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Artificial neural networks-architecture
Fundamental units called NEURONS
 Input units
 Hidden units
 Output units

NEURONS are connected to each other ad connection points are called SYNAPSES

Each neuron TOTAL INPUT signal is given by the weighted sum of all the input arriving at the 
neuron (synapses AMPLIFY or ATTENUATE the input signal)

Each neuron OUTPUT signal is ruled by a function, called ACTIVATION FUNCTION, whose 
arguments are the input SIGNALS to the neuron



Artificial neural networks-architecture
ACTIVATION FUNCTION (Φ):

𝒙𝒙 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁} input vector

𝒚𝒚 = {𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛} output vector

𝜽𝜽 = {𝜃𝜃1, … ,𝜃𝜃𝑛𝑛} threshold vector 

𝜔𝜔𝑖𝑖𝑖𝑖 weights matrix

Response of the i-th neuron:

𝑦𝑦𝑖𝑖 = Φ(∑𝑗𝑗=1𝑁𝑁 𝜔𝜔𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 − 𝜃𝜃𝑖𝑖)



Artificial neural networks-activation 
function
Staircase function: Φ 𝐴𝐴 = �1 𝑖𝑖𝑖𝑖 𝐴𝐴 > 𝜃𝜃

0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Linear function: Φ 𝐴𝐴 = 𝑘𝑘𝑘𝑘

Sigmoid function: Φ 𝐴𝐴 = 1
1+𝑒𝑒−𝑘𝑘𝑘𝑘



Artificial neural networks-learning phase
Learning is ruled by the choice of WEIGHTS:

SUPERVISED LEARNING: according to the learning-samples, we choose the weights such that a 
measure of the distance between the output and the exact solution is minimized ( an exact 
solution must exists and be known: THE LEARNING SAMPLES)

UNSUPERVISED LEARNING: according to the learning-samples, we choose the weights such that 
certain desired conditions on the output are satisfied.



Artificial neural networks-main features
ROBUSTNESS: it gives good results even in the case of noisy input or in the case some 
connections are damaged or destroyed

FLEXBILITY: in the case of unsupervised learning there’s no need to know the exact solution



Radial neural networks (RBFN)

Only 1 hidden layer:
 From INPUT layer to HIDDEN layer  radial activation function Φ
 From HIDDEN layer to OUTPUT layer  linear transformation 𝐴𝐴



Radial neural networks (RBFN)
At the end, since the output layer is LINEAR the RBFN can be considered as a function 𝑠𝑠:

𝑜𝑜 𝑥𝑥 :ℝ𝑚𝑚 → ℝ

𝑜𝑜 𝑥𝑥 = ∑𝑗𝑗=1𝑁𝑁 𝑤𝑤𝑗𝑗𝜑𝜑 𝑥𝑥 − 𝜉𝜉𝑗𝑗
where:

𝑁𝑁=number of neurons in the hidden layer

Φ ≔ 𝜑𝜑(‖ ⋅ ‖2)

𝑜𝑜𝑗𝑗=weight of neuron 𝑗𝑗 in the linear output neurons

𝜉𝜉𝑗𝑗=j-th centre



Radial neural networks (RBFN)
In the case of supervised learning the learning samples concretise in the imposition of the 
following conditions: 

𝑜𝑜 𝑥𝑥𝑖𝑖 = 𝑑𝑑𝑖𝑖 𝑖𝑖 = 1 …𝑁𝑁

Given the set of 𝑁𝑁 distinct points of data sites in ℝ𝑚𝑚:

{𝑥𝑥𝑖𝑖 ∈ ℝ𝑚𝑚| 𝑖𝑖 = 1 …𝑁𝑁}

Thus we are led to solve an interpolation problem  no need for a back propagation algorithm 
(and convergence issues related to it)

NB: if instead of 𝑁𝑁 we have 𝑖𝑖 = 1 …𝑑𝑑 ≥ 𝑁𝑁 we are led to solve an APPROXIMATION PROBLEM



Simultaneous approximation of a 
function and its derivatives-DRBFN
DIRECT APPROACH:

