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Lissajous curves

For q ∈ R2, α ∈ R2 and u ∈ {−1,1}2, we define the Lissajous
curves by

l(q)
α,u : R→ [−1,1]2,

l(q)
α,u(t) =

Ç
u1 cos

Ç
lcm[q] · t − α1π

q1

å
,u2 cos

Ç
lcm[q] · t − α2π

q2

åå
.

These curves can be

degenerate, if there exists t ′ ∈ R and u′ ∈ {−1,1}2, such
that l(q)

α,u(· − t ′) = l(q)
0,u′ ,

non − degenerate, otherwise.
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The Lissajous curve is a periodic function with period 2π.

If the Lissajous curve is degenerate, it is doubly traversed,
so we can restrict the parametrization to [0, π].The points
l(q)
0,u (0) and l(q)

0,u (π) denote the starting and the end point of
the curve;
If the Lissajous curve is non − degenerate, we can find, up
to finitely many exceptions, only one value of t ∈ [0,2π)
corresponding to a point on the curve.

Chiara Faccio Lissajous points for polynomial interpolation on various domains



The Lissajous curve is a periodic function with period 2π.

If the Lissajous curve is degenerate, it is doubly traversed,
so we can restrict the parametrization to [0, π].The points
l(q)
0,u (0) and l(q)

0,u (π) denote the starting and the end point of
the curve;

If the Lissajous curve is non − degenerate, we can find, up
to finitely many exceptions, only one value of t ∈ [0,2π)
corresponding to a point on the curve.

Chiara Faccio Lissajous points for polynomial interpolation on various domains



The Lissajous curve is a periodic function with period 2π.

If the Lissajous curve is degenerate, it is doubly traversed,
so we can restrict the parametrization to [0, π].The points
l(q)
0,u (0) and l(q)

0,u (π) denote the starting and the end point of
the curve;
If the Lissajous curve is non − degenerate, we can find, up
to finitely many exceptions, only one value of t ∈ [0,2π)
corresponding to a point on the curve.

Chiara Faccio Lissajous points for polynomial interpolation on various domains



Degenerate Lissajous curves

Consider the Lissajous figures of the type:

γn,p : [0, π]→ [−1,1]2

γn,p =

Ç
cos(nt), cos((n + p)t)

å
= l(n+p,n)

0,1 (t)

with n and p positive integers such that n and n + p are
relatively prime.
If we sample the curve along n(n + p) + 1 equidistant points

tk =
πk

n(n + p)
, k = 0, ...,n(n + p)

in the interval [0, π], we get the Lissajous points

LDn,p := {γn,p(tk ) : k = 0, ...,n(n + p)}.
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This points are the self-intersections and boundary
contacts of the generating curve in [−1,1]2.

|LDn,p| = (n+p+1)(n+1)
2

Figure: Lissajous curve γ4,3 and LD4,3.
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We can describe the Lissajous curves and points in another
way: we consider the algebraic Chebyshev variety

Cn,p := {(x , y) ∈ [−1,1]2 : Tn+p(x) = Tn(y)}

where Tn(x) = cos(narcos(x)) denotes the Chebyshev
polynomial of the first kind.

This algebraic variety corresponds to the degenerate Lissajous
curve and the singular points of Cn,p to the Lissajous points.
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If we use the notation

zn
k := cos

Äkπ
n

ä
, n ∈ N, k = 0, ...n

to abbreviate the Chebyshev-Lobatto points, we can describe
the Lissajous points as

LDn,p = {(zn+p
i , zn

j ) : i = 0, ...,n+p, j = 0, ...,n, i+j ≡ 0 mod2}

Example: for d = 1 and n ∈ N, we obtain ln0,1(t) = cos(t),
ln0,1([0, π]) = [−1,1] and the points LDn = {zn

i : i = 0, ...,n} are
the univariate Chebyshev-Lobatto points.
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The points can be arranged, also, in two rectangular grids:

