Radial basis function network for ODEs: application to diabetes and insulin therapy models

DARIO ANDRINI

Index

- ■ANN (artificial neural network)→RBFN (radial basis function network)
- Simultaneous approximation of a function and its derivatives
- Solution of ordinary differential equations of arbitrary order
- Extension of RBF theory to vector valued case
- •Application to biological models (β -cell cycle)

Artificial neural networks-architecture

- Fundamental units called NEURONS
 - Input units
 - Hidden units
 - Output units
- •NEURONS are connected to each other ad connection points are called SYNAPSES
- Each neuron TOTAL INPUT signal is given by the weighted sum of all the input arriving at the neuron (synapses AMPLIFY or ATTENUATE the input signal)
- Each neuron OUTPUT signal is ruled by a function, called ACTIVATION FUNCTION, whose arguments are the input SIGNALS to the neuron

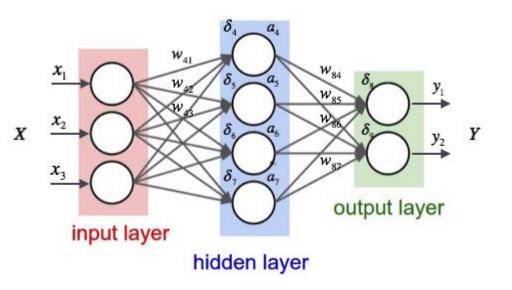
Artificial neural networks-architecture

ACTIVATION FUNCTION (Φ):

- $\boldsymbol{x} = \{x_1, x_2, \dots, x_N\}$ input vector
- $\boldsymbol{y} = \{y_1, y_2, \dots, y_n\}$ output vector
- $\boldsymbol{\theta} = \{\theta_1, \dots, \theta_n\}$ threshold vector
- ω_{ij} weights matrix

Response of the i-th neuron:

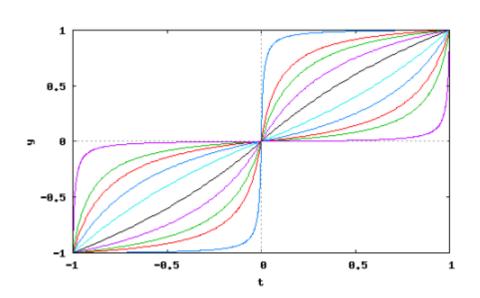
$$y_i = \Phi(\sum_{j=1}^N \omega_{ij} x_j - \theta_i)$$



Artificial neural networks-activation function

•Staircase function: $\Phi(A) = \begin{cases} 1 & if \ A > \theta \\ 0 & otherwise \end{cases}$ •Linear function: $\Phi(A) = kA$

Sigmoid function:
$$\Phi(A) = \frac{1}{1+e^{-kA}}$$



Artificial neural networks-learning phase

Learning is ruled by the choice of WEIGHTS:

•SUPERVISED LEARNING: according to the learning-samples, we choose the weights such that a measure of the distance between the output and the exact solution is minimized (\rightarrow an exact solution must exists and be known: THE LEARNING SAMPLES)

•UNSUPERVISED LEARNING: according to the learning-samples, we choose the weights such that certain desired conditions on the output are satisfied.

Artificial neural networks-main features

•ROBUSTNESS: it gives good results even in the case of noisy input or in the case some connections are damaged or destroyed

•FLEXBILITY: in the case of unsupervised learning there's no need to know the exact solution

Radial neural networks (RBFN)

•Only 1 hidden layer:

- From INPUT layer to HIDDEN layer \rightarrow radial activation function Φ
- From HIDDEN layer to OUTPUT layer \rightarrow linear transformation A

Radial neural networks (RBFN)

At the end, since the output layer is LINEAR the RBFN can be considered as a function s:

 $s(x) \colon \mathbb{R}^m \to \mathbb{R}$ $s(x) = \sum_{j=1}^N w_j \varphi(\|x - \xi_j\|)$

where:

N=number of neurons in the hidden layer

 $\Phi \coloneqq \varphi(\|\cdot\|_2)$

 w_j =weight of neuron j in the linear output neurons

 ξ_j =j-th centre

Radial neural networks (RBFN)

In the case of supervised learning the learning samples concretise in the imposition of the following conditions:

$$s(x_i) = d_i \quad i = 1 \dots N$$

Given the set of N distinct points of data sites in \mathbb{R}^m :

