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Part I

The problem and the first approach

Work with A. Iske, A. Sironi
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Description of CT
How does it work?

Non-invasive medical procedure (X-ray equipment).
X-ray beam is assumed to be:
- monochromatic;
- zero-wide;
- not subject to diffraction or refraction.
Produce cross-sectional images.
Transmission tomography (emissive tomography, like PET
and SPECT, are not considererd here)
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Description of CT
How does it work?

`(t,θ) −→ line along which the X-ray is moving;
(t, θ) ∈ R× [0, π) −→ polar coordinates of line-points;
f −→ attenuation coefficient of the body;
I −→ intensity of the X-ray.
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X-rays

Discovered by Wihelm
Conrad Röntgen in 1895

Wavelength in the range
[0.01, 10]× 10−9 m

Attenuation coefficient:

A(x) ≈ ”#pho.s absorbed/1mm”

A : Ω→ [0,∞) Figure : First X-ray image:
Frau Röntgen left hand.
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CT: people

Computerized Tomography (CT)

modern CT

Allan Mcleod Cormack Godfrey Newbold Hounsfield

both got Nobel Price for Medicine and Physiology in 1979
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Computerized Axial Tomography

Figure : First generation of CT
scanner design.

A. Cormack and G.
Hounsfield 1970
Reconstruction from
X-ray images taken
from 160 or more
beams at each of 180
directions
Beer’s law (loss of
intensity):∫ x1

x0
A(x) dx = ln

( I0
I1

)
︸ ︷︷ ︸

given by CT
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Lines in the plane

A line l in the plane, perpendicular to the unit vector n = (cos θ, sin θ)
and passing through p = (t cos θ, t sin θ) = tn, can be characterized
(by the polar coordinates t ∈ R, θ ∈ [0, π)), i.e. l = lt,θ

lt,θ = {x := (t cos θ − s sin θ, t sin θ + s cos θ) = (x1(s), x2(s)) s ∈ R}

t,θ

Figure : A line in the plane.
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Radon transform
definition

The Radon transform of a given function f : Ω ⊂ R2 → R is defined
for each pair of real number (t, θ), as line integral

Rf (t, θ) =

∫
lt,θ

f (x)dx =

∫
R
f (x1(s), x2(s)) ds

t

Figure : Left: image. Right: its Radon transform (sinogram)
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Radon tranform
Image reconstruction

A CT scan measures the X-ray projections through the object,
producing a sinogram, which is effectively the Radon transform
of the attenuation coefficient function f in the (t, θ)-plane.
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Radon transform: another example

Figure : Shepp-Logan
phantom.

Figure : Radon transform
(sinogram).
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Back projection

First attempt to recover f from Rf
The back projection of the function h ≡ h(t, θ) is the
transform

Bh(x) =
1
π

∫ π

0
h(x1 cos θ + x2 sin θ, θ) dθ

i.e. the average of h over the angular variable θ, where
t = x1 cos θ + x2 sin θ = x · n.

Figure : Back projection of the Radon transform.
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Important theorems

Theorem (Central Slice Theorem)
For any suitable function f defined on the plane and all real
numbers r , θ

F2f (r cos θ, r sin θ) = F (Rf )(r , θ).

(F2 and F are the 2-d and 1-d Fourier transforms, resp.).

Theorem (The Filtered Back-Projection Formula)
For a suitable function f defined in the plane

f (x) =
1
2B{F

−1[|r |F (Rf )(r , θ))]}(x) , x ∈ R2.
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Fundamental question

Fundamental question of image reconstruction.
Is it possible to reconstruct a function f starting from its
Radon transform Rf ?

Answer (Radon 1917).
Yes, we can if we know the value of the Radon transform for
all r , θ.
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Discrete problem

Ideal case
Rf (t, θ) known for all t, θ
Infinite precision
No noise

Real case
Rf (t, θ) known only on a finite set {(tj , θk)}j,k
Finite precision
Noise in the data



Kernel-based
Image Recon-

struction

Stefano De
Marchi

Image Recon-
struction from
CT

Radon
transform
Back-P and
Filtered
Back-P

Kernel based
methods
Numerical
results

Fourier-based approach

Sampling: Rf (t, θ) → RDf (jd , kπ/N)

Discrete transform: e.g.