LDr
n,p = {(zn+p

i , zjn) : i = 0, ...,n + p, j = 0, ...,n, i , jeven}

LDb
n,p = {(zn+p

i , zjn) : i = 0, ...,n + p, j = 0, ...,n, i , jodd}

Introducing the index sets

ΓL
n,p =

¶
(i , j) ∈ N2

0 :
i

n + p
+

j
n
< 1
©
∪{(0,n)},

the note set LDn,p can be characterized as

LDn,p = {(zn+p
in+j(n+p), z

n
in+j(n+p)) : (i , j) ∈ ΓL

n,p)}.
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Figure: Lissajous curve γ4,3 and LD4,3.
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Non-degenerate Lissajous curves

We can consider the non-degenerate Lissajous curves of the
form

λn,p = (sin(nt), sin((n + p)t)) = l2(n+p,n)
(n+p,n),1(t)

where n and p are relatively prime. The curve is
non-degenerate if and only if p is odd.
In this case, λn,p : [0,2π)→ R2 is sampled along the 4n(n + p)
equidistant points

tk :=
2πk

4n(n + p)
, k = 1, ...,4n(n + p).

In this way we get the following set of Lissajous node points:

LNDn,p := {λn,p(tk ) : k = 1, ...,4n(n + p)}.
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The non-degenerate Lissajous points are the
self-intersections and boundary contacts of the Lissajous
curve in the square [−1,1]2;
|LNDn,p| = 2n(n + p) + 2n + p;
We can describe the points using the Chebyschev-Lobatto
points;
The algebraic Chebyshev variety in this case is

Cn,p = {(x , y) ∈ [−1,1]2 : (−1)n+pT2n+2p(x) = (−1)nT2n(y)}.

The points can be arranged in two rectangular grids.
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Figure: Lissajous curves λ2,1, |LND2,1| = 17 (left) and λ2,3,
|LND2,3| = 27 (right).
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Particular set of Lissajous points LC(2n)
k

Now we consider this set of Lissajous points:

LC(10,6)
0 = LC(10,6)

0,0 ∪ LC(10,6)
0,1

LC2n
0,τ = {(z(2n1)

i , z(2n2)
j ) : (i , j) ∈ I(2n)

0,τ }

I(2n)
0,τ = {(i , j) ∈ N0 :0 ≤ i ≤ 2n1 i ≡ τmod2,

0 ≤ j ≤ 2n2 j ≡ τmod2}
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We notice that the sets LC(2n)
0 are invariant under reflections

with the x and y axis, so we have the following characterization
of these Lisssajous points:

a point in LC(2n)
k is a

self-intersection point of exactly one curve OR it is an
intersection point of 2 curves.
Now, we return to the inititial general notation:

l(2n)
k ,u (t) = (u1 cos(2n1t − k1),u2 cos(2n2t − k2)).

The affine Chebyshev variety can be written as:

C(2n)
k =

⋃
u∈{−1,1}2

l(2n)
k ,u ([0, π)).

Similar as for the degenerate curves, a point is a singular point
of C(2n)

k if and only if it is a Lissajous point.
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Figure: Lissajous curve l(10,6)
0,(1,1)([0, π]) and LC(10,6)

0 .
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Figure: Lissajous curves l(10,6)
0,(1,1)([0, π]) ∪ l(10,6)

0,(−1,1)([0, π]) and LC(10,6)
0 .
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Figure: Lissajous points LC2(5,2)
(5,0) .
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Unified theory for Lissajous points and curves

We make use of a decomposition of the parameter vector n:
there exist integer vectors n∗,no ∈ N2 such that ∀i = 1,2:

ni = n∗i no
i ;

n∗i and no
i are relatively prime;

n∗1 and n∗2 are relatively prime;
lcm[n] = n∗1n∗2.