 $\{x_i \in \mathbb{R}^m \mid i = 1 \dots N\}$

Thus we are led to solve an interpolation problem \rightarrow no need for a back propagation algorithm (and convergence issues related to it)

NB: if instead of N we have $i = 1 \dots d \ge N$ we are led to solve an APPROXIMATION PROBLEM

Simultaneous approximation of a function and its derivatives-DRBFN

DIRECT APPROACH:

 $f: \Omega \to \mathbb{R}^{s}$ $f(\tilde{x}) \approx \sum_{j=1}^{N} w_{j} \varphi(\|\tilde{x} - \xi_{j}\|)$ $\frac{\partial^{k} f}{\partial x_{j} \dots \partial x_{l}}(\tilde{x}) \approx \sum_{i=1}^{N} w_{i} \frac{\partial^{k} \varphi}{\partial x_{j} \dots \partial x_{l}}(\tilde{x})$

This method is to sensitive to NOISE and don't give us a good approximation:

$$f(x) = \sum_{k} \hat{f}_{k} e^{ikx} \to f'(x) = \sum_{k} ik \hat{f}_{k} e^{ikx}$$

Simultaneous approximation of a function and its derivatives-IRBFN

INDIRECT APPROACH:

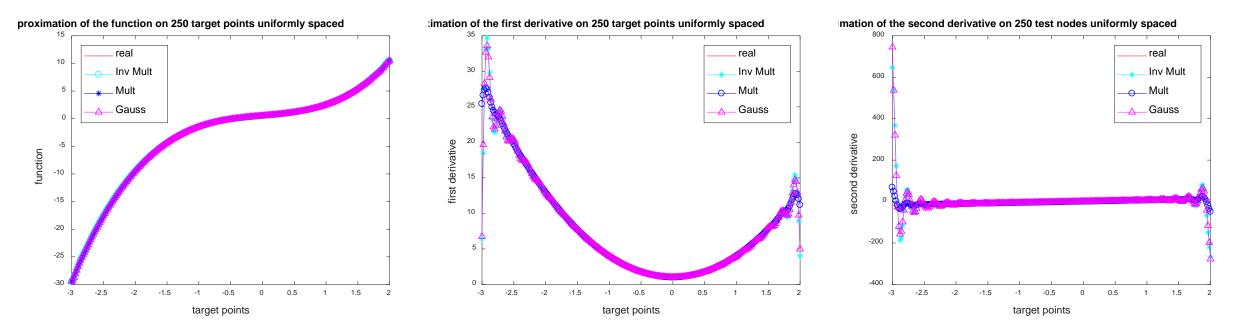
 $f^{(n)}(x) \approx \sum_{i=1}^{m} w_i \Phi_i(x)$ $f^{(n-1)}(x) = \int f^{n-1}(x) dx \approx \sum_{i=1}^{m} w_i H_i^1(x) + C_1$ \vdots $f(x) = \int f^{(1)}(x) dx \approx \sum_{i=1}^{m} w_i H_i^n(x) + C_1 x^{n-1} + C_2 x^{n-2} + \dots + C_n$

This leads to a non square system since we need to estimate the constants C_i 's. thus we need:

#centers = #datasites - n

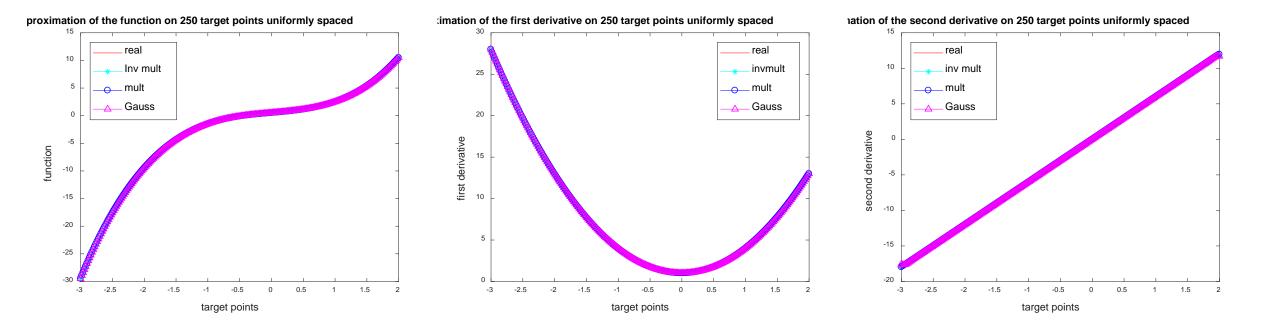
Numerical experiments-DRBFN

 $y(x) = x^3 + x + 0.5$



Approximation of derivatives up to order 2 with uniformly distributed points

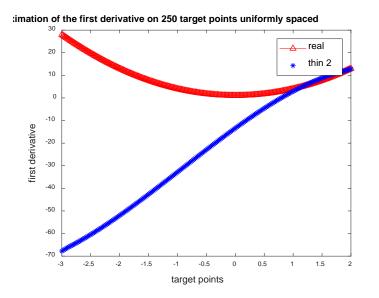
Numerical experiments-IRBFN

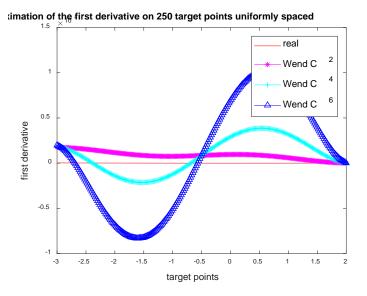


Approximation of derivatives up to order 2 with uniformly distributed points

Numerical experiments-IRBFN

Only trough the double application of the differential operator we obtain a function that is still in the Wendland native space. The same is true for also for thin plate splines. Thus only even derivatives can be well approximated





Localization properties

Localization: we want to approximate $f: D \subset \mathbb{R}^n \to \mathbb{R}$ with the approximant s(x). If D_0 is any part of D then the contribution to s(x) from $\{f(y): y \in D_0\}$ is small for values of x in D that are far from D_0

Example: $s(x) = \sum_{y \in \mathbb{Z}^n} f(y)\psi(x-y)$ and $\psi(x) = \sum_{k=1}^m \mu_k \varphi(||x-x_k||_2)$. We search in the space spanned by $\varphi(||\cdot -x_k||_2) \rightarrow$ In 1-d we search for μ_k s.t $\psi(\cdot -y)$ are cardinal.

Minimum localization conditions(MLC): *i*) $\int_{\mathbb{R}^n} |\psi(x)| dx < \infty$ and *ii*) $\int_{\mathbb{R}^n} \psi(x) dx = 1$

Example: for multiquadrics in the case n = 1 conditions on the coefficient μ_k exist s.t the MLC for each choice of the shape parameter (and these conditions are independent of the shape parameter) \rightarrow MULTIQUADRICS HAVE LOWER ERROR

If $\varphi(r) \to 0$ as $r \to \infty$ if we guarantee *i*) we have: $\int_{\mathbb{R}^n} \psi(x) dx = 0 \rightarrow$ problem with constant functions

Network existence theorem

Theorem: suppose that a univariate function φ is analytic in (-r, r), where r > 0 and for some integer $p \ge 1, \varphi^{(pj)}(0) \ne 0$ for $j \ge 0$. Then, if K is a compact subset of \mathbb{R}^s , for any $f \in \overline{C}^{(m1,...,m_q)}(K)$, and any $\varepsilon > 0$, there is a RBFN:

$$s(x) = \sum_{j=1}^{N} w_j \varphi(\lambda_j \| x - \xi_j \|)$$

For some suitable $\xi_j \in \mathbb{R}^s$, c_j and $\lambda_j \in \mathbb{R}$, where $j = 1 \dots N$, such that :

$$\left\|D^k f - D^k s\right\|_{L_{\infty}(K)} < \varepsilon$$

For any $k \in J(m1, ..., m_q)$.

Observation: by density argument we can extend the result to L_p spaces ("UNIVERSAL APPROXIMANT")

Solution of ordinary differential equations of arbitrary order

Let us consider the following example:

$$x^{4}y^{(4)} + 4x^{3}y^{(3)} + x^{2}(12 - x^{2})y^{(2)} + 2x(x^{2} - 12)y^{(1)} + 2(12 - x^{2})y = 2x^{5}$$

In the interval [1,11] with the boundary conditions:

$$\begin{cases} y(1) = A\\ y(11) = B\\ y'(1) = C\\ y'(11) = D \end{cases}$$

$$A = 1 + e + \frac{1}{e'}, B = 1463 + 11(e^{11} + e^{-11}), C = 2e, D = -340 + 2e^{11}$$

The exact solution is :

$$y(x) = x + x^2 + x^3 + xe^x + xe^{-x}$$

Solution of ordinary differential equations of arbitrary order

INDIRECT METHOD (for direct method is completely analogous):