𝑖𝑖:Ω → ℝ𝑠𝑠

𝑖𝑖 �𝑥𝑥 ≈ ∑𝑗𝑗=1𝑁𝑁 𝑤𝑤𝑗𝑗𝜑𝜑( �𝑥𝑥 − 𝜉𝜉𝑗𝑗 )

𝜕𝜕𝑘𝑘𝑓𝑓
𝜕𝜕𝑥𝑥𝑗𝑗…𝜕𝜕𝑥𝑥𝑙𝑙

( �𝑥𝑥) ≈ ∑𝑖𝑖=1𝑁𝑁 𝑤𝑤𝑖𝑖
𝜕𝜕𝑘𝑘𝜑𝜑

𝜕𝜕𝑥𝑥𝑗𝑗…𝜕𝜕𝑥𝑥𝑙𝑙
( �𝑥𝑥)

This method is to sensitive to NOISE and don’t give us a good approximation:

𝑖𝑖 𝑥𝑥 = ∑𝑘𝑘 𝑓𝑓𝑘𝑘𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 → 𝑓𝑓′ 𝑥𝑥 = ∑𝑘𝑘 𝑖𝑖𝑖𝑖𝑓𝑓𝑘𝑘𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖



Simultaneous approximation of a 
function and its derivatives-IRBFN
INDIRECT APPROACH:

𝑖𝑖 𝑛𝑛 (𝑥𝑥) ≈ ∑𝑖𝑖=1𝑚𝑚 𝑤𝑤𝑖𝑖Φ𝑖𝑖 𝑥𝑥

𝑖𝑖 𝑛𝑛−1 (𝑥𝑥) = ∫ 𝑓𝑓𝑛𝑛−1(𝑥𝑥)𝑑𝑑𝑑𝑑 ≈ ∑𝑖𝑖=1𝑚𝑚 𝑤𝑤𝑖𝑖H𝑖𝑖
1 𝑥𝑥 + 𝐶𝐶1

⋮

𝑖𝑖 𝑥𝑥 = ∫ 𝑓𝑓 1 𝑥𝑥 𝑑𝑑𝑑𝑑 ≈ ∑𝑖𝑖=1𝑚𝑚 𝑤𝑤𝑖𝑖H𝑖𝑖
n 𝑥𝑥 + 𝐶𝐶1𝑥𝑥𝑛𝑛−1 + 𝐶𝐶2𝑥𝑥𝑛𝑛−2 + ⋯+ 𝐶𝐶𝑛𝑛

This leads to a non square system since we need to estimate the constants 𝐶𝐶𝑖𝑖’s. thus we need:

#𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = #𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑛𝑛



Numerical experiments-DRBFN
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𝑦𝑦 𝑥𝑥 = 𝑥𝑥3 + 𝑥𝑥 + 0.5

Approximation of derivatives up to order 2 with uniformly distributed 
points



Numerical experiments-IRBFN
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Numerical experiments-IRBFN
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Only trough the double application of the differential operator we obtain a function that is still 
in the Wendland native space. The same is true for also for thin plate splines. Thus only even 
derivatives can be well approximated



Localization properties
Localization: we want to approximate 𝑓𝑓:𝐷𝐷 ⊂ ℝ𝑛𝑛 → ℝ with the approximant 𝑠𝑠(𝑥𝑥). If 𝐷𝐷0 is any 
part of 𝐷𝐷 then the contribution to 𝑠𝑠 𝑥𝑥 from {𝑓𝑓 𝑦𝑦 :𝑦𝑦 ∈ 𝐷𝐷0} is small for values of 𝑥𝑥 in 𝐷𝐷 that are 
far from 𝐷𝐷0
Example: 𝑠𝑠 𝑥𝑥 = ∑𝑦𝑦∈ℤ𝑛𝑛 𝑓𝑓 𝑦𝑦 𝜓𝜓(𝑥𝑥 − 𝑦𝑦) and   𝜓𝜓 𝑥𝑥 = ∑𝑘𝑘=1𝑚𝑚 𝜇𝜇𝑘𝑘𝜑𝜑( 𝑥𝑥 − 𝑥𝑥𝑘𝑘 2). We search in the 
space spanned by 𝜑𝜑 ⋅ −𝑥𝑥𝑘𝑘 2  In 1-d we search for 𝜇𝜇𝑘𝑘 s.t 𝜓𝜓(⋅ −𝑦𝑦) are cardinal.

