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Radial Basis Functions (RBFs)

DEFINITION: A function Φ : Rd → R is called radial if there exsits a univariate function
φ : [0,+∞)→ R, such that

Φ(x) = φ(r)

here r = ‖x‖, and ‖.‖ is Euclidean norm on Rd .

PROPERTIES:

Radially or spherically symmetric about the center.

Under all euclidean transformations, (i.e, translations, rotations, reflections) radial function
interpolants have nice property of being invariant.

APPLICATIONS: Can be applied in solving scattered data interpolation problem or
multivariate approximation problems.
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RBFs Multivariate Interpolation Scheme

THE MULTIVARIATE INTERPOLATION SCHEME is defined as follows: given data
X = {x1, x2, ..., xN}, xi ∈ Rd and the corresponding values is
fX = {fx1 , fx2 , ..., fxN }, fxi ∈ R, i = 1, 2, ...,N. where d is the dimension of the working space
and N is the number of the data sites, choosing the interpolate kernel Φ : Rd → R such that
Φ(x) = fx . Usually, the RBFs interpolant Φ(x) is a linear combination that is

Φ(x) =
N∑

j=1

αjφ(‖x − xj‖). (1)

then the parameters α can be obtained through solving the linear system
Aα = fx ,A(i, j) = φ(‖xi − xj‖).

φ(‖x1 − x1‖) φ(‖x1 − x2‖) · · · φ(‖x1 − xN‖)

φ(‖x2 − x1‖) φ(‖x2 − x2‖) · · · φ(‖x2 − xN‖)
...

...
. . .

...
φ(‖xN − x1‖) φ(‖xN − x2‖) · · · φ(‖xN − xN‖)




α1

α2
...
αN

 =


fx1

fx2
...

fxN
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Positive Definite Functions

For obtaining the unique solution of the system Aα = fx , the coefficient matrix should be
NON-SINGULAR.

Strictly Positive Definite Functions→ Non-singular.

DEFINITION: A real valued continuous function Φ : Rd → R is called positive definite on Rd

if for all pairwise distinct x1, x2, ...xN , and for all α ∈ RN

N∑
j=1

N∑
k=1

αjαk Φ(xj − xk ) ≥ 0. (2)

function Φ is called strictly positive definite (SPD) when the equality of (2) holds iff α ≡ 0.
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Illustrations of RBFs-GSRBFs

GLOBALLY SUPPORTED RBFS (GSRBFS)

GSRBFs Φ(r) Property

Gaussian e−r2/c2
, c > 0 SPD ∩C∞(0)

Matérn M(r | v) 21−v
Γ(v) ( r

c )v Kv ( r
c ), v > 0 SPD ∩C2v−1(0)

EXAMPLES OF GSRBFS: images of M5/2 with the shape parameter c = 2
(left) and c = 0.2 (right)

(a) c = 2 (b) c = 0.2
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Illustrations of RBFs-CSRBFs

COMPACTLY SUPPORTED RBFS (CSRBFS)

CSRBFs Φ( r
c ) Property

Wendland ϕ3,1 (1− r
c )4

+(4 r
c + 1), r

c ≤ 1, d ≤ 3 SPD ∩C2(0)

Wu ψ1,2 (1− r
c )4

+(1 + 4 r
c + 3 r

c
2 + 3

4
r
c

3), r
c ≤ 1, d ≤ 3 SPD ∩C2(0)

Gneiting τ2,l (1− r
c )l

+(1 + l r
c −

(l+1)(l+4)
2

r
c

2),r ≤ 1, l ≥ 7
2 SPD ∩C2(0)

EXAMPLES OF CSRBFS: images of τ2,5 with the shape parameter c = 2
(left) and c = 0.2 (right)

(c) c = 2 (d) c = 0.2
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Conditionally Positive Definite (CPD) Functions

REASON: Not all popular choices of RBFs that are used fit into multivariate interpolant
scheme, such as Thin Plate Spline (TPS).

DEFINITION: A continuous function Φ : Rd → R is called conditionally positive definite of
order m on Rd if

N∑
j=1

N∑
k=1

αjαk Φ(xj − xk ) ≥ 0

for any N pairwise distinct points x1, ..., xN ∈ Rd , and α = [α1, ..., αN ]T ∈ RN satisfying

N∑
j=1

αj p(xj ) = 0

for any polynomial of degree at most m − 1. The function Φ is called strictly conditionally
positive definite (SCPD) of order m on Rd if the quadratic form is zero only for α ≡ 0.
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Advantages of RBFs

THIN PLATE SPLINE: Φ(r) = r log r .