We introduce the following sets :

R(no) = {0,1, ...,mo
1 − 1} × {0,1, ...,mo

2 − 1}

I(n)
k ,τ = {(i , j) ∈ N0 :0 ≤ i ≤ 2n1 i ≡ τmod2,

0 ≤ j ≤ 2n2 j ≡ τmod2}
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Using the index sets I(n)
k ,τ , with τ = 1,2, we obtain the Lissajous

points
LC(n)

k = LC(n)
k ,0 ∪ LC(n)

k ,1, where

LC(n)
k ,τ = {(z(n1)

i , z(n2)
j ) : (i , j) ∈ I(n)

k ,τ}

C(n)
k = {(x , y) ∈ [−1,1]2 : (−1)k1Tn1(x) = (−1)k2Tn2(y)}

We consider now the following set of Lissajous curves

L
(n∗,no)
k =

¶
ln(2p1m∗1 +k1,2p2m∗2 +k2)|p ∈ R(no)

©
.

The Chebyshev variety Cn
k can be written as:

Cn
k =

⋃
l∈L(n∗,no)

k

l([0,2π])

Chiara Faccio Lissajous points for polynomial interpolation on various domains



Using the index sets I(n)
k ,τ , with τ = 1,2, we obtain the Lissajous

points
LC(n)

k = LC(n)
k ,0 ∪ LC(n)

k ,1, where

LC(n)
k ,τ = {(z(n1)

i , z(n2)
j ) : (i , j) ∈ I(n)

k ,τ}

C(n)
k = {(x , y) ∈ [−1,1]2 : (−1)k1Tn1(x) = (−1)k2Tn2(y)}

We consider now the following set of Lissajous curves

L
(n∗,no)
k =

¶
ln(2p1m∗1 +k1,2p2m∗2 +k2)|p ∈ R(no)

©
.

The Chebyshev variety Cn
k can be written as:

Cn
k =

⋃
l∈L(n∗,no)

k

l([0,2π])

Chiara Faccio Lissajous points for polynomial interpolation on various domains



Using the index sets I(n)
k ,τ , with τ = 1,2, we obtain the Lissajous

points
LC(n)

k = LC(n)
k ,0 ∪ LC(n)

k ,1, where

LC(n)
k ,τ = {(z(n1)

i , z(n2)
j ) : (i , j) ∈ I(n)

k ,τ}

C(n)
k = {(x , y) ∈ [−1,1]2 : (−1)k1Tn1(x) = (−1)k2Tn2(y)}

We consider now the following set of Lissajous curves

L
(n∗,no)
k =

¶
ln(2p1m∗1 +k1,2p2m∗2 +k2)|p ∈ R(no)

©
.

The Chebyshev variety Cn
k can be written as:

Cn
k =

⋃
l∈L(n∗,no)

k

l([0,2π])

Chiara Faccio Lissajous points for polynomial interpolation on various domains



The cardinality of L(n∗,no)
k is #L

(n∗,no)
k = 1

2(no
1no

2 + Ndeg), where
the number of degenerate curves Ndeg is

Ndeg =


1 if M0 = ∅,
2#(K0∩M0)−1 if K0 ∩M0 6= ∅ and K1 ∩M0 = ∅
2#(K1∩M0)−1 if K0 ∩M0 = ∅ and K1 ∩M0 6= ∅
0 if K0 ∩M0 6= ∅ and K1 ∩M0 6= ∅

where for τ ∈ {(0,1} we denote

M0 = {i ∈ {1,2}|ni ≡ 0 mod2}

Kτ = {i ∈ {1,2}|ki ≡ τ mod2}.
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Example: we consider the bivariate node set LC(10,5)
(0,0) . We

have:

n = (10,5) k = (0,0),
n∗ = (10,1) no = (1,5),

L
(n∗,no)
k = {ln(0,2p)|p ∈ {0,1,2}},

Cn
k =

⋃
p∈{0,2,4} l(10,5)

(0,p) ([0,2π]),

M0 = {1}, K0 = {1,2} K1 = ∅,
Ndeg = 2#(K0∩M0)−1 = 20 = 1.
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Figure: l(10,5)
(0,0) ([0,2π))
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Figure: l(10,5)
(0,0) ([0,2π)) ∪ l(10,5)

