite fundamental solutions of the operator Lm. . .L2L1<.
Collocating Eqs. (4.56)–(4.58) at all boundary nodes in terms of Eq. (4.60), we

have the boundary discretization equations

PL

k¼1
b0

k/
0
F x; xkð Þ ¼ R xð Þ � u0

p xð Þ; x 2 C1;

PL

k¼1
b0

k
o
on /0

F x; xkð Þ ¼ N xð Þ � o
on u0

p xð Þ; x 2 C2;

8
>><

>>:
ð4:61Þ

PL

k¼1
b1

k< /1
F x; xkð Þ

� �
¼ f xð Þ � < u1

p xð Þ
n o

; x 2 C1;

PL

k¼1
b1

k
o
on< /1

F x; xkð Þ
� �

¼ o
on f xð Þ � < u1

p xð Þ
n o� �

; x 2 C2;

8
>><

>>:
ð4:62Þ

4.2 Nonhomogeneous Problems 65



PL

k¼1
bm

k Lm�1. . .L2L1< /m
F x; xkð Þ

� �
¼ Lm�1. . .L2L1 f xð Þf g

�Lm�1. . .L2L1< um
p xð Þ

n o
; x 2 C1;

PL

k¼1
bm

k
o Lm�1. . .L2L1< /m

F x; xkð Þ
� �

¼ o
on Lm�1. . .L2L1 f xð Þf gð Þ

� o
on Lm�1. . .L2L1< um

p xð Þ
n o� �

; x 2 C2;

8
>>>>>>>>>><

>>>>>>>>>>:

ð4:63Þ

for m = 2,3,…M and rk ¼ x� xkk k. The above recursive iteration is truncated at
order M, i.e.,

LM . . .L2L1< uM
p

n o
¼ 0: ð4:64Þ

The solution procedure of Eqs. (4.61)–(4.63) is a reversible process

bM ! bM�1 ! � � � ! b0: ð4:65Þ

Finally, the numerical solution at any inner and boundary node can be obtained
by

u xð Þ ¼
XM

m¼0

XL

k¼1

bm
k /m

F x; xkð Þ: ð4:66Þ

Note that throughout the solution procedure, the present RC-MRM does not use
any inner nodes. Therefore, the scheme is a truly boundary-only collocation
method for solving nonhomogeneous problems. In particular, the algorithm uses
the composite high-order differential operators to annihilate the nonhomogeneous
term without increasing computing efforts. The major differences between the RC-
MRM and the traditional MRM can be summarized by the twofold aspects: (1)
differential operators different from the governing differential operator may be
used to annihilate the nonhomogeneous terms; (2) the recursive algorithm is used
to dramatically reduce computing costs.

More investigations on boundary-type RBF collocation methods for solving
PDEs can be found in the extended method of fundamental solutions [86] and
time-marching MFS [87] for time-dependent problems, the MFS and BKM in
conjunction with Kirchhoff transform [88–90] for heterogeneous medium problem,
the MFS coupled with analog equation method (AEM) [91] for nonlinear PDEs
[92], and the BPM coupled with Laplace transform for anomalous diffusion
problems [93].

66 4 Boundary-Type RBF Collocation Methods



4.3 Numerical Experiments

In this section, we first investigate the accuracy, stability, and convergence of
several boundary-type RBF collocation approaches in the solution of homoge-
neous PDEs. Rerr represents the average relative error, Merr the maximum
absolute error, and Aerr the average absolute error, which are defined as follows

Rerr wð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NT

XNT

i¼1

w xið Þ � we xið Þ
we xið Þ





2
vuut ; ð4:67Þ

Merr wð Þ ¼ max
1� i�NT

w xið Þ � we xið Þj j; ð4:68Þ

Aerr wð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NT

XNT

i¼1

w xið Þ � we xið Þj j2
vuut ; ð4:69Þ

where NT is the total number of test points in the domain and on the boundary.
These nodes are selected to measure the numerical accuracy. Unless otherwise
specified, NT = 2601 for square problems.