EFFICIENT: RBF is one efficient, frequently used way to solve multivariate
approximation problems.

LITTLE RESTRICTIONS: Its applicability in almost any dimension because
there are generally little restrictions on the way the data are prescribed.

FAST CONVERGENCE: When data become dense, RBFs can produce
high accuracy to the approximated target function in many cases.
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IMAGE REGISTRATION
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Image Registration (IR)

IMAGE REGISTRATION is the process of overlaying two or more images of the same scene at
different times, from different viewpoints, or obtained by different sensors.

APPLICATIONS OF IR:

1 Image fusion: Combining relevant information from two or more images into
a single image.

2 Remote sensing: Acquisition information of an object or phenomenon
without making physical contact with the object–earth science, intelligence,
military application.

3 Medicine: Surgical planning, monitoring of diseases, constructing patient
Atlas, computer-aided surgeries.
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Simplified Registration Example

(e) Template image (f) Reference image (g) Transformed template image

Figure 1: Simple example of IR using TPS transformation.

Given two images, which are named by REFERENCE OR FIXING image (right)
and TEMPLATE OR MOVING (left) image. The aim is to determine a
CORRESPONDENCE (a transformation function) which connects the points of
two images, so that the transformed template image is similar to reference
image.
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Landmark-based Image Registration (LIR)

(a) Template image (b) Reference image

Figure 2: MRI brain images of an anonymous patient taken at different times.

THE PROBLEM: Find the transformation

F: Rd → Rd ,

where d = 2,3, such that each landmark of the template image is mapped to corresponding
landmarks of the reference image, that is F(xT

i ) = xR
i , or Fk (xT

i ) = xR
k,i , i = 1,2,...,n, k = 1,2,...,d .

This problem can be formulated in the context of multidimensional interpolation on scattered
data, and solved using the radial basis function(RBF) method.
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Two Linear Systems of LIR

In figure 2, we have 14 template landmarks marked by ◦ and the
corresponding reference landmarks marked by ∗.

We denote the template landmarks as xT
i = (xT

i , y
T
i ) and the reference

landmarks denoted by xR
i = (xR

i , y
R
i ), i = 1,2, ...,14.

In this talk, d = 2, therefore, we get two linear systems:
Φ1(x) =

∑N
j=1 α1,jφ(‖x − xj‖) = xR ,

Φ2(x) =
∑N

j=1 α2,jφ(‖x − xj‖) = yR .
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Two Linear Systems of LIR


φ(‖xT

1 − xT
1 ‖) · · · φ(‖xT

1 − xT
14‖)

φ(‖xT
2 − xT

1 ‖) · · · φ(‖xT
2 − xT

14‖)
...

. . .
...

φ(‖xT
14 − xT

1 ‖) · · · φ(‖xT
14 − xT

14‖)




α1,1

α1,2
...

α1,14

 =


xR

1

xR
2
...

xR
14

 (3)


φ(‖xT

1 − xT
1 ‖) · · · φ(‖xT

1 − xT
14‖)

φ(‖xT
2 − xT

1 ‖) · · · φ(‖xT
2 − xT

14‖)
...

. . .
...

φ(‖xT
14 − xT

1 ‖) · · · φ(‖xT
14 − xT

14‖)




α2,1

α2,2
...

α2,14

 =


yR

1

yR
2
...

yR
14

 (4)
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Radial Basis Function Transformations

Generally, applying a radial basis function approach, the general coordinate of the transformation
Fk (x), k = 1,2,...,d , (for simplicity, we write F (x) instead of it, the same as following) is assumed
to have the form

F (x) = ϕ(x) + p(x),

⇓

F (x) =
N∑

i=1

αi Φ(‖x− xT
i ‖) +

M∑
j=1

ajπj (x),

where ‖x− xT
i ‖ is the Euclidean distance from x to xT

i , and αi and aj are coefficients.
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Specific Functions of Gneiting and Matérn Families

In 2002, Gneiting obtained a family of compactly supported functions, which
started with Wendland’s functions, for example

ϕs+2,1 = (1− r)l+1
+ [(l + 1)r + 1]

and using the turning bands operator

τ s(r) = ϕs+2(r) +
rϕs+2

′(r)

s
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Two Special Gneiting Functions

Now we set s = 2, the formula of Gneiting function is

τ 2,l(r) = (1− r)l
+[1 + lr − (l + 1)(l + 4)

2
r 2]

Both of them are in C2(R) and SPD when l ≥ 7/2.