Minimum localization conditions(MLC) : 𝑖𝑖)∫ℝ𝑛𝑛 │𝜓𝜓 𝑥𝑥 │𝑑𝑑𝑑𝑑 < ∞ and   𝑖𝑖𝑖𝑖)∫ℝ𝑛𝑛 𝜓𝜓 𝑥𝑥 𝑑𝑑𝑑𝑑 = 1

Example: for multiquadrics in the case 𝑛𝑛 = 1 conditions on the coefficient 𝜇𝜇𝑘𝑘 exist s.t the MLC 
for each choice of the shape parameter (and these conditions are independent of the shape 
parameter)MULTIQUADRICS HAVE LOWER ERROR

If 𝜑𝜑 𝑟𝑟 → 0 as 𝑟𝑟 → ∞ if we guarantee 𝑖𝑖) we have:∫ℝ𝑛𝑛 𝜓𝜓 𝑥𝑥 𝑑𝑑𝑑𝑑 = 0problem with constant 
functions



Network existence theorem
Theorem: suppose that a univariate function 𝜑𝜑 is analytic in (−𝑟𝑟, 𝑟𝑟), where 𝑟𝑟 > 0 and for some 
integer 𝑝𝑝 ≥ 1,𝜑𝜑 𝑝𝑝𝑝𝑝 0 ≠ 0 for 𝑗𝑗 ≥ 0. Then, if 𝐾𝐾 is a compact subset of ℝ𝑠𝑠, for any 𝑓𝑓 ∈
̅𝐶𝐶 𝑚𝑚𝑚,…,𝑚𝑚𝑞𝑞 (𝐾𝐾), and any 𝜀𝜀 > 0, there is a RBFN:

𝑜𝑜 𝑥𝑥 = ∑𝑗𝑗=1𝑁𝑁 𝑤𝑤𝑗𝑗𝜑𝜑(𝜆𝜆𝑗𝑗 𝑥𝑥 − 𝜉𝜉𝑗𝑗 )

For some suitable 𝜉𝜉𝑗𝑗 ∈ ℝ𝑠𝑠, 𝑐𝑐𝑗𝑗 and 𝜆𝜆𝑗𝑗 ∈ ℝ, where 𝑗𝑗 = 1 …𝑁𝑁, such that :

𝐷𝐷𝑘𝑘𝑓𝑓 − 𝐷𝐷𝑘𝑘𝑠𝑠 𝐿𝐿∞ 𝐾𝐾 < 𝜀𝜀

For any 𝑘𝑘 ∈ 𝐽𝐽(𝑚𝑚𝑚, … ,𝑚𝑚𝑞𝑞).

Observation: by density argument we can extend the result to 𝐿𝐿𝑝𝑝 spaces (“UNIVERSAL 
APPROXIMANT”)



Solution of ordinary differential 
equations of arbitrary order
Let us consider the following example:

𝑥𝑥4𝑦𝑦 4 + 4𝑥𝑥3𝑦𝑦 3 + 𝑥𝑥2 12 − 𝑥𝑥2 𝑦𝑦 2 + 2𝑥𝑥 𝑥𝑥2 − 12 𝑦𝑦 1 + 2 12 − 𝑥𝑥2 𝑦𝑦 = 2𝑥𝑥5

In the interval [1,11] with the boundary conditions:

𝑦𝑦 1 = 𝐴𝐴
𝑦𝑦 11 = 𝐵𝐵
𝑦𝑦′ 1 = 𝐶𝐶
𝑦𝑦′ 11 = 𝐷𝐷

𝐴𝐴 = 1 + 𝑒𝑒 + 1
𝑒𝑒
, B = 1463 + 11 𝑒𝑒11 + 𝑒𝑒−11 , C = 2𝑒𝑒, D = −340 + 2𝑒𝑒11

The exact solution is :