(0,2) ([0,2π))
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Figure: l(10,5)
(0,0) ([0,2π)) ∪ l(10,5)

(0,2) ([0,2π)) ∪ l(10,5)
(0,4) ([0,2π))
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Figure: l(10,5)
(0,0) ([0,2π)) ∪ l(10,5)

(0,2) ([0,2π)) ∪ l(10,5)
(0,4) ([0,2π)) and LC(10,5)

(0,0)
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Interpolation at the degenerate Lissajous points

Given data values f (A) ∈ R at the node points A ∈ LDn,p, the
aim is to find the unique bivariate interpolating polynomial Ln,pf
such that

Ln,pf (A) = f (A), ∀A ∈ LDn,p

Which polynomial space has to be chosen for the interpolation
problem?
We introduce the space Π2,L

n,p = span{T̂i(x)T̂j(y) : (i , j) ∈ ΓL
n,p},

where T̂i(x) is the normalized classical Chebyshev polynomial
of the first kind of degree i ,

T̂i(x) =

{
1, if i = 0,√

2Ti(x) if i 6= 0.

ΓL
n,p =

¶
(i , j) ∈ N2

0 :
i

n + p
+

j
n
< 1
©
∪{(0,n)},
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{T̂i(x)T̂j(y) : (i , j) ∈ ΓL
n,p} forms an orthonormal basis for the

space Π2,L
n,p with respect to the inner product

〈f ,g〉 :=
1
π2

∫ 1

−1

∫ 1

−1
f (x , y)g(x , y)

1√
1− x2

1»
1− y2

dx dy .

Since dim(Π2,L
n,p) = |ΓL

n,p| = |LDn,p|, our primary choice is the
polynomial space Π2,L

n,p.
The space ((Π2,L

n,p, 〈·, ·〉) has the reproducing kernel

K L
n,p(A,B) =

∑
(i,j)∈ΓL

n,p

T̂i(xA)T̂i(yA)T̂j(xB)T̂j(yB)
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The fundamental Lagrange polynomials of the Lissajous points
are

LA(x , y) := ωA[K L
n,p((x , y);A)− 1

2
T̂n(y)T̂n(yA)],

where

ωA :=
1

n(n + p)


1/2, if A ∈ LDn,p is a vertex point,
1, if A ∈ LDn,p is an edge point,
2 if A ∈ LDn,p is an interior point,

Now, the interpolation problem has a unique solution in Π2,L
n,p

given by

Ln,pf (x , y) =
∑

A∈LDn,p

LA(x , y)f (A)
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We can rewrite the interpolating polynomial Ln,pf (x , y) in terms
of the orthonormal Chebyshev basis. In this way, we obtain the
representation

Ln,pf (x , y) =
∑

i,j∈ΓL
n,p

ci,j T̂i(x)T̂j(y),

with the Fourier-Lagrange coefficients ci,j = 〈Ln,pf , T̂i(x)T̂j(y)〉
given by

ci,j =

{∑
A∈LDn,p f (A)ωAT̂i(xA)T̂j(yA), if (i , j) ∈ Γn,p,

1
2
∑
A∈LDn,p f (A)ωAT̂n(yA), if (i,j) = (0,n).
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The interpolating polynomial can be formulted more compactly
using the matrix notation

Ln,pf (x , y) = Tx (x , y)TCn,pTy (x , y),

where
Cn,p = (Tx (LDn,p)Df (LDn,p)(Ty (LDn,p)T )�Mn,p,
Df (LD,pn) = diag(ωAf (A),A ∈ LDn,p)

Tx (LDn,p) =

Ü
T̂0(xA)

. . .
... . . .