A. τ2,7/2( r
c )

.
= (1− r

c )
7/2
+ (1 + 7

2
r
c −

135
8 ( r

c )2)

B. τ2,5( r
c )

.
= (1− r

c )5
+(1 + 5 r

c − 27( r
c )2)
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Graphs of two Gneiting functions
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Matérn Family

Matérn functions have received a great deal of attention recently and they have the following form

M(r | v , c) = 21−v

Γ(v)

( r
c

)v Kv
( r

c

)
,

Here Kv is Modified Bessel Functions of the second kind of order v.

Kn(x) = ( π2x )(1/2)e(−x)

[
1 + (4n2−12)

1(8x)

(
1 + (4n2−32)

2(8x)

(
1 + (4n2−52)

3(8x)
(...)

))]
,

and c is the coefficient to determine the width or the support of functions. The specific three kinds
of Matérn functions are listed:

C. M1/2
.

= e−r/c

D. M3/2
.

= (1 + r
c )e−r/c

E. M5/2
.

= (1 + r
c + 1

3
r2

c2 )e−r/c
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TOPOLOGY PRESERVATION
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Criteria to Evaluate Topology Preservation
Performances

The optimal shape parameter c∗, which means the minimum value to preserve the topology.
In different cases, the calculations are various.

1 when support size (or shape parameter) c is larger than c∗ ⇒ topology
preservation is ensured,

but the locality deformation is extended.

2 when c is less than c∗ ⇒ topology violation occurs in the deformation.

The Jacobian matrix of transformation. ⇒ if the determinant of Jacobian matrix is closer 1,
then the topology is better preserved

One-landmark, Two-landmarks and Four-landmarks matching.
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One-landmark Matching

In this case, necessary conditions to have topology preservation are:

1 Continuity of the function F

2 Positivity of the Jacobian determinant at each point
⇓

The coordinates of transformation are

F1(x)=x + ∆x Φ(||x− p||),
F2(x)=y + ∆y Φ(||x− p||),

⇓
Requiring the determinant of the Jacobian is positive, we obtain

det(J(x , y))=1 + ∆x
∂Φ
∂x + ∆y

∂Φ
∂y > 0,

⇓
∆∂Φ

∂r > −
1√
2
.

here ∆ = max{∆x , ∆y}. c∗ can be estimated based on
(∂Φ
∂r )min, r =

√
x2 + y2.
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Evaluation of c∗

The advantage of having small C is that the influence area of each landmark
turns out to be small. This allows us to have a greater local control.

ϕ3,1 ψ1,2 τ2,7/2 τ2,5

c > 2.98∆ c > 2.80∆ c > 5.09∆ c > 6.26∆

Table 1: Minimum support size for various CSRBFs, where d = 2.

Gaussian M1/2 M3/2 M5/2
c > 2.42∆ c > 1.10∆ c > 0.52∆ c > 0.3960∆

Table 2: Minimum support size for GSRBFs, where d = 2.
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Numerical Results: One-landmark

The considering grid is 40× 40 in [0,1]2. Mapping the template landmark
(0.5,0.5) into the corresponding reference landmark (0.6,0.7) to
transform the grid.
Here we show two examples:

i topology preservation results with c∗

ii results with a value c which leads topology condition violation

In both examples, ∆ = 0.2.
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Numerical Results: Topology Preservation for
GSRBFs

(c) Gaussian c = 0.5 (d) Matérn,M1/2 c = 0.22

(e) Matérn,M3/2 c = 0.105 (f) Matérn,M5/2 c = 0.08
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Numerical Results: Topology Preservation for
CSRBFs

(g) Wendland ϕ3,1, c = 0.6 (h) Wuψ1,2, c = 0.58

(i) Gneiting τ2,7/2, c = 1.02 (j) Gneiting τ2,5, c = 1.26
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Numerical Results: Topology Violation for GSRBFs

(k) Gaussian c = 0.34 (l) Matérn,M1/2 c = 0.09

(m) Matérn,M3/2 c = 0.08 (n) Matérn,M5/2 c = 0.05
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Numerical Results: Topology Violation for CSRBFs

(o) Wendland ϕ3,1, c = 0.25 (p) Wuψ1,2, c = 0.25

(q) Gneiting τ2,7/2, c = 0.25 (r) Gneiting τ2,5, c = 0.25
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Two-landmarks Matching

In this model, two landmarks are given as P = {(0, 0), (d , l)} and Q = {(0,∆), (d , l −∆)}.
In this case, the displacements along x- and y-coordinate are same but with opposite
directions. ∆ < max{d , l}.