Example 4.1 The Dirichlet problem with a unit square domain
Consider a potential problem Du ¼ 0 in a unit square domain with Dirichlet

discontinuous boundary conditions as follows:

u x; 0ð Þ ¼ xþ 3; u x; 1ð Þ ¼ u 0; yð Þ ¼ u 1; yð Þ ¼ 3: ð4:70Þ

The analytical solution of this problem is given by

u x; yð Þ ¼ 3þ
X1

n¼1

2 �1ð Þn

npsinh npð Þsinh np 1� yð Þð Þsin npxð Þ: ð4:71Þ

Figure 4.1 displays the SBM accuracy verses the number of boundary nodes. It
can be found that the solution accuracy is improved with the increasing boundary
node number N. The contour plots of the analytical and the SBM solutions are
plotted in Fig. 4.2. Figure 4.3 shows the numerical solutions of the RMM and the
MFS (d ¼ 1:5, distance of fictitious boundary from physical boundary) with 240
boundary nodes, respectively. It is observed that the SBM results are in good
agreement with the analytical solution. The RMM results deteriorate significantly
at the boundary-adjacent region. It is noted that the MFS (d ¼ 1:5) does not yield
reliable and consistent solution.

Table 4.1 shows the results by the SBM and the RMM. The numerical accuracy
by the SBM with 28 boundary nodes is comparable with that of the RMM with 120
boundary nodes. Table 4.2 shows the MFS results with different fictitious
boundary parameters d. Much oscillation is visible with the increasing boundary
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node number N by the MFS. The main reason of this instability is due to the severe
ill-conditioning of the MFS interpolation matrix.

Example 4.2 The Dirichlet problem with L-shaped domain
We investigate the SBM for solving potential problem Du ¼ 0 in the L-shaped

domain. The exact solution is

u x; yð Þ ¼ sinh xð Þcos yð Þ þ 4: ð4:72Þ

Figure 4.4 displays the contour plots of the exact and the SBM solutions with
240 boundary nodes. It can be found from Fig. 4.4 that the SBM results agree with
the exact solutions very well. Table 4.3 shows that the numerical accuracy is
improved with increasing boundary nodes by the present SBM. This example
verifies that the SBM works equally well in a case having boundary singularities.

Fig. 4.1 The average
relative errors Rerr(u) with
respect to the boundary node
number N in Example 4.1

Fig. 4.2 (a) The analytical solution and (b) the SBM solution for Example 4.1
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Example 4.3 Exterior heat conduction problem of a circle
This example considers a heat conduction problem Du ¼ 0 outside a circle with

discontinuous heat source on the boundary

u 1; hð Þ ¼ 1 0\h\p;
�1 p\h\2p:

�
ð4:73Þ

The analytical solution is given as follows

u r; hð Þ ¼ 2
p

arctan
2r sinh
r2 � 1

� �
: ð4:74Þ

Table 4.1 Numerical results by SBM and RMM for Example 4.1 with various numbers of nodes

N SBM RMM

Rerr uð Þ Merr uð Þ Cond Að Þ Rerr uð Þ Merr uð Þ Cond Að Þ
28 6.22E - 03 3.37E - 01 2.84E ? 01 1.21E - 01 1.84E ? 00 1.17E ? 01
40 1.72E - 03 1.44E - 01 5.82E ? 01 6.91E - 02 1.21E ? 00 8.69E ? 00
120 9.42E - 04 3.43E - 02 2.13E ? 06 9.26E - 03 8.51E - 02 4.67E ? 00
200 1.24E - 03 6.97E - 02 5.62E ? 02 3.73E - 04 1.62E - 02 4.39E ? 00
240 4.47E - 05 3.88E - 03 1.72E ? 02 2.55E - 03 3.74E - 02 4.34E ? 00

Table 4.2 Numerical results (MFS) for Example 4.1 using various numbers of nodes

N MFS (d ¼ 3) MFS (d ¼ 1:5)

Rerr uð Þ Merr uð Þ Cond Að Þ Rerr uð Þ Merr uð Þ Cond Að Þ
28 9.94E - 03 2.39E - 01 1.83E ? 11 9.97E - 03 2.39E - 01 4.13E ? 06
40 5.52E - 03 1.65E - 01 7.66E ? 17 5.53E - 03 1.65E - 01 1.12E ? 17
120 1.61E - 03 4.08E - 02 6.21E ? 19 3.74E - 03 4.05E - 02 1.51E ? 19
200 4.01E - 03 1.13E - 01 9.66E ? 18 4.40E - 03 3.42E - 02 3.49E ? 19
240 1.76E - 02 1.50E - 01 1.14E ? 20 3.93E - 03 3.67E - 02 6.12E ? 19

Fig. 4.3 The field solution for Example 4.1 by using (a) RMM and (b) MFS (d ¼ 1:5)
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Here the tested points (NT = 280) are uniformly distributed on the upper half
plane outside the physical boundary but inside the circle of radius 3. Table 4.4
shows the numerical results by the SBM, BEM, and MFS, in which the MFS uses
different fictitious boundary parameters d. We observe from Table 4.4 that the
BEM has the lowest accuracy and the largest condition number. It is noted that the
accuracy can be improved by using the adaptive BEM. However, this may increase
the computational costs. The MFS with the fictitious boundary parameter d = 0.2
cannot get the correct solution when the number of boundary source nodes is more
than 200. The reason is that the condition number of the MFS interpolation matrix
increases exponentially with the increasing boundary node number N. This indi-
cates that the placement of the fictitious boundary could have numerical stability
issue. The appropriate fictitious boundary is a tricky issue in the MFS.