With a little abuse of notation we write, substituting the expressions for the function and its derivatives in to the ODE:

 $x^{4} \sum_{(i=1)}^{N} w_{i} \Phi_{i}(x) + 4x^{3} \sum_{(i=1)}^{N+1} w_{i} H_{i}^{1}(x) + x^{2} (12 - x^{2}) \sum_{(i=1)}^{N+2} w_{i} H_{i}^{2}(x)$ +2x(x² - 12) $\sum_{(i=1)}^{N+3} w_{i} H_{i}^{3}(x) + 2(12 - x^{2}) \sum_{(i=1)}^{N+4} w_{i} H_{i}^{4}(x) = 2x^{5}$

$$\begin{cases} \sum_{(i=1)}^{N} w_i \Phi_i(1) = A \\ \sum_{(i=1)}^{N} w_i \Phi_i(11) = B \\ \sum_{(i=1)}^{N+1} w_i H_i^1(1) = C \\ \sum_{(i=1)}^{N+1} w_i H_i^1(11) = D \end{cases}$$

Solution of ordinary differential equations of arbitrary order

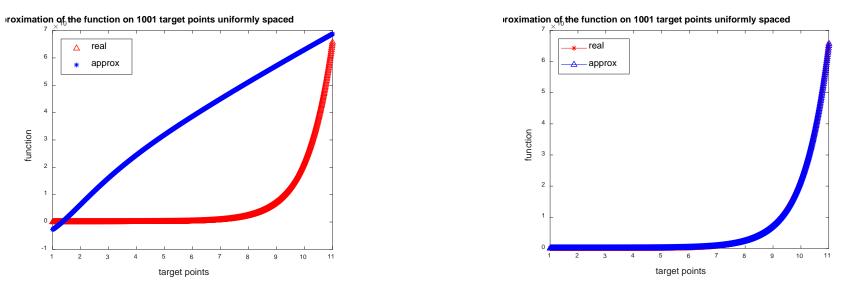
By "collocating" in the point of the discretization of the domain we obtain a linear system of the form:

$$Gw = \begin{pmatrix} G1\\ cond1\\ cond2\\ cond3\\ cond4 \end{pmatrix} w = F$$

$$G1 = x^{4}\mathcal{F} + 4x^{3}\mathcal{H}_{1} + x^{2}(12 - x^{2})\mathcal{H}_{2} + 2x(x^{2} - 12)\mathcal{H}_{3} + 2(12 - x^{2})\mathcal{H}_{4}$$

Numerical experiments

DRBFN: cond ~ 10^8 IRBFN: cond ~ 10^{13}



Numerical solution DRBFN (left) and IRBFN (right) with multiquadrics

SCALING THE DOMAIN: $D = [1, 11] \rightarrow D = \left[\frac{1}{11}, 1\right] \implies IRBFN cond \sim 10^8$ but little lost of accuracy

RILEY METHOD: want to solve Ax = b, A ill-conditioned

Perturbed matrix: $C = A + \mu I$ Solve: Cy = b $A = C - \mu I \rightarrow A^{-1} = \frac{1}{\mu} \sum_{k=1}^{\infty} (\mu C^{-1})^k$ $x = A^{-1}b = \frac{1}{\mu} \sum_{k=1}^{\infty} (\mu C^{-1})^k b = \frac{1}{\mu} \sum_{k=1}^{\infty} (\mu C^{-1})^{k-1} y = y + (\mu C^{-1})y + (\mu C^{-1})^2 y + \cdots$ $x_{k+1} = x_k + (\mu C^{-1})^k y$

Conditioning number

By a trial and error approach varying μ we see that the value of μ which guarantees the best error does not improve the conditioning number

Better to use SCALING OF THE DOMAIN technique

RKHS for vector valued functions

Definition: let \mathcal{Y} be a real Hilbert space with inner product (\cdot, \cdot) , \mathcal{X} a set and \mathcal{H} an Hilbert space of functions defined on \mathcal{X} with inner product $\langle \cdot, \cdot \rangle$. We say that \mathcal{H} is a reproducing kernel Hilbert space if $\forall y \in \mathcal{Y}$ and $x \in \mathcal{X}$ we have that

 $f \rightarrow (y, f(x))$

ls continuous.

by Riesz theorem $\exists K_x y \in \mathcal{H} \text{ s.t } (y, f(x)) = \langle K_x y, f \rangle$ (REPRODUCTION PROPERTY)