1 the locality parameter c is chosen large enough to ensure the influence
regions of the two landmarks intersect each other

2 small locality parameters result in a non-preserving topology similar to the
one-landmark matching case

Let us now consider components of a generic transformation F : R2 → R2 obtained by a
transformation of two points, i.e,

1 F1(x) =x + α1,1Φ(||x− xT
1 ||) + α1,2Φ(||x− xT

2 ||),
2 F2(x)=y + α2,1Φ(||x− xT

1 ||) + α2,2Φ(||x− xT
2 ||).
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Determinant of Jacobian Matrix

For obtaining α1,1,α1,2,α2,1 and α2,2, we require that

F1((0, 0)) = 0, F1((d , l)) = d ,

F2((0, 0)) = ∆, F2((d , l)) = l −∆.

Solving these two systems of two equations in two unknowns, we get

α1,1 = 0, α1,2 = 0, α2,1 = ∆

1−Φ
(√

d2+l2
) , α2,2 = −α2,1.

It follows that the determinant of the Jacobian matrix is

det (J(x , y)) = 1 + α2,1
∂Φ
(√

x2+y2
)

∂y + α2,2
∂Φ
(√

(x−d)2+(y−l)2
)

∂y ,
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Minimum Value of Jacobian Matrix Determinant

The minimum value is occurred at the midpoint between P1 and P2, i.e.,
( d

2 ,
l
2

)
, when

∆ > 0 and the intersection of the influence regions of two landmarks does not turn out
to be negligible. We thus obtain the optimal locality parameter when

det
(
J
( d

2 ,
l
2

))
= 0.

Obviously, one can observe that

∂Φ
(√

x2+y2/c
)

∂y

∣∣∣∣
x= d

2 ,y= l
2

= −
∂Φ
(√

(x−d)2+(y−l)2/c
)

∂y

∣∣∣∣
x= d

2 ,y= l
2

,

so we get

det
(
J
( d

2 ,
l
2

))
= 1 + 2α2,1

∂Φ
(√

x2+y2/c
)

∂y

∣∣∣∣
x= d

2 ,y= l
2

.

Joint work with A. De Rossi and R. Cavoretto 31 / 64



det
(
J
(d

2 ,
l
2

))
of Various RBFs

Radial Basis Functions det
(

J
(

d
2 ,

l
2

))
Gneiting τ2,7/2 det

(
J
( d

2 ,
l
2

))
= 1− 99

16c2

∆l

(
1−
√

d2+l2
2c

)5/2(
8−15

√
d2+l2
2c

)

1−
(

1−
√

d2+l2
c

)7/2(
1+ 7

2

√
d2+l2

c − 135
8

d2+l2

c2

) ,

Gneiting τ2,5 det
(
J
( d

2 ,
l
2

))
= 1−

21∆l
(

4− 7
2

z1/2
c −3 z

c2 + 19
4

z3/2

c3 −2 z2

c4 + 9
2

z5/2

c5

)
42z−175 z3/2

c +315 z2
c2 −294 z5/2

c3 +140 z3
c4 −27 z7/2

c5

,

Matérn M1/2 det
(
J
( d

2 ,
l
2

))
= 1− 2l∆e−

√
d2+l2/2c

c
√

d2+l2
(

1−e−
√

d2+l2/c
)

Matérn M3/2 det
(
J
( d

2 ,
l
2

))
= 1− l∆e−

√
d2+l2/2c

c2
(

1−
(

1+

√
d2+l2

c

))
e−
√

d2+l2/c

Matérn M5/2 det
(
J
( d

2 ,
l
2

))
= 1−

l∆e−
√

d2+l2/2c
(

1+

√
d2+l2
2c

)

3c2
(

1−
(

1+

√
d2+l2

c + d2+l2

3c2

))
e−
√

d2+l2/c
.

Joint work with A. De Rossi and R. Cavoretto 32 / 64



Evaluation of c∗

(s) d = l = 32 (t) d = l = 32

Figure 3: Comparing support size c with fixed d ,l and different ∆

Joint work with A. De Rossi and R. Cavoretto 33 / 64



(a) d = 32, l = 64 (b) d = 32, l = 64

Figure 4: Comparing support size c with fixed d ,l and different ∆
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Evaluation of the Jacobian Determinant

By varying the displacement of such points, we can compare results by two criteria:

1 The number of points where the determinant of the Jacobian is negative

⇒Such number indicates the size of the region with violated topology preservation.