𝑦𝑦 𝑥𝑥 = 𝑥𝑥 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥𝑒𝑒𝑥𝑥 + 𝑥𝑥𝑒𝑒−𝑥𝑥



Solution of ordinary differential 
equations of arbitrary order
INDIRECT METHOD (for direct method is completely analogous):

With a little abuse of notation we write, substituting the expressions for the function and its 
derivatives in to the ODE:

𝑥𝑥4 ∑ 𝑖𝑖=1
𝑁𝑁 𝑤𝑤𝑖𝑖Φ𝑖𝑖(𝑥𝑥) + 4𝑥𝑥3 ∑ 𝑖𝑖=1

𝑁𝑁+1 𝑤𝑤𝑖𝑖H𝑖𝑖
1(𝑥𝑥) + 𝑥𝑥2(12 − 𝑥𝑥2)∑ 𝑖𝑖=1

𝑁𝑁+2 𝑤𝑤𝑖𝑖H𝑖𝑖
2(𝑥𝑥)

+2𝑥𝑥 𝑥𝑥2 − 12 ∑ 𝑖𝑖=1
𝑁𝑁+3 𝑤𝑤𝑖𝑖H𝑖𝑖

3 𝑥𝑥 + 2 12 − 𝑥𝑥2 ∑ 𝑖𝑖=1
𝑁𝑁+4 𝑤𝑤𝑖𝑖H𝑖𝑖

4 𝑥𝑥 = 2𝑥𝑥5

∑ 𝑖𝑖=1
𝑁𝑁 𝑤𝑤𝑖𝑖Φ𝑖𝑖(1) = 𝐴𝐴

∑ 𝑖𝑖=1
𝑁𝑁 𝑤𝑤𝑖𝑖Φ𝑖𝑖 11 = 𝐵𝐵
∑ 𝑖𝑖=1
𝑁𝑁+1 𝑤𝑤𝑖𝑖𝐻𝐻𝑖𝑖1 (1) = 𝐶𝐶

∑ 𝑖𝑖=1
𝑁𝑁+1 𝑤𝑤𝑖𝑖H𝑖𝑖

1(11) = 𝐷𝐷



Solution of ordinary differential 
equations of arbitrary order
By “collocating” in the point of the discretization of the domain we obtain a linear system of the 
form:

𝐺𝐺𝐺𝐺 =

𝐺𝐺𝐺
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑤𝑤 = 𝐹𝐹

𝐺𝐺𝐺 = 𝑥𝑥4ℱ + 4𝑥𝑥3ℋ1 + 𝑥𝑥2 12 − 𝑥𝑥2 ℋ2 + 2𝑥𝑥 𝑥𝑥2 − 12 ℋ3 + 2 12 − 𝑥𝑥2 ℋ4



Numerical experiments

1 2 3 4 5 6 7 8 9 10 11

target points

-1

0

1

2

3

4

5

6

7

fu
nc

tio
n

10 5proximation of the function on 1001 target points uniformly spaced

real

approx

1 2 3 4 5 6 7 8 9 10 11

target points

0

1

2

3

4

5

6

7

fu
nc

tio
n

10 5proximation of the function on 1001 target points uniformly spaced

real

approx

DRBFN: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∼ 108
IRBFN: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∼ 1013

Numerical solution DRBFN (left) and IRBFN (right) with multiquadrics



Conditioning number
SCALING THE DOMAIN:  𝐷𝐷 = [1, 11] 𝐷𝐷 = 1

11
, 1 I𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∼ 108 but little lost of accuracy