T̂n+p−1(xA)

ê
with A ∈ LDn,p

Mn,p = (mi,j), mi,j =


1, if (i , j) ∈ Γn,p,
1/2, if (i , j) = (0,n)

0. (i , j) /∈ ΓL
n,p
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The Lebesgue constant

The Lebesgue constant is the operator norm

Λn,p = max
f∈C([−1,1]2)

f 6=0

‖Ln,p(f )‖∞
‖f‖∞

= max
(x ,y)∈[−1,1]2

∑
A∈LDn,p

|LA(x , y)|.

We investigate the Lebesgue constant Λn,pn for the parameters
pn ∈ {1,n + 1}. The values are illustrated for 1 ≤ n ≤ 50. For a
better comparison we plot also the functions f1(n) and f2(n), as
a lower and an upper benchmark:

f1(n) =
Ä2
π

log(n + 1) + 1
ä2

f2(n) =
Ä2
π

log(n + 1) +
3
2

ä2
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Figure: The Lebesgue constant for the parameters pn ∈ {1,n + 1}.

Theorem
The Lebesgue constant Λn,p is bounded

DΛ ln2(n) ≤ Λn,p ≤ CΛ ln2(n + p),

where the constants DΛ and CΛ are independent of n and p.
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Numerical examples

We use the four test functions:

f1(x , y) = 0.75e−
(9x−2)2

4 − (9y−2)2

4 + 0.75e−
(9x+1)2

49 − 9y+1
10 +

0.5e−
(9x−7)2

4 − (9y−3)2

4 − 0.2e−(9x−4)2−(9y−7)2

f2(x , y) = (x2 + y2)
5
2 ,

f3(x , y) = e−
(5−10x)2

2 + 0.75e−
(5−10y)2

2 + 0.75e−
(5−10x)2+(5−10y)2

2

f4(x , y) = (x + y)20.
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‖Ln,pn (f )− f‖∞ on the domain [−1,1]2, for three different
parameters pn ∈ {1,n + 1,n2 + 1} and 2 ≤ n ≤ 50.
The maximal error is computed on a uniform grid of 60× 60
points defined in the square [−1,1]2.

Figure: Absolute errors for f1 (left) and f2 (right).
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Figure: Absolute errors for f3 (left) and f4 (right).
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The Lissajous points can be extendend to other domains
through a suitable mapping of the square:

σ : [−1,1]2 → K .

We can construct the interpolation formula on the new domain,

Ln,pf (x1, x2) := T(σ−1
1 (x1, x2))tC0(f ◦ σ)T(σ−1

2 (x1, x2)), (1)

where σ−1
i (x1, x2), with i = 1,2, denotes the component of the

inverse transformation.
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Rectangle

σ(t1, t2) =

Ç
b − a

2
t1 +

b + a
2

,
d − c

2
t2 +

d + c
2

å
.

The inverse is given by

t1(x1, x2) = −1+2
x1 − a
b − a

, t2(x1, x2) =

{
−1 + 2x2−c

d−c if c 6= d
−1 if c = d

Figure: Absolute errors for f3 on [−1,1]2 (left) and on [0,2]× [0,1]
(right).
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Ellipse

We consider the ellipse centered in c = (c1, c2), with
x1-semiaxis α and x2-semiaxis β.

starlike-polar coordinates

σ1(t1, t2) = c1−αt2 sin
Äπ

2
t1
ä
, σ2(t1, t2) = c2+βt2 cos

Äπ
2

t1
ä
.

standard polar coordinates

σ1(t1, t2) = ρ cos(θ), σ2(t1, t2) = ρ sin(θ)

θ(t1, t2) = π(t1+1), ρ(t1, t2) = (t2+1)
r(θ)

2
, r(θ) =

β2/α

1− ecos(θ)
.
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Figure: The distribution of the Padua points and the Lissajous curves
in the ellipse with polar (left) and starlike-polar (right) for n = 33.
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We are interested to understand how ‖Ln,1(f )− f‖∞, for
0 ≤ n ≤ 50, changes in relation with the trasformations which
we have chosen. The maximal error is computed on a uniform
grid of 100× 100 points in the ellipse with semi-major axis 1,
semi-minor axis 0.5 and centered in c = (

√
0.75,0).