2 The average of the negative Jacobian determinants

⇒ This parameter represents the severity of topology violation,The more the value is
negative, the more the transformation might be bent or broken compared to the original
structure.
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Evaluation of the Jacobian Determinant–Result 1

(a) d = l = 32,∆ = 28 (b) d = l = 32,∆ = 28
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(c) d = l = 32,∆ = 28 (d) d = l = 32,∆ = 28
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Evaluation of the Jacobian Determinant–Result 2

(e) d = 32,l = 64,∆ = 28 (f) d = 32,l = 64,∆ = 28
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(g) d = 32,l = 64,∆ = 28 (h) d = 32,l = 64,∆ = 28
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Evaluation of the Jacobian Determinant–Result 3

(i) d = 8,l = 0,∆ = −8 (j) d = 8,l = 0,∆ = −8
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(k) d = 8,l = 0,∆ = −8 (l) d = 8,l = 0,∆ = −8
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Evaluation of the Jacobian Determinant–Result 4

(m) d = 8,l = 0,∆ = −16 (n) d = 8,l = 0,∆ = −16

Figure 5: Comparison of the negative number and the average of Jacobian determinant
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(a) d = 8,l = 0,∆ = −16 (b) d = 8,l = 0,∆ = −16

Figure 6: Comparison of the negative number and the average of Jacobian determinant
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Numerical Results: Two-landmarks

Considering 40× 40 grid in [0,1]2 and then compare results obtained by
the grid distortion in the shift case of two landmarks
{(0.375,0.350), (0.625,0.55)} in {(0.375,0.5), (0.625,0.4)}
respectively.
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Numerical results: Two-landmarks for GSRBFs

(a) Gaussian, c = 0.5 (b) Matérn,M1/2, c = 0.25

(c) Matérn,M3/2, c = 0.1 (d) Matérn,M5/2, c = 0.1
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Numerical Results: Two-landmarks for CSRBFs

(e) Wendland ϕ3,1, c = 0.5 (f) Wuψ1,2, c = 0.5

(g) Gneiting τ2,7/2, c = 0.5 (h) Gneiting τ2,5, c = 0.5
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Bad Results: Two-landmarks for the Whole
Deformation

(i) M1/2, c = 0.5 (j) M3/2, c = 0.5 (k) M5/2, c = 0.5

Figure 7: Bad results of Matérn transformations
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Four-landmarks Matching

1 In the following we compare topology preservation properties for globally supported
transformations.

2 Considering four inner landmarks in a grid, located so as to form a rhombus at the center of
the figure, and we suppose that only the lower vertex is downward shifted of ∆

3 The landmarks of template and reference images are P = {(0, 1), (−1, 0), (0,−1), (1, 0)}
and Q = {(0, 1), (−1, 0), (0,−1−∆), (1, 0)}, respectively, with ∆ > 0.

4 Let us now consider components of a generic transformation F : R2 → R2 obtained by a
transformation of four points P1, P2, P3 and P4, namely

F1(x) = x +
4∑

i=1

α1,i Φ(||x− Pi ||),

F2(x) = y +
4∑

i=1

α2,i Φ(||x− Pi ||).
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Optimal Locality Parameter c∗ in Four-landmarks

The coefficients α1,i and α2,i are obtained so that the transformation sends Pi to
Qi , with i = 1, . . . , 4. To do that, we need to solve two systems of four equations
in four unknowns, whose solutions are

α1,1 = 0, α1,2 = 0, α1,3 = 0, α1,4 = 0,

and

α2,1 = β2+β−2α2

(1−β)[(1+β)2−4α2]
∆, α2,2 =

α

(1 + β)2 − 4α2 ∆,

α2,3 = − 1+β−2α2

(1−β)[(1+β)2−4α2]
∆, α2,4 = α2,2,

where α = Φ
(√

2
c

)
and β = Φ

( 2
c

)
. For simplicity, we denote

Φ1 = Φ(||(x , y)− P1||/c), Φ2 = Φ(||(x , y)− P2||/c), Φ3 = Φ(||(x , y)− P3||/c)
and Φ4 = Φ(||(x , y)− P4||/c).
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Four-landmarks: the Determinant of Jacobian matrix

The determinant of the Jacobian matrix is

det (J(x , y)) = 1 +
∑4

i=1 α2,i
∂Φi
∂y .