RILEY METHOD: want to solve 𝐴𝐴𝐴𝐴 = 𝑏𝑏 , 𝐴𝐴 ill-conditioned

Perturbed matrix: 𝐶𝐶 = 𝐴𝐴 + 𝜇𝜇𝜇𝜇

Solve: 𝐶𝐶𝐶𝐶 = 𝑏𝑏

𝐴𝐴 = 𝐶𝐶 − 𝜇𝜇𝜇𝜇 → A−1 = 1
𝜇𝜇
∑𝑘𝑘=1∞ 𝜇𝜇𝐶𝐶−1 𝑘𝑘

𝑥𝑥 = 𝐴𝐴−1𝑏𝑏 = 1
𝜇𝜇
∑𝑘𝑘=1∞ 𝜇𝜇𝐶𝐶−1 𝑘𝑘 𝑏𝑏 = 1

𝜇𝜇
∑𝑘𝑘=1∞ 𝜇𝜇𝐶𝐶−1 𝑘𝑘−1𝑦𝑦 = 𝑦𝑦 + 𝜇𝜇𝐶𝐶−1 𝑦𝑦 + 𝜇𝜇𝐶𝐶−1 2𝑦𝑦 + ⋯

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝜇𝜇𝐶𝐶−1 𝑘𝑘𝑦𝑦



Conditioning number
By a trial and error approach varying 𝜇𝜇 we see that the value of 𝜇𝜇 which guarantees the best 
error does not improve the conditioning number

Better to use SCALING OF THE DOMAIN technique



RKHS for vector valued functions
Definition: let 𝒴𝒴 be a real Hilbert space with inner product ⋅,⋅ , 𝒳𝒳 a set and  ℋ an Hilbert space 
of functions defined on 𝒳𝒳 with inner product 〈⋅,⋅〉. We say that ℋ is a reproducing kernel Hilbert 
space if ∀𝑦𝑦 ∈ 𝒴𝒴 and 𝑥𝑥 ∈ 𝒳𝒳 we have that

𝑖𝑖 → (𝑦𝑦, 𝑓𝑓 𝑥𝑥 )

Is continuous.

by Riesz theorem ∃ 𝐾𝐾𝑥𝑥𝑦𝑦 ∈ ℋ s.t 𝑦𝑦, 𝑓𝑓 𝑥𝑥 = 〈𝐾𝐾𝑥𝑥𝑦𝑦, 𝑓𝑓〉 (REPRODUCTION PROPERTY)



RKHS for vector valued functions
We introduce the linear operator 𝐾𝐾 𝑥𝑥, 𝑡𝑡 :𝒴𝒴 → 𝒴𝒴 for every 𝑥𝑥, 𝑡𝑡 ∈ 𝒳𝒳 and 𝑦𝑦 ∈ 𝒴𝒴 such that 
𝐾𝐾 𝑥𝑥, 𝑡𝑡 𝑦𝑦 ≔ 𝐾𝐾𝑡𝑡𝑦𝑦(𝑥𝑥). The following properties are satisfied:

∀𝑦𝑦, 𝑧𝑧 ∈ 𝒴𝒴 we have that 𝑦𝑦,𝐾𝐾 𝑥𝑥, 𝑡𝑡 𝑧𝑧 = 〈𝐾𝐾𝑡𝑡𝑧𝑧,𝐾𝐾𝑥𝑥𝑦𝑦〉
𝐾𝐾 𝑥𝑥, 𝑡𝑡 = 𝐾𝐾 𝑡𝑡, 𝑥𝑥 ∗

𝐾𝐾 𝑥𝑥, 𝑥𝑥 ∈ ℒ+(𝒴𝒴)

∀𝑚𝑚 ∈ ℕ, 𝑥𝑥𝑗𝑗: 𝑗𝑗 ∈ ℕm ⊂ 𝒳𝒳, {𝑦𝑦𝑗𝑗:∈ ℕm ⊂ 𝒴𝒴}∑𝑗𝑗,𝑙𝑙∈ℕm 𝑦𝑦𝑗𝑗 ,𝐾𝐾 𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑙𝑙 𝑦𝑦𝑙𝑙 ≥ 0

 𝑓𝑓 𝑥𝑥 𝒴𝒴 ≤ 𝑓𝑓 ℋ 𝐾𝐾 𝑥𝑥, 𝑥𝑥 𝒴𝒴

1
2

If 𝒴𝒴 = ℝ𝑛𝑛 𝐾𝐾 𝑥𝑥, 𝑡𝑡 𝑘𝑘𝑘𝑘 = 𝐾𝐾𝑥𝑥𝑒𝑒𝑘𝑘 ,𝐾𝐾𝑡𝑡𝑒𝑒𝑙𝑙 ,     𝑛𝑛 × 𝑛𝑛 matrix of scalar valued functions