It is observed from Table 4.4 that the SBM and the MFS with the fictitious
boundary parameter d = 0.01 produce the similar accuracy, and their interpolation
matrices also have the similar level of condition numbers. Note that the optimal
fictitious boundary parameter d is obtained in this case by a trial and error
approach. The determination of such a parameter d is not trivial in applications and

Table 4.3 Numerical results of SBM for Example 4.2 with various numbers of boundary nodes

N SBM

Rerr uð Þ Merr uð Þ Cond Að Þ
24 3.20E - 03 8.16E - 02 5.10E ? 01
40 1.02E - 03 3.49E - 02 6.03E ? 01
160 7.04E - 04 2.30E - 02 2.46E ? 04
240 3.82E - 04 2.19E - 02 8.46E ? 04
320 2.84E - 04 1.70E - 02 2.96E ? 05

Fig. 4.4 (a) The analytical solution and (b) the SBM solution with 240 boundary nodes for
Example 4.2
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particularly difficult for problems with complex-shaped or multiply connected
domain. It can be concluded from this case study that the SBM is mathematically
simple, easy-to-program, accurate, meshless, integration-free, and avoids the
controversy of the fictitious boundary in the MFS.

The next case is the boundary-type RBF collocation approaches for solving
nonhomogeneous PDEs.

Example 4.4 First consider the Poisson’s equation with a polynomial forcing term

Du ¼ �x2
1; x1; x2ð Þ 2 X

u ¼ 0; x1; x2ð Þ 2 oX

�
; ð4:75Þ

where X is an ellipse with a semi-major axis of length 2 and semi-minor axis of
length 1. The exact solution [9] is given by

u xð Þ ¼ � 50x2
1 � 8x2

2 þ 33:6
	 


x2
1=4þ x2

2 � 1
	 


=246: ð4:76Þ

For this example, we consider the following homogeneous problem

D3u ¼ 0; x1; x2ð Þ 2 X
u ¼ 0; x1; x2ð Þ 2 oX

Du ¼ �x2
1; x1; x2ð Þ 2 oX

D2u ¼ �2; x1; x2ð Þ 2 oX

8
>><

>>:
: ð4:77Þ

The BPM first utilizes the corresponding high-order singular fundamental
solutions, namely, singular formulation as discussed in Sect. 2.3.1, where the
source points are located on an ellipse with a semi-major axis length of 10 and
semi-minor axis length of 5 centered at the origin. The accuracy variation of the
BPM results with respect to the number of collocation points, i.e., L, is shown in
Fig. 4.5a. In general, the numerical accuracy will be initially enhanced with the
increasing L. And then a further increasing L would not gain much improvement in
accuracy. It is observed that a small number of collocation points, say 24, is
sufficient to obtain high accuracy. However, much oscillation is noticeable. The
main cause of this instability is due to the ill-conditioning of the interpolation
matrix. The condition number Cond of the interpolation matrix A00 and A ¼ Aij

	 


is shown in Fig. 4.5b. To mitigate the effect of ill-conditioning, a regularization
method, known as the truncated singular value decomposition (TSVD), is
implemented to obtain accurate results, in which the truncation level is determined
by the distinct gap in the singular value spectrum of the interpolation matrix A.

Example 4.4 is a benchmark problem in the BEM and has previously been
solved using the DR-BEM [9] and MR-BEM [10]. A comparison with the
numerical results presented in these studies [9, 10] shows that the proposed method
gives a much accurate numerical solution with less computational efforts.