BDh(x) =
1
N

N−1∑
k=0

h(x cos (kπ/N) + y sin (kπ/N), kπ/N)

Filtering (low-pass): |r | = Fφ(r), with φ band-limited
function
Interpolation: {fk : k ∈ N} → If (x), x ∈ R
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Discrete problem

Back-Projection Formula

f (x) =
1
2B{F

−1[|r | · F (Rf (r , θ))]}(x)

Filtering

f (x) =
1
2B{F

−1[F (φ(r)) · F (Rf (r , θ))]}(x) =

=
1
2B{F

−1[F (φ ∗ Rf (r , θ))]}(x)

=
1
2B[φ ∗ Rf (r , θ)](x)

Sampling and interpolation

f (xm
1 , xn

2 ) =
1
2BDI[φ ∗ RDf (rj , θk)](xm

1 , xn
2 )
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Discrete problem: an example

Figure : Shepp-Logan phantom.
Figure : Reconstruction with linear
interpolation and
180x101 = 18180 samples.
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Algebraic Reconstruction Techniques (ART)

Differently from Fourier-based reconstruction, we fix a set
B = {bi}nj=1 of basis functions.

Example
A square image (m = K 2) can be expressed as

I(x) =
m∑

i=1
aibi (x),

where
ai is the color of the i-th pixel,
bi the pixel basis, for i = 1, . . . ,m given as

bi (x) =

{
1 if x lies in pixel i
0 otherwise
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Linear system

Asking

RI(tj , θj) = Rf (tj , θj), j = 1, . . . , n

we obtain the linear system
m∑

i=1
aiRbi (tj , θj) = Rf (tj , θj), j = 1, . . . , n

Large but sparse linear system (usually rectangular)
Solution by iterative methods (Kaczmarz, MLEM, OSEM,
LSCG), or SIRT techniques (see also the Matlab package
AIRtools by Hansen &Hansen 2012).
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ART reconstruction: Example 1

Figure : Bull’s eye phantom.
Figure : 64× 64 = 4096
reconstructed image with 4050
samples by Kaczmarz.
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ART reconstruction: Example 2

Figure : Shepp-Logan phantom. Figure : The phantom
reconstructed by MLEM in 50
iterations.
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Hermite-Birkhoff (H-B) (generalized) interpolation

Let Λ = {λ1, . . . , λn} be a set of linearly independent linear
functionals and fΛ = (λ1(f ), . . . , λn(f ))T ∈ Rn.
The solution of a general H-B reconstruction problem:

H-B reconstruction problem
find g =

∑n
j=1 cjgj such that gΛ = fΛ, that is

λk(g) = λk(f ), k = 1, . . . , n . (1)

Being λk := Rk f = Rf (tk , θk), k = 1, . . . , n the conditions (1)

n∑
j=1

cjλk(gj) = λk(f ), k = 1, . . . , n (2)

that corresponds to the linear system Ac = b as before.
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H-B interpolation: basis functions

Haar-Maierhuber-Curtis theorem (1904, 1956, 1959): In
the multivariate setting, the well-posedness of the
interpolation problem of scattered data is garanteed if we
no longer fix in advance the set of basis functions.
Thus, the basis gj should depend on the data

gj(x) = λy
j (K (x, y)) [= Ry[K (x, y)](tk , θk)] , j = 1, . . . , n

chosing the kernel K such that the matrix

A = (λxj [λyk(K (x, y))])j,k

is not singular ∀ (tk , θk).
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Positive definite radial kernels

We consider continuous kernels K : R2 × R2 → R s.t.
Symmetric K (x, y) = K (y, x)

Radial K (x, y) = Φε(‖x− y‖2), ε > 0
Positive definite (PD)

n∑
k,j=1

cjckλ
x
j λ

y
kK (x, y) ≥ 0

for all set of linear operators λj and for all c ∈ Rn \ {0}
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Positive definite kernels: examples

Gaussian

Φε(‖x‖) = e−(ε‖x‖)2 , PD ∀ x ∈ R2, ε > 0

Inverse multiquadrics

Φε(‖x‖) =
1√

1 + (ε‖x‖)2
, PD ∀ x ∈ R2, ε > 0

Askey’s compactly supported (or radial characteristic
function)

Φε(‖x‖) = (1− ε‖x‖)β+ =

{
(1− ε‖x‖)β ‖x‖ < 1/ε
0 ‖x‖ ≥ 1/ε

which are PD for any β > 3/2.
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A useful Lemma

Lemma

Let K (x, y) = Φ(‖x− y‖2) with Φ ∈ L1(R). Then for any
x ∈ R2 the Radon transform RyK (x, y) at (t, θ) ∈ R× [0, π)
can be expressed

(RyK (x, y))(t, θ) = (RyK (0, y))(t − x · n, θ) .