Figure: The absolute errors on the ellipse in polar and starlike-polar
coordinates for f1 (left) and f2 (right) .
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Diamond

The maximal error is compute on a WAM with about 15000
points, which is generated by minimal triangulation.

Figure: Lissajous points and curves in the diamond with n = 13 and
pn = n + 1 = 14 (left), WAM generates by minimal triangulation,
14913 points (right) .
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Figure: Absolute errors for f2 (left) and f3 (right).
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Intersection of disks

Figure: Lissajous points and curves in the intersection of disks with
n = 7 and p = 11.

Figure: Absolute errors for f1 (left) and f4 (right).
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Star

Figure: Distribution of Padua points and curves with minimal and
barycentric triangulation. n = 5 (168 points left, 210 points right ).

Triangulation for f2 n = 2 n = 10 n = 20
minimal triang. 7.98e + 01 3.81e − 03 9.85e − 05

barycentric triang. 7.87e + 01 9.90e − 07 1.68e − 10

Table: Absolute errors with different triangulations for f2.
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To map, instead, the Lissajous points in the star we use the
Schwarz-Christoffel functions. These are conformal maps from
the unit disk onto various domains. In the case of our star the
mapping is

f (z) =

∫ z

0

(1− w5)2/5

(1 + w5)4/5 dw

Figure: Padua points in the star with n = 5, i.e. with 21 points (left)
and n = 20 i.e. 231 points (right).
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Figure: Lebesgue constant for Padua points.
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Morrow-Patterson points

For n a positive even integer, the Morrow-Patterson points
are the self-intersection points in the interior square
[−1,1]2 of the Lissajous curves

γn,1(t) =
Ä
− cos((n + 3)t),− cos((n + 2)t)

ä
.

|MPn| = dim(Π2
n) =

(n+2
n
)
, and this set is unisolvent for

polynomial interpolation on the square [−1,1]2.

Figure: The curve γ6,1(t) and associated MP6.
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Padua points

They are the self-intersections and boundary contacts of
the generating curve γn,1 = (− cos((n + 1)t),− cos(nt)) in
[−1,1]2.
They match exactly the dimension of Π2

n and they are
unisolvent.
They are modified Morrow-Patterson points.

Figure: MP6 and PD6 with respective Lissajous curves (left), MP6 and
PD8 with respective Lissajous curves (right).
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Xu points

They are Lissajous points, but their cardinality depends on the
degree;

if n is even, i.e. n = 2m, there are n(n+2)
2 points,

LC(2m,2m)
(0,1) =

(z2i , z2j+1), 0 ≤ i ≤ m,0 ≤ j ≤ m − 1,
(z2i+1, z2j), 0 ≤ i ≤ m − 1,0 ≤ j ≤ m.

if n is odd, i.e. n = 2m + 1, there are (n+1)2

2 points,
LC(2m+1,2m+1)

(0,0) =

(z2i , z2j), 0 ≤ i ≤ m,0 ≤ j ≤ m,
(z2i+1, z2j+1), 0 ≤ i ≤ m,0 ≤ j ≤ m.
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Figure: Xu points for n = 8 (left) and n = 9 (right).
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n = (n,n),n∗ = (n,1),no = (1,n),

the curves in L
(n∗,no)
k are ellipses in [−1,1]2,

#L
(n∗,no)
k =

{
n+1

2 if n is odd
n
2 if n is even

Ndeg =

{
1 if n is odd
0 if n is even
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Figure: Xu points and curves for n = 4 (left) and n = 5 (right).
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Figure: Interpolation errors for the function f2 .

Figure: The behaviour of the Lebesgue constant for Padua, Xu and
Morrow-Patterson points.
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We compare the distribution of Padua, Xu and degenerate
Lissajous points.

Figure: PD5 (left), XU6 (middle) and LD5,2 (right) .
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Thank you
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