Interpolation problem for vector valued 
functions-general framework
Let 𝑓𝑓1 …𝑓𝑓𝑛𝑛:ℝ𝑠𝑠 → ℝ mapping observed at sampling points 𝑋𝑋𝑖𝑖 = {𝑥𝑥𝑖𝑖𝑖𝑖: 𝑟𝑟 = 1 …𝑁𝑁𝑖𝑖} such that

𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖 𝑟𝑟 = 1 …𝑁𝑁𝑖𝑖 , 𝑖𝑖 = 1 …𝑛𝑛

We search for:

𝜇𝜇𝑖𝑖 𝑥𝑥 = ∑𝑗𝑗=1𝑛𝑛 ∑𝑟𝑟=1
𝑁𝑁𝑖𝑖 𝑢𝑢𝑗𝑗𝑗𝑗𝜙𝜙𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑥𝑥𝑗𝑗𝑗𝑗) + ∑𝑙𝑙=1

𝑄𝑄 𝑐𝑐𝑖𝑖𝑖𝑖𝑝𝑝𝑙𝑙(𝑥𝑥) 𝑖𝑖 = 1 …𝑛𝑛

Subjected to side conditions:

∑𝑟𝑟=1
𝑁𝑁𝑗𝑗 𝑢𝑢𝑗𝑗𝑗𝑗𝑞𝑞 𝑥𝑥𝑗𝑗𝑗𝑗 = 0 ∀𝑞𝑞 ∈ Π𝑘𝑘−1𝑠𝑠 𝑗𝑗 = 1 …𝑛𝑛



Interpolation problem for vector valued 
functions-general framework

∗

𝜓𝜓1,1
𝜓𝜓2,1
⋮

𝜓𝜓𝑛𝑛,1

𝑃𝑃1𝑇𝑇
0
⋮
0

𝜓𝜓1,2
𝜓𝜓2,2
⋮

𝜓𝜓𝑛𝑛,2
0
𝑃𝑃2𝑇𝑇
⋮
0

⋯
⋯
⋱
⋯⋯
⋯
⋱
⋯

𝜓𝜓1,𝑛𝑛
𝜓𝜓2,𝑛𝑛
⋮

𝜓𝜓𝑛𝑛,𝑛𝑛
0
0
⋮
𝑃𝑃𝑛𝑛𝑇𝑇

𝑃𝑃1
0
⋮
0
0
0
⋮
0

0
𝑃𝑃2
⋮
0
0
0
⋮
0

…
…
⋱
……
…
⋱
…

0
0
⋮
𝑃𝑃𝑛𝑛
0
0
⋮
0

ℱ

𝑢𝑢1
𝑢𝑢2
⋮
𝑢𝑢𝑛𝑛
𝑐𝑐1
𝑐𝑐2
⋮
𝑐𝑐𝑛𝑛

=

𝑑𝑑1
𝑑𝑑2
⋮
𝑑𝑑𝑛𝑛
0
0
⋮
0

𝜓𝜓𝑖𝑖𝑖𝑖 ∈ ℝ𝑁𝑁𝑖𝑖×𝑁𝑁𝑗𝑗; 𝑃𝑃𝑖𝑖 = ℝ𝑖𝑖
𝑁𝑁𝑖𝑖×𝑄𝑄; 𝑢𝑢𝑖𝑖 ,𝑑𝑑𝑖𝑖 ∈ ℝ𝑁𝑁𝑖𝑖; 𝑐𝑐𝑖𝑖 ∈ ℝ𝑄𝑄



Interpolation problem for vector valued 
functions-solvability of the system
Definition: an 𝑛𝑛 × 𝑛𝑛 matrix of kernels Φ = 𝜙𝜙𝑖𝑖,𝑗𝑗 𝑖𝑖,𝑗𝑗=1