In practical situations, the given data can always be approximated by piecewise
polynomials, which can be annihilated by repeatedly applying the Laplace oper-
ators. Therefore, the BPM with the RC-MRM is expected to work for a wide range
of real-world application problems.
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Then we test the BPM using the corresponding high-order nonsingular general
solutions or harmonic functions (nonsingular formulation) as discussed in
Sects. 2.3.2 and Sects. 2.3.3. The numerical results of Example 4.4 using various
numbers of collocation points are shown in Fig. 4.6a. The shape parameter c in
harmonic functions has a significant impact on the numerical accuracy, as in the
case of Multiquadric and Gaussian RBFs. c is taken to be 0.1 in this example. The
numerical accuracy improves as the node number L increases. However, for
L [ 28, the accuracy starts to deteriorate. The condition numbers of the interpo-
lation matrices A and A00 are displayed in Fig. 4.6b. One can conclude from this

Fig. 4.6 (a) Numerical accuracy variation and (b) the condition number of the interpolation
matrices with respect to boundary node number L. Reprinted from Ref. [13], Copyright 2012,
with permission from Elsevier

Fig. 4.5 (a) Numerical accuracy variation and (b) the condition number of the interpolation
matrices with respect to boundary node number L. Reprinted from Ref. [13], Copyright 2012,
with permission from Elsevier
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investigation that the nonsingular formulation also suffers from ill-conditioned
interpolation matrix.

Example 4.5 3D Heat conduction problem with intraheat source
Next consider the BPM solution of a three-dimensional heat conduction

problem with intra heat source [9].

Du xð Þ ¼ �2; x ¼ x1; x2; x3ð Þ 2 X;
u xð Þ ¼ � x2

1 þ x2
2 þ x2

3

	 
�
3; x ¼ x1; x2; x3ð Þ 2 oX

�
; ð4:78Þ

where X ¼ �1; 1½ �3. The source points are distributed evenly on a sphere centered
at the origin and with a radius 5, and the shape parameter c ¼ 0:1. The analytical
solution is given by

u xð Þ ¼ � 1
3

x2
1 þ x2

2 þ x2
3

	 

: ð4:79Þ

The numerical results for Example 4.5 with various numbers of collocation
points are shown in Table 4.5. Numerical accuracy improves at the beginning with
increasing boundary node number and reaches a plateau and then oscillates with a
further increase of boundary nodes in the nonsingular formulation. In contrast, the
singular formulation appears more stably and the numerical accuracy improves
consistently with increasing number of boundary nodes.

It is noted that the accuracy of the numerical results using 54 nodes is com-
parable with the DR-BEM solution, which requires using 48 BEM nodes and 27
internal nodes to obtain the results with the error Rerr(u) less than 10-3 [9]. This
indicates that the BPM with singular and nonsingular formulations may be a
competitive alternative to simulate high-dimensional problems.

Example 4.6 Thin square plate on a Winkler-type elastic foundation
This example investigates the numerical accuracy of the BPM with singular

formulation for high-order nonhomogeneous PDE in comparison with the Hermite
collocation method (HCM). The MQ RBF with shape parameter c ¼ 1 is chosen as

Table 4.5 Numerical results of Example 4.5 with various numbers of boundary collocation
knots

Method Singular formula Nonsingular formula

L Rerr uð Þ Aerr uð Þ Merr uð Þ Rerr uð Þ Aerr uð Þ Merr uð Þ
24 4.23e - 3 9.28e - 3 1.00e - 2 3.25e - 4 1.69e - 4 1.21e – 3
54 6.69e - 4 1.47e - 3 2.13e - 3 6.69e - 4 1.47e - 3 2.13e – 3
96 3.44e - 6 7.56e - 6 1.74e - 5 3.25e - 4 1.69e - 4 1.21e – 3
150 2.46e - 7 5.39e - 7 1.87e - 6 8.35e - 6 4.55e - 6 4.60e – 5
216 1.85e - 8 4.07e - 8 1.26e - 7 1.14e - 5 1.98e - 6 1.91e – 5
294 1.23e - 8 2.70e - 8 1.70e - 7 1.17e - 4 9.59e - 6 5.18e – 5
384 9.32e - 10 2.05e - 9 8.79e - 9 1.55e - 4 1.06e - 5 4.85e – 5
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the approximate basis function in the HCM. In the BPM, a square fictitious
boundary is chosen with length L = 2, which is placed outside the unit square
physical domain.