The minimum Jacobian determinant is obtained at position (0, y), with y > 1. In the
following, we analyse the value of the Jacobian determinant at (0, y), with y > 1, for
different RBFs. Since the support c is very large, in order to have a global
transformation, we consider || · ||/c to be infinitesimal and omit terms of higher order.
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det (J(0, y)) of Various RBFs

Radial Basis Functions det (J(0, y))

Wendland ϕ3,1 det (J(0, y)) ≈ 1− 0.6402∆
(

y2 + 1− y
√

y2 + 1
)

,

Wu ψ1,2 det (J(0, y)) ≈ 1− 0.6402∆
(

y2 + 1− y
√

y2 + 1
)

Gaussian det (J(0, y)) ≈ 1− y
2 ∆,

Gneiting τ2,7/2 det (J(0, y)) ≈ 1− 0.6402∆
(

y2 + 1− y
√

y2 + 1
)

,

Gneiting τ2,5 det (J(0, y)) ≈ 1− 0.6402∆
(

y2 + 1− y
√

y2 + 1
)

,

Matérn M1/2 det (J(0, y)) ≈ 1− 2.4142∆

(
−1 + y√

y2+1

)
.

Matérn M3/2 det (J(0, y)) ≈ 1− 1.7071∆
(

y2 + 1− y
√

y2 + 1
)
.

Matérn M5/2 det (J(0, y)) ≈ 1− 2.5607∆
(

y2 + 1− y
√

y2 + 1
)
.
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Evaluation of det (J(0, y))

(a) CSRBFs (b) RBFs

Figure 8: Value of det(J(0, y)), with y > 1, by varying RBFs.
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Numerical Results: Four-landmarks

Considering the same 40× 40 grid in [0,1]2 and compare results
obtained by its distortion, which is created by the shift of one of the four
landmarks distributed in rhomboidal position.
The template landmarks are
{(0.5,0.65), (0.35,0.5), (0.65,0.5), (0.5,0.35)}
and are respectively transformed in the following reference landmarks
{(0.5,0.65), (0.35,0.5), (0.65,0.5), (0.5,0.25)}
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Numerical Results: Four-landmarks for GSRBFs

(a) Gaussian, c = 100 (b) Matérn,M1/2, c = 100

(c) Matérn,M3/2, c = 100 (d) Matérn,M5/2, c = 100
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Numerical Results: Four-landmarks for CSRBFs

(e) Wendland ϕ3,1, c = 100 (f) Wuψ1,2, c = 100

(g) Gneiting τ2,7/2, c = 100 (h) Gneiting τ2,5, c = 100
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Numerical Results of Medical Brain Images

(i) Gaussian, c = 4 (j) Matérn,M1/2, c = 4

(k) Matérn,M3/2, c = 4 (l) Matérn,M5/2, c = 4
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Numerical Results of Medical Brain Images

(m) Wendland ϕ3,1, c = 4 (n) Gneiting τ2,7/2, c = 4 (o) Gneiting τ2,5, c = 4

(p) Wuψ1,2, c = 4 (q) Gneiting τ2,7/2, c = 10 (r) Gneiting τ2,5, c = 10
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REAL IMAGE SOFTWARE
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FAIR-Software to Implement LIR

The software based on FAIR is used to implement LIR, which was created by J. Modersitzki
in 2009.

The process for satisfying LIR is described as the following steps:

1 Read into images–setupIMMAGINI.m

2 Choose landmarks manually–getLandmarks.m

3 Calcuate the RBF interpolant–getRBFcoefficients.m

4 Register the template image and view the results–evalRBF.m,
viewImage2D.m
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How to Implement the Software on MATLAB

(s) E5-2D-Gneiting
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The Deformed Grid and the Intuitive Result: OPPOSITE

(t) E5-2D-TPS
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Comparison of CPU Time for Various RBFs in Hand
Case

RBFs Gaussian M1/2 M3/2 M5/2

CPU Time/S 0.3559 0.3593 0.3287 0.3509
RBFs ψ1,2 ϕ3,1 τ2,7/2 τ2,5

CPU Time/S 1.9173 1.8389 1.8708 1.9067

Table 3: The CPU time is the average value of 5 experiments. The hand image has
310× 310 pixels.
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Thank you for your attention
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