−→ shift invariant property of the Radon transform.
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Problem

Inverse multiquadric kernel

K (x, y) =
1√

1 + ‖x− y‖22
.

Applying the previous Lemma we have

Ry[K (0, y)](t, θ) =

∫
R

1√
1 + t2 + s2

ds = +∞

Hence, the basis gk and the matrix A are not well defined!
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Regularization
Window function

Multiplying the kernel K by a window function w such that

R[K (x, y)w ](t, θ) <∞ ∀ (x , y), (t, θ).

This corresponds to use the linear operator Rw in place of
R

Rw [f ](t, θ) = R[fw ](t, θ).

We consider w radial, w = w(‖·‖2)



Kernel-based
Image Recon-

struction

Stefano De
Marchi

Image Recon-
struction from
CT

Radon
transform
Back-P and
Filtered
Back-P

Kernel based
methods
Numerical
results

Example of window functions

Characteristic function

w(x) = χ[−L,L](‖x‖2), L > 0

Gaussian
w(x) = e−ν2‖x‖22 , ν > 0

Compactly supported (Askey’s family)

w(x) = (1− ν2‖x‖22)+, ν > 0
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Example: Gaussian kernel

Gaussian kernel, shape parameter ε

K (x, y) = e−ε2‖x−y‖22 , ε > 0

Basis function

gj(x) = Ry[K (x, y)](tj , θj) =

√
π

ε
e−ε2(tj−x ·vj )2

with vj = (cos θj , sin θj)

Matrix A = (ak,j)

ak,j = R[gj ](tk , θk) = +∞, if θj = θk
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Example: Gaussian kernel (cont’)

Considering the Gaussian window function

w(x) = e−ν2‖x‖22 , ν > 0

The matrix A becomes

ak,j = R[gjw ](tk , θk) =
π exp [−ν2(t2k + ε2β2

ε2α2+ν2 )]

ε
√
ε2α2 + ν2

where α = sin (θk − θj) and β = tj − tk cos (θk − θj)
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Example: Gaussian kernel (cont’)

Figure : Crescent-shaped
phantom.

Figure : 256× 256 = 65536
reconstructed image with
n = 4050 samples.
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A numerical experiment

Gaussian kernel Φε and gaussian weight wν
Comparison with the Fourier-based reconstruction (relying on
the FBP)

Reconstructions from scattered Radon data and noisy Radon
data

Root Mean Square Error

RMSE =
1
J

√√√√ J∑
i=1

(fi − gi )2

J is the dimension of the image, {fi}, {gi} the greyscale values
at the pixels of the original and the reconstructed image.
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Kernel-based vs Fourier based: I

� Test phantoms

Figure : crescent
shape Figure : bull’s eye Figure : Shepp-Logan
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Geometries

Figure : Left: parallel beam geometry, 170 lines (10 angles and 17
Radon lines per angle). Right: scattered Radon lines, 170 lines.
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Kernel-based vs Fourier based: II

Using parallel beam geometry, i.e.
θk = kπ/N, k = 0, . . . ,N − 1 and tj = jd , j = −M, . . . ,M,
with sampling spacing d > 0 −→ (2M + 1)× N regular grid of
Radon lines. No noise on the data.

With N = 45, M = 40, ε = 60 we got

Phantom optimal ν kernel-based Fourier-based
crescent 0.5 0.102 0.120
bull’s eye 0.4 0.142 0.134

Shepp-Logan 1.1 0.159 0.177

Table : RMSE of kernel-based vs Fourier-based method
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Kernel-based vs Fourier based: III

Using scattered Radon data, with increasing randomly chosen
Radon lines n = 2000, 5000, 10000, 20000.No noise on the data.