Case 4.6.1: A simply supported thin square plate on a Winkler-type elastic
foundation under uniform loading

r4 þ j2ð Þw ¼ q0=D; x ¼ x; yð Þ 2 X;
w ¼ 0; x ¼ x; yð Þ 2 oX;

Mn ¼ 0; x ¼ x; yð Þ 2 oX;

8
<

:
ð4:80Þ

where w represents the deflection of the middle surface of the plate, n ¼
cos a; sin a½ � is the unit outward normal vector, j denotes the foundation stiffness,

D ¼ Eh3
�

12ð1� m2Þ½ � is the flexural rigidity of the plate, and

Mn ¼ �D mr2wþ 1� mð Þ cos2 a
o2w

ox2
þ sin2a

o2w

oy2
þ sin2a

o2w

oxoy

� �� �
: ð4:81Þ

The following mechanical parameters are specified: Young’s Modulus
E ¼ 2:1� 1011, the thickness of the plate h ¼ 0:01, Poisson’s ratio of elasticity
m ¼ 0:3, foundation stiffness j¼p2, uniform loading q0 ¼ 106. The exact solution
is given by [94]

we ¼
16q0

p6D

X1

m¼1

X1

n¼1

sin mpx=að Þsin npy=bð Þ
mn m2=a2 þ n2=b2ð Þ2þk= p4Dð Þ
h i; m ¼ 1; 3; 5; � � � ;

n ¼ 1; 3; 5; � � � : ð4:82Þ

Case 4.6.2: A clamped Winkler-type square plate under complex loading

r4 þ j2ð Þw ¼ q1ðx; yÞ=D; x ¼ x; yð Þ 2 X;
w ¼ 0; x ¼ x; yð Þ 2 oX;
hn ¼ 0; x ¼ x; yð Þ 2 oX;

8
<

:
ð4:83Þ

where the loading function is

q1 x; yð Þ ¼ 0:01q0 64p4 þ j2
	 


cos 2pxð Þ � 1ð Þ cos 2pyð Þ � 1ð Þ
	 


;

þ 0:01q0 48p4 cos 2pxð Þ þ cos 2pyð Þð Þ � 64p4
	 
 ð4:84Þ

and

hn ¼
ow

on
¼ ow

ox

dx

dn
þ ow

oy

dy

dn
¼ ow

ox
cosaþ ow

oy
sina: ð4:85Þ

The exact solution is given as follows

we ¼
q0 cos 2pxð Þ � 1ð Þ cos 2pyð Þ � 1ð Þ

100D
: ð4:86Þ
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Figure 4.7 shows the average and maximum absolute errors (Aerr and Merr) by
using the BPM (side length L = 2) and the HCM (MQ RBF with c = 1) in cases
4.6.1 and 4.6.2. It is observed from Fig. 4.7 that the BPM clearly outperforms the
HCM in the numerical accuracy. The BPM solution with 16 boundary nodes is
even better than 36 nodes HCM solution. Note that the BPM only requires the
boundary discretization and has a particular edge over the domain discretization
HCM for some real-world applications such as inverse problems, where only
boundary data are accessible in most cases.

Example 4.7 Thin plate on a Winkler-type elastic foundation with trigonometric
Loading

We compare the BPM with singular formulation to the MFS-DRM [78] in this
case. Consider the deflection of a 2� 2 clamped Winkler-type square plate [78]

r4 þ j2ð Þw ¼ q2 x; yð Þ=D; x ¼ x; yð Þ 2 X;
w ¼ 0; x ¼ x; yð Þ 2 oX;
hn ¼ 0; x ¼ x; yð Þ 2 oX:

8
<

:
ð4:87Þ

The exact solution is given by

we ¼ sin px=2ð Þsin py=2ð Þ: ð4:88Þ

The parameters of the plate are D ¼ 1, m ¼ 0:33, j ¼ p2. The trigonometric
loading q2 x; yð Þ is given based on the analytical solution in Eq. (4.88).

In contrast, Fig. 4.8 illustrates the BPM and MFS-DRM convergence curves
with the fictitious boundary d = 8. We can observe from Fig. 4.8 that the
numerical accuracy of 60 nodes BPM solution is comparable with that of 80 nodes
MFS-DRM solution. Thus, the BPM uses fewer nodes than the MFS-DRM to
achieve the numerical solutions of similar accuracy. It is noted that the BPM

Fig. 4.7 The maximum and average absolute error curves of (a) case 4.6.1 and (b) case 4.6.2 by
using the boundary particle method and the Hermite collocation method. Reprinted from Ref.
[85], with kind permission from Springer Science+Business Media
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solutions do not invariably improve when the nodes increase up to a certain
number largely due to the round-off error effect of its ill-conditioned interpolation
matrix. This is a common issue in all global collocation methods.

Unlike the MFS-DRM, the BPM does not require any additional interior points
to evaluate the particular solution. Thus, the BPM is far more attractive than the
MFS in the solution of nonhomogeneous problems.