𝑛𝑛
with 𝜙𝜙𝑖𝑖,𝑗𝑗:ℝ𝑠𝑠 × ℝ𝑠𝑠 → ℝ is said to be 

matrix conditionally positive definite of order 𝑘𝑘 onℝ𝑠𝑠 if for any 𝑛𝑛 sets of distinct points 𝑋𝑋𝑖𝑖 the 
matrix Ψ = 𝜓𝜓𝑖𝑖,𝑗𝑗 𝑖𝑖,𝑗𝑗=1

𝑛𝑛
where:

𝜓𝜓𝑖𝑖,𝑗𝑗 = 𝜙𝜙𝑖𝑖,𝑗𝑗(𝑥𝑥𝑖𝑖,𝑟𝑟 , 𝑥𝑥𝑗𝑗,𝑠𝑠)
𝑟𝑟,𝑠𝑠=1
𝑁𝑁𝑖𝑖,𝑁𝑁𝑗𝑗 ∈ ℝ𝑁𝑁𝑖𝑖×𝑁𝑁𝑗𝑗 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛

Is conditionally positive semidefinite with respect to the subspace 𝑉𝑉𝑋𝑋1,𝑘𝑘 × ⋯× 𝑉𝑉𝑋𝑋𝑛𝑛,𝑘𝑘 where:
𝑉𝑉𝑋𝑋𝑖𝑖,𝑘𝑘 ≔ { 𝑃𝑃 𝑥𝑥𝑟𝑟,𝑖𝑖 𝑟𝑟=1

𝑛𝑛 : 𝑝𝑝 ∈ Π𝑘𝑘−1𝑠𝑠 , 𝑥𝑥𝑟𝑟𝑟𝑟 ∈ 𝑋𝑋𝑖𝑖}

Proposition: if Φ is conditionally positive definite of order 𝑘𝑘 and the  𝑋𝑋𝑖𝑖’s are unisolvent for 
Π𝑘𝑘−1𝑠𝑠 then ℱ is invertible.



Interpolation problem for vector valued 
functions-construction of the kernel
Theorem: let 𝐶𝐶 ∈ ℝ𝑛𝑛×𝑛𝑛 be a positive semidefinite matrix, 𝜙𝜙 a conditionally positive definite 
kernel of order 𝑘𝑘 and at least one of 𝐶𝐶 or 𝜙𝜙 be symmetric. Then:

Ψ ≔ 𝐶𝐶𝐶𝐶

Is a matrix conditionally positive definite kernel of order 𝑘𝑘.



Solution of ODEs system
Choose the matrix 𝐶𝐶 (example: n=2𝐶𝐶 = 1 𝛼𝛼

𝛽𝛽 1 )PARAMETER ANALISYS

Substitute the RBF interpolant in to the system and construct the matrix like (∗)

Multiply such a matrix by 𝐶𝐶

Solve the linear system



Biological model
𝛽𝛽-cells  are responsible for the production and the store of insulin  we want to model the 𝛽𝛽-
cells cycle 

Three phases:
 G1: the cells grow
 S: DNA reduplicates
 G2/M: mitosis

G1

G2/M

S

c1, 𝜇𝜇𝐴𝐴

c2

c3



Biological model
𝑑𝑑𝐺𝐺1 𝑡𝑡
𝑑𝑑𝑑𝑑

= 2𝑐𝑐3𝐺𝐺2𝑀𝑀 𝑡𝑡 − 𝑐𝑐𝑐 + 𝜇𝜇𝐴𝐴 𝐺𝐺1(𝑡𝑡)
𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

= 𝑐𝑐1∗(𝑡𝑡)𝐺𝐺1 𝑡𝑡 − 𝑐𝑐2𝑆𝑆(𝑡𝑡)
𝑑𝑑𝐺𝐺2𝑀𝑀 𝑡𝑡

𝑑𝑑𝑑𝑑
= 𝑐𝑐2𝑆𝑆 𝑡𝑡 − 𝑐𝑐3𝐺𝐺2𝑀𝑀(𝑡𝑡)

𝑐𝑐1∗ 𝑡𝑡 = 𝑐𝑐1 1 + 𝑟𝑟𝑟𝑟 𝑡𝑡

𝐺𝐺1,𝐺𝐺2𝑀𝑀, 𝑆𝑆 are densities of cells in the different phases

𝐼𝐼 