With ε = 50 and ν = 0.7 we got

Phantom 2000 5000 10000 20000
crescent 0.1516 0.1405 0.1431 0.1174
bull’s eye 0.1876 0.1721 0.2102 0.1893

Table : RMSE of kernel-based vs different number n of Radon lines
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Kernel-based vs Fourier based: IV

These experiments are with noisy Radon data, i.e. we add a
gaussian noise of zero mean and variance σ = 1.e − 3 to each of
the three phantoms.
With same parallel beam geometry and same ε and ν

Phantom kernel-based Fourier-based
crescent 0.1502 0.1933
bull’s eye 0.1796 0.2322

Shepp-Logan 0.1716 0.2041

Table : RMSE of kernel-based vs Fourier-based with noisy data

With scattered Radon data and same ε and ν

Phantom noisy noisy-free
crescent 0.2876 0.1820
bull’s eye 0.3140 0.2453

Table : RMSE with noisy and noisy-free data
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Window function parameter

Gaussian kernel; Gaussian window function

K (x, y) = e−ε2‖x−y‖22 w(x) = e−ν2‖x‖22

(a) RMSE (b) k−1(A)

Figure : Bull’s eye phantom, ε = 30.

Trade-off principle (Schaback 1995)
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Kernel shape parameter

Multiquadric kernel, Gaussian window

K (x, y) =
√
1 + ρ2‖x− y‖22 e

−ε2‖x−y‖22

(a) Crescent-shaped phantom (b) Shepp-Logan phantom

Figure : Optimal values depend on the data.
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Comparison with FBP Formula

Figure : FBP and Gaussian
kernel reconstruction (with
optimal parameters ε∗, ν∗).

(a) (b)

Figure : Crescent-shaped: (a) FBP; (b)
Gaussian kernel.
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Comparison with FBP Formula

* RMSE of the same order (ok!)
* More computational time and memory usage (not so well!)

(a) FBP (b) Multiquadric kernel

Figure : Computational time.
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Fast implementation of ART

Work with F. Filbir, J. Frikel and M. Narduzzo



Kernel-based
Image Recon-

struction

Stefano De
Marchi

Numerical
results

Inverse problem of CT
ART-solution

Algebraic Reconstruction Technique (ART): generality

ART determines a solution in the recovery subspace

SΥ := span {Φε(· − yj) : 1 ≤ j ≤ J} ⊆ NΦ(Ω) ,

where Υ := {y1, . . . , yJ} ⊆ Ω arbitrary, but fixed, set of
reconstruction points and {Φε(· − yj)}Jj=1 translates of the
basis function Φ (RBFs).
Search solution for R f = ḡ of the form

f̃Υ =
∑J

j=1 αjΦε(· − yj) ∈ SΥ ,

with α = (α1, . . . , αJ)T ∈ RJ to be determined.
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Inverse problem of CT
ART-solution

Thanks to the linearity of the Radon transform ...

ART-problem
Search a solution α̃ ∈ RJ for the linear system

Aα = ḡ ,

where A ∈ RKL×J is the collocation matrix defined as

Ai(k,l),j := R (Φ(· − yj)) (tk , θl )

for 1 ≤ i(k, l) ≤ KL and 1 ≤ j ≤ J .
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Inverse problem of CT
ART-solution

Theorem
Let A ∈ RKL×J and ḡ ∈ RKL. Then,

1 There is at least one solution of the minimization problem

min
α∈RJ

|Aα− ḡ | .

There exists exactly one solution with minimal Euclidean
norm (Moore-Penrose solution α+).

2 The solution comes from the system of normal equations

ATAα = AT ḡ .
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Inverse problem of CT
ART-solution

M := ATA symmetric and positive definite

↙
M non-singular

↓
∃! solution for Mα = g̃

with g̃ := AT ḡ

Mα = g̃ solve with e.g.
CGM

↗
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Inverse problem of CT
Conjugate Gradient Method

Theorem
Let M ∈ RJ×J be a positive definite matrix. For any α(0) ∈ RJ ,
the sequence

{
α(k)

}
k∈N

, generated by the CGM, converges to
the minimal norm solution α+ in at most J steps.