Example 4.8 Inverse Cauchy problem associated with Poisson equation
The mathematical formulation of the Cauchy problem can be presented as

Du xð Þ ¼ f xð Þ; x 2 X; ð4:89Þ

subjects to the two types of boundary conditions prescribed on the accessible
boundary

u xð Þ ¼ �u xð Þ; x 2 C1; ð4:90Þ

q xð Þ ¼ ou xð Þ
on
¼ �q xð Þ; x 2 C1; ð4:91Þ

where D denotes the Laplace operator, f xð Þ is a known potential function, u and
q are the prescribed potential and flux, C1 denotes the non-zero measurable
boundary part, and n represents the unit outward normal vector. A necessary
condition for the above inverse Cauchy problem [95, 96] to be identifiable is that
the accessible boundary part C1 is non-zero. However, in the discretization of the
above-mentioned Cauchy problem, the corresponding identifiability condition
reduces to that the accessible boundary part C1 is longer than the under-specified
boundary C2. In this case, we focus on determining the potential u and the flux
q on the inaccessible boundary C2. Although this inverse problem may have a
unique solution, it is well-known that this solution is unstable for small pertur-
bations on the accessible boundary C1, see Hadamard [97]. Therefore, Cauchy

Fig. 4.8 The average
absolute error curves of the
BPM and the MFS-DRM.
Reprinted from Ref. [85],
with kind permission from
Springer Science+Business
Media
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problems are ill-posed inverse problems. The TSVD with the generalized cross-
validation (GCV) function choice criterion is employed to help the BPM to remedy
this ill-posed problem. All the computational codes are programmed in MATLAB,
partially including the MATLAB TSVD code with the generalized cross-valida-
tion (GCV) function choice criterion developed by Hansen [98] for the discrete ill-
posed problem.

The measurement data in practical problems always goes with errors, also often
referred to noise. The artificial noisy data is generated by

unoise xð Þ ¼ �u xð Þ þmax �u xð Þj jrandn ið Þe; ð4:92Þ

qnoise xð Þ ¼ �q xð Þ þmax �q xð Þj jrandn ið Þe; ð4:93Þ

where �u and �q denote the prescribed functions with the exact data given in
Eqs. (4.90) and (4.91). The random number randnðiÞ is chosen with a standard
normal distribution, which is fixed at each example, and e denotes the noise level.
It should be mentioned that both the accessible potential and flux are contaminated
by artificial measurement noise in the following numerical examples. NT ¼ 40 is
the number of test nodes distributed uniformly on the under-specified boundary C2.
The shape parameter c = 0.01 in the harmonic functions of Laplace equation.

First we investigate the effects of some parameters on the BPM computation.
Consider Poisson equation on the following circular domain

X1 ¼ x1; x2ð Þjx2
1 þ x2

2� 4
� �

; ð4:94Þ

with the measured boundary part C1 ¼ r; hð Þjr ¼ 2; 0� h� 2pBLf g, and the
unmeasured boundary part C2 ¼ r; hð Þjr ¼ 2; 2pBL\h� 2pf g, where r; hð Þ is the
plane polar coordinate, the source points yj

� �
are uniformly distributed on the

physical boundary, and the ratio parameter of accessible boundary length

BL ¼ boundary length of measured part
boundary length of whole boundary.

Case 4.8.1: Poisson equation with the polynomial forcing term f ðxÞ ¼ 1.
The exact solution uðxÞ ¼ 5x2

1

�
6� x1x2=2� x2

2

�
3, and the annihilating oper-

ator of this case in Eq. (4.52) is Laplace operator D:
Case 4.8.2: Poisson equation with the trigonometric forcing term

f ðxÞ ¼ �8p2 sinð2px1Þ sin 2px2ð Þ:

The exact solution is uðxÞ ¼ 2px2 þ sinð2px1Þ sinð2px2Þ, and the annihilating
operator of this case in Eq. (4.52) is Helmholtz operator Dþ 8p2ð Þ.

In these two cases, we set the ratio parameter BL ¼ 3=4, and compare the BPM
with the BKM-DRM in the solution of Poisson equations. In the BKM-DRM, 100

interior points are uniformly distributed in the square domain �
ffiffiffi
2
p

;
ffiffiffi
2
p� �2

, and
Multiquadric (MQ) is employed with the shape parameter c = 4. General function
(GF) is applied for the evaluation of the particular solution in which GF is the
nonsingular RBF general solutions of the annihilating operator in Eq. (4.52).
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Figure 4.9a shows the numerical accuracy variation verses the number of
boundary points with 1 % noisy data in Case 4.8.1. In general, all of the numerical
accuracy of estimated solutions improves with an increasing number of boundary
nodes, and all of them have the similar accuracy with the same boundary nodes. In
contrast, the BKM-DRM has to choose the appropriate number of the inner
additional nodes, determine their placement, and select the suitable interpolation
function to evaluate the particular solution. These factors have more or less effect
on the numerical accuracy, which require the user to be more experienced in the
employment of the BKM-DRM. Note that the present BPM does not require using
interior nodes, which saves the computational costs and simplify the
implementation.