RKHS for vector valued functions

We introduce the linear operator $K(x,t): \mathcal{Y} \to \mathcal{Y}$ for every $x, t \in \mathcal{X}$ and $y \in \mathcal{Y}$ such that $K(x,t)y \coloneqq K_t y(x)$. The following properties are satisfied:

• $\forall y, z \in \mathcal{Y}$ we have that $(y, K(x, t)z) = \langle K_t z, K_x y \rangle$

$$\bullet K(x,t) = K(t,x)^*$$

 $\bullet K(x,x) \in \mathcal{L}_+(\mathcal{Y})$

$$\forall m \in \mathbb{N}, \{x_j : j \in \mathbb{N}_m\} \subset \mathcal{X}, \{y_j : \in \mathbb{N}_m \subset \mathcal{Y}\} \rightarrow \sum_{j,l \in \mathbb{N}_m} (y_j, K(x_j, x_l)y_l) \ge 0$$
$$\|f(x)\|_{\mathcal{Y}} \le \|f\|_{\mathcal{H}} \|K(x, x)\|_{\mathcal{Y}}^{\frac{1}{2}}$$

If $\mathcal{Y} = \mathbb{R}^n \rightarrow (K(x, t))_{kl} = \langle K_x e_k, K_t e_l \rangle$, $n \times n$ matrix of scalar valued functions

Interpolation problem for vector valued functions-general framework

Let $f_1 \dots f_n : \mathbb{R}^s \to \mathbb{R}$ mapping observed at sampling points $X_i = \{x_{ir} : r = 1 \dots N_i\}$ such that

$$f_i(x_{ir}) = d_{ir}$$
 $r = 1 \dots N_i$, $i = 1 \dots n$

We search for:

$$I_{i}(x) = \sum_{j=1}^{n} \sum_{r=1}^{N_{i}} u_{jr} \phi_{ij}(x, x_{jr}) + \sum_{l=1}^{Q} c_{il} p_{l}(x) \quad i = 1 \dots n$$

Subjected to side conditions:

$$\sum_{r=1}^{N_j} u_{jr} q(x_{jr}) = 0 \qquad \forall q \in \prod_{k=1}^s \quad j = 1 \dots n$$

Interpolation problem for vector valued functions-general framework

$$(*) \underbrace{\begin{pmatrix} \psi_{1,1} & \psi_{1,2} & \dots & \psi_{1,n} & P_1 & 0 & \dots & 0\\ \psi_{2,1} & \psi_{2,2} & \dots & \psi_{2,n} & 0 & P_2 & \dots & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots\\ \psi_{n,1} & \psi_{n,2} & \dots & \psi_{n,n} & 0 & 0 & \dots & P_n\\ P_1^T & 0 & \dots & 0 & 0 & 0 & \dots & 0\\ 0 & P_2^T & \dots & 0 & 0 & 0 & \ddots & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & & P_n^T & 0 & 0 & \dots & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \\ c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\psi_{ij} \in \mathbb{R}^{N_i \times N_j}; \ P_i = \mathbb{R}_i^{N_i \times Q}; \ u_i, d_i \in \mathbb{R}^{N_i}; \ c_i \in \mathbb{R}^Q$$

Interpolation problem for vector valued functions-solvability of the system

Definition: an $n \times n$ matrix of kernels $\Phi = [\phi_{i,j}]_{i,j=1}^n$ with $\phi_{i,j} \colon \mathbb{R}^s \times \mathbb{R}^s \to \mathbb{R}$ is said to be matrix conditionally positive definite of order k on \mathbb{R}^s if for any n sets of distinct points X_i the matrix $\Psi = [\psi_{i,j}]_{i,j=1}^n$ where:

$$\psi_{i,j} = \left[\phi_{i,j}(x_{i,r}, x_{j,s})\right]_{r,s=1}^{N_i,N_j} \in \mathbb{R}^{N_i \times N_j} \quad 1 \le i,j \le n$$

Is conditionally positive semidefinite with respect to the subspace $V_{X_1,k} \times \cdots \times V_{X_n,k}$ where: $V_{X_i,k} \coloneqq \{ [P(x_{r,i})]_{r=1}^n : p \in \prod_{k=1}^s, x_{ri} \in X_i \}$

Proposition: if Φ is conditionally positive definite of order k and the X_i 's are unisolvent for $\prod_{k=1}^{s}$ then \mathcal{F} is invertible.