The matrix-vector product performed in O(J · KL)
floating-points operations.
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Fast implementation of ART
Efficient choice of reconstruction points

Fast implementation

Choose a polar reconstruction grid

ΥDN ,Θ :=
{
yj(n,̃l) = rn(cos(θl̃ ), sin(θl̃ ))T : 1 ≤ j(n, l̃) ≤ NL

}
,

with

DN := {rn ∈ [−r , r ] : ∆r > 0 for 1 ≤ n ≤ N}

and

Θ :=
{
θl̃ ∈ [0, π) : ∆θ > 0 for 1 ≤ l̃ ≤ L

}
s.t. Θ is the set of angular coordinates of the line-points.
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Fast implementation of ART
Efficient choice of reconstruction points

Line-points with radius 1 (asterisks). Polar reconstruction grid in B1(0) ⊆ R2 (small circles).
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Fast implementation of ART
Efficient storage of the matrix

BLOCK CIRCULANT STRUCTURE for A

A =


A11 . . . A1N
... . . . ...
... . . . ...

AK1 . . . AKN

 ∈ RKL×NL

where every block-matrix Akn ∈ RL×L takes the form

Akn =



a1 a2 . . . . . . aL−1 aL
aL a1 a2 . . . . . . aL−1
... aL a1 . . . . . .

...
a3

. . . . . . . . . . . . a2
a2 a3 . . . . . . aL a1


∈ RL×L
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Fast implementation of ART
Fast matrix-vector product using a circulant matrix

Theorem (Main theorem, Narduzzo master’s thesis)
Let C ∈ RL×L be a circulant matrix with first column c ∈ RL.
Further, let FL ∈ CL×L be the rescaled Fourier matrix
(Fi ,j = 1√

Lµ
(i−1)(j−1)
L with µL := e− 2πi

L ). Let F ∗L be its
conjugate transpose. Then, it holds

C v = F ∗L [(FL c)� (FL v)] ∀v ∈ RL . (3)

Here � is the component-wise multiplication operator: x � y = (x1y1, . . . , xLyL), x, y ∈ RL.

Matrix-vector product now performed in

O(NKL lg (L)) floating-points operations

through the use of FFT and IFFT.
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Numerical results
Entries of the collocation matrix

Choice of the RBF

RBF: Gaussian with shape parameter ε > 0

Φε(x − y) := e−ε2‖x−y‖2 ∀x , y ∈ R2.

Entries of the collocation matrix:

Ai(k,l),j(n,̃l) = RΦε(· − yj(n,̃l))(tk , θl )

=

√
π

ε
e−ε2(tk−rn cos(θl−θl̃ ))2

for 1 ≤ i(k, l) ≤ KL and 1 ≤ j(n, l̃) ≤ NL.
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Fast implementation of ART
Experiment 1: Computational efficiency and accuracy of FCGM

Experiment 1

Shepp-Logan phantom.

L × K = 360 × 569 (angular
× radial)
N = 150 (∆r cost);
ε = 150;
iter = 30;
R = 400 (resolution).
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Numerical results
Experiment 1: Computational efficiency and accuracy of FCGM

Computational efficiency...

CPU time plot (in sec) as a function of the available Radon data, R̃
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Numerical results
Experiment 1: Computational efficiency and accuracy of FCGM

R = 400; L × K = 360 × 569.

Reconstructed phantom Cross-section (line 180)

Original phantom
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Numerical results
Experiment 1-Equispaced vs fast Leja radii

RMSE = 0.076764
max -err = 1.045491

CPU time = 274.5 sec

Error plot (equispaced radii)

RMSE = 0.080900
max -err = 1.086950

CPU time = 284.9 sec

Error plot (fast Leja radii)
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Numerical results
Experiment 2: Trade-off numerical stability vs accuracy

Experiment 2
κ(B) := `2-condition number ;
qΥ := separation distance between
reconstruction points;

hX,∆ := fill-distance line-points X;
qX,Υ := separation distance between
line-points and reconstruction points.

* From several experiments we obtained (C > 0,τ > d
2 )

‖f̃Υ − f ‖2 ≤ C (hX,∆ · qX,Υ)τ
(
1 +

√
κ(B)

)
‖f ‖NΦε(Ω)

,

* From theoretical results on RBF we know (Cd > 0) [(cf. Fasshauer’s book)]

κ(B) = λmax/λmin ,

λmax ≤ (NL) · Φε(0) , (Gerschgorin′s theorem)

λmin ≥ Cd

(√
2ε
)−d

e−40.71d2/(qΥε)
2
q−d

Υ .
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Numerical results
Experiment 2: Trade-off numerical stability vs accuracy (non stationary case)

Smiley phantom;
L × K = 144 × 171.

iter = 30;
R = 100.