Figure 4.9b depicts the numerical accuracy variation with respect to boundary
measurement data having various levels of noise in the Case 4.8.1. It is observed
that all the curves of the relative root mean square error decay with the decreasing
noisy data, and the numerical solutions achieve best accuracy with noise-free

Fig. 4.9 Numerical accuracy variation of (i) the potential u and (ii) the flux q in case 4.8.1 against
(a) the number of boundary points with 1 % noise level, and (b) the noise level percentage using
75 measurement points (100 boundary knots) by the BPM, BKMMQ, and BKMGF
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measurement data. It can be seen from Fig. 4.9b that, among these three schemes,
the present BPM obtains the best results and the BKMMQ performs the worst.

Figure 4.10a shows the convergent rates of the BPM and BKMGF with 1 %
noisy data in Case 4.8.2. It is worth noting that the BKMMQ could not obtain the
correct results with the present setting, which indicates that it is a crucial issue on
choosing the suitable interpolation function and the appropriate number and
placement of interior nodes in the BKM-DRM. It can be observed from Fig. 4.10a
that the BPM and the BKMGF have the similar accuracy except that the boundary
node number is less than 60. The BKMGF achieves more accurate result than the
BPM with 28 boundary nodes, but the former requires 100 interior nodes.
Figure 4.10b depicts the numerical accuracy variation with respect to measure-
ment data having various levels of noise in Case 4.8.2. It can be seen that the
BPM and BKMGF have the similar accuracy except for noise-free measurement
data. The BPM achieves the better results than the BKMGF with noise-free
measurement data.

Fig. 4.10 Numerical accuracy variation of (i) the potential u and (ii) the flux q in case 4.8.2
against (a) the number of boundary points with 1 % noise level, and (b) the noise level
percentage using 75 measurement points (100 boundary knots) by the BPM and BKMGF
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Then we perform a sensitivity analysis with respect to the length of the mea-
sured boundary. For convenience, 40 test points are uniformly distributed on the
part of unmeasured boundary r; hð Þjr ¼ 2; 3p=2� h� 2pf g. Figure 4.11 presents
numerical accuracy variation with respect to the ratio parameter BL with 2 %
noisy data by using 90 measurement points in Cases 4.8.1 and 4.8.2, respectively.
In general, the accuracy of the BPM improves with an increasing ratio parameter
BL in both examples. This implies that the more boundary measurement data is
available, the more accurate result we can achieve. Furthermore, it observes that
the present BPM can obtain the acceptable results with the ratio parameter BL ¼
0:25 or BL ¼ 0:375 in Cases 4.8.1 and 4.8.2, although when BL\0:5 the identi-
fiability condition is not satisfied. Consequently, the BPM results with BL ¼ 0:25
or BL ¼ 0:375 are not reliable here.

Case 4.8.3: Next we consider a magnetostatic Cauchy problem on a piecewise
smooth square X2 ¼ x1; x2ð Þj0� x1; x2� 1f gwith the measured boundary part

C1 ¼ 1; x2ð Þj0� x2� 1f g [ x1; 1ð Þj0� x1� 1f g

and the unmeasured boundary part

C2 ¼ 0; x2ð Þj0� x2� 1f g [ x1; 0ð Þj0� x1� 1f g:

The exact solution is given by u xð Þ ¼ 5x2
1

�
6� x1x2=2� x2

2

�
3, the forcing term

f ðxÞ ¼ 1, and the annihilating operator of this case in Eq. (4.52) is D. B ¼
ou=ox2;�ou=ox1ð Þ represents the magnetic flux density.