Interpolation problem for vector valued functions-construction of the kernel

Theorem: let $C \in \mathbb{R}^{n \times n}$ be a positive semidefinite matrix, ϕ a conditionally positive definite kernel of order k and at least one of C or ϕ be symmetric. Then:

 $\Psi \coloneqq \mathcal{C}\phi$

Is a matrix conditionally positive definite kernel of order k.

•Choose the matrix *C* (example: $n=2 \rightarrow C = \begin{pmatrix} 1 & \alpha \\ \beta & 1 \end{pmatrix} \rightarrow PARAMETER ANALISYS$

Substitute the RBF interpolant in to the system and construct the matrix like (*)

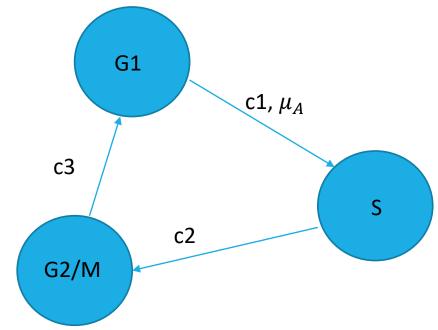
Multiply such a matrix by C

Solve the linear system

Biological model

• β -cells are responsible for the production and the store of insulin \rightarrow we want to model the β -cells cycle

- Three phases:
 - G1: the cells grow
 - S: DNA reduplicates
 - G2/M: mitosis



Biological model

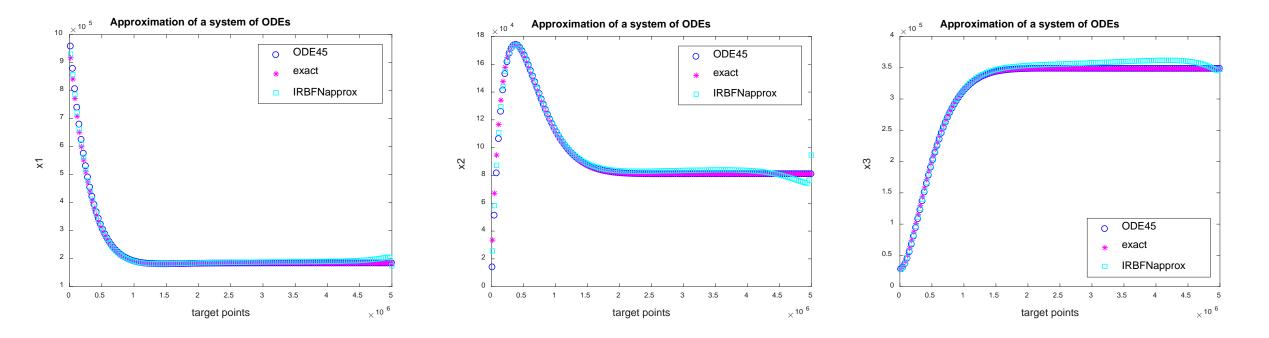
$$\begin{aligned} \left\{ \frac{dG_1(t)}{dt} &= 2c_3 G_2 M(t) - (c1 + \mu_A) G_1(t) \\ &\frac{dS(t)}{dt} = c_1^*(t) G_1(t) - c_2 S(t) \\ &\frac{dG_2 M(t)}{dt} = c_2 S(t) - c_3 G_2 M(t) \end{aligned} \right.$$

$$c_1^*(t) = c_1(1 + rI(t))$$

 G_1, G_2M, S are densities of cells in the different phases

I(t) is the insulin concentration in the blood

Numerical solution



Numerical solution of the ODEs system using multiquadrics and 5 \times 10^{6} equally spaces interpolation points

Numerical solution

error	x ₁ – component	x ₂ – component	x ₃ – component
IRBFN	2.8×10^{-2}	2.9×10^{-2}	2.5×10^{-2}
ODE45	3.5×10^{-2}	2.8×10^{-2}	7.1×10^{-3}

conclusions

IRBFN approach is definitely better than DRBFN one

- Some kernels behave better because of
 - Better localization properties
 - Derivatives that belongs to the native space
- SCALING OF THE DOMAIN vs RILEY METHOD
- There exist a very natural extension of the concept of RKHS for vector valued functions

Solid theory for vector valued functions interpolations

Future directions

Trying grids different from equally spaced points

Changing method for parameter analysis for the determination of matrix *C*

Trying different kernels from multiquadrics

Solve the whole system of equations of the biological model

Thank you for your attention!