N variable (∆r cost); ε̄ = 60

N L2 λmin κ(B)
n.rec.circles error min.eigenvalue cond.number

40 41.081787 1.081460·10−19 5.032868·1020
50 35.247683 3.592425·10−30 1.948570·1031
55 36.214269 1.998062·10−30 7.207981·1031
60 33.359540 1.292076·10−31 6.739194·1032
65 33.087770 4.161096·10−32 3.469419·1033
80 33.476398 9.725620·10−33 1.276718·1034



Kernel-based
Image Recon-

struction

Stefano De
Marchi

Numerical
results

Numerical results
Experiment 2: Trade-off numerical stability vs accuracy (stationary case)

Smiley phantom;
L × K = 144 × 171.

iter = 30;
R = 100.

ε > 0 variable; N̄ = 30 (∆r cost)

ε L2 λmin κ(B)
shape par. error min.eigenvalue cond.number

30 43.746117 2.792255·10−31 3.054914·1032
35 44.580586 4.402922·10−31 1.616392·1032
40 45.708660 9.237581·10−28 6.632798·1028
45 47.903512 2.764322·10−25 1.950951·1026
50 52.583766 2.059636·10−24 2.341632·1025
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Experiment 3: Choice of reconstruction parameters

Experiment 3

Smiley phantom;
L × K = 360 × 811.

R = 600;
ε =?;
N =?;
iter =?.
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Numerical results
Experiment 3: Choice of best shape parameter

1) Best shape parameter... iter = 30

N = 75 (∆r cost) N = 150 (∆r cost)

RMSE as a function of ε for equispaced reconstruction radii N = 75 (left) and N = 150 (right).
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Experiment 3: Choice of best shape parameter

...Heuristic rule..
(

∆r := 1
N

)

ε ≈ −9 828 ·∆r + 216
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Experiment 3: Choice of number of reconstruction points

2) Best number of reconstruction circles...

iter = 20; ∆r cost

N N·L ε RMSE maximal CPU time
n. rec.circles n. rec.points shape param. error (seconds)

50 18 000 19.440 0.408572 4.053001 101.7
75 27 000 84.960 0.317973 4.409125 134.0
100 36 000 117.720 0.300916 4.237258 181.8
125 45 000 137.376 0.295240 3.958031 237.7
150 54 000 150.480 0.297035 4.309017 309.1
175 63 000 159.840 0.296148 3.543423 384.0
200 72 000 166.860 0.295511 3.624649 486.0
225 81 000 172.320 0.295141 3.512590 594.3
250 90 000 176.688 0.296305 3.638046 668.8

RMSE and CPU time for increasing larger sets of reconstruction points.

for R = 600, from N = 150 to N = 200
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Experiment 3: Choice of number of iterations

3) Different iteration steps...
N = 200 (∆r cost); ε = 160
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Experiment 3: Choice of number of iterations

RMSE = 0.291745 max -err = 3.614396
CPU time = 527.8 sec

Error plot for iter = 28.
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Experiment 3: Choice of number of iterations

...Stopping condition...
N = 200 (∆r cost); ε = 160

Convergence history of residual and RMSE respect to the number of iterations.

tol = 10−3 for the residual decrease
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Numerical results
Experiment 4: Noisy data

Experiment 4

10% white Gaussian noise

Shepp-Logan
phantom;
L × K = 360 × 711.

N = 150 (∆r cost);
ε = 150.48;
iter = 25;
R = 500.
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Numerical results
Experiment 4: Noisy data

RMSE = 0.101538 max -err = 1.310516
residual-decrease = 10−2 CPU time = 298.3 sec

Reconstructed phantom Cross-section (line 120)
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Experiment 5: Real experimental data

Experiment 5

human pelvis;
L × K = 2 304 × 736.

N = 200 (∆r cost);
ε = 166.86;
tol = 10−3;
R = 520.

Data provided by Department of Diagnostic and Interventional Radiology at TUM
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Numerical results
Experiment 5: Real experimental data

NRMSE (Aα(k), ḡ) = 0.034964 residual-decrease = 10−3
iter = 22 CPU time = 14 027.2 sec

Reconstructed image
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Conclusions...

BLOCK CIRCULANT STRUCTURE

FAST MATRIX-VECTOR PRODUCT

FAST CGM

FAST ART

MORE COMPUTATIONAL EFFICIENCY!
SAME IMAGE RECONSTRUCTION CAPABILITY!
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