Figure 4.12 shows the BPM solution of both the potential uðxÞ and the flux qðxÞ
on the inaccessible boundary C2, estimated by using 80 measurement points with
1 % noisy data for the Case 4.8.3 on the accessible boundary C1, in comparison
with the analytical solution ueðxÞ and qeðxÞ, respectively. Unlike the DR-BEM [99],
it should be noted that the present BPM can obtain the satisfactory results without
using any interior points and additional corner treatment, which is especially
attractive to solve the inverse and optimization problems in high-dimensional

Fig. 4.11 Numerical accuracy variation of (a) the potential u and (b) the flux q verses BL with
2 % noise level by the BPM using 90 measurement points
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domains. Figure 4.13 displays the components of the analytical magnetic flux
density B, compared with the BPM numerical components. It can be seen from
Fig. 4.13 that the BPM results agree with the analytical solution very well.

Fig. 4.12 The analytical solution ueðxÞ and qeðxÞ compared with the BPM solution uðxÞ and
qðxÞ with 1 % noisy data for Case 4.8.3 by using 80 measurement points

Fig. 4.13 (a) The component Bx of the analytical magnetic flux density (i) and the numerical one
(ii) and (b) the component By of the analytical magnetic flux density (i) and the numerical one (ii)
by using 80 measurement points for case 4.8.3 with 1 % noisy data. Reprinted from Ref. [83] by
permission of Taylor & Francis Ltd
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Chapter 5
Open Issues and Perspectives

Abstract The RBF collocation schemes provide attractive alternatives to tradi-
tional mesh-based methods in engineering and science community, particularly,
for solving high dimensional, irregular, or moving boundary problems. This
chapter discusses some open issues and gives a potential perspective of the RBF
collocation methods.

Keywords Singularity � Large-scale � Ill-conditioning dense matrix � Parallel
computing

It has been shown throughout this book that the RBF collocation schemes have
great potential for solving a wide variety of engineering and science problems.
They are integration-free, easy to implement, accurate, and do not require mesh
generation. Therefore, the RBF collocation schemes seem attractive as an alter-
native to the traditional mesh-based methods, particularly, for solving high
dimensional, irregular, or moving boundary problems.

Since the RBF collocation schemes are a class of relatively new numerical
methods, there are many open issues, which are still under intensive investigation.
The following topics are of particular interest

1. The theoretical foundation of the RBF collocation schemes for solving partial
differential equations is yet to be established. For example, the Kansa method
has been successfully applied to a wide variety of physical and engineering
problems. However, the rigorous mathematical proof of the solvability and
convergence of the Kansa method are still not available. Moreover, in the
singular boundary method, the fundamental assumption is the existence of the
origin intensity factors upon the singularities of the corresponding fundamental
solutions at the coincident source-collocation nodes. The numerical experi-
ments show that the origin intensity factors do exist and are in a finite value.
However, the mathematical proof of their existence is still an open issue.

W. Chen et al., Recent Advances in Radial Basis Function Collocation Methods,
SpringerBriefs in Applied Sciences and Technology, DOI: 10.1007/978-3-642-39572-7_5,
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2. Most of the research in the RBF collocation schemes remains at the phase of the
development and improvement, and verifies these methods to the benchmark
examples. The next research focus should be turned to practical science and
engineering applications.

3. Fast and efficient numerical simulation of large-scale science and engineering
problems is a new trend of numerical methods. The undesired ill-conditioned
and dense matrix is a major challenge in most of the RBF collocation schemes.
It is a serious impediment to apply these methods to large-scale problems. In
the last decade, great efforts have been made to alleviate this difficulty, and
more research is expected in this regard.

(a) Instead of global RBF schemes, localized RBFs are constructed to avoid the
ill-conditioning matrix, and the corresponding localized approaches are
successfully applied to the large-scale engineering problems with millions
of interpolation points. Further advancement of the localized RBFs will
continue to be a major research direction in the near future.

(b) The iterative algorithm with preconditioned matrix is introduced to alle-
viate the difficulty of ill-conditioning, and helps the RBF collocation
methods to solve the moderate engineering problems.

(c) The fast matrix computation algorithms, such as, Fast Multipole Methods
(FMM), H-matrix, pre-corrected Fast Fourier Transform (pFFT), and
Adaptive Cross Ap-proximation (ACA), are implemented to alleviate the
ill-conditioning dense matrix, and make the RBF methods more applicable
to the large-scale engineering problems which often require millions of
interpolation points. These fast matrix computation techniques can greatly
reduce computing cost to O(Nlog(N)). Recently, the authors implemented
the FFT-BKM and FFT-MFS to successfully solve PDEs with 200 million
knots in a single desktop PC. Nevertheless, such fast solution techniques
have drawbacks in that they lack the flexibility, e.g., basis function
dependency, and require intensive programming. Some kernel-independent
fast matrix algorithms should be developed to overcome this drawback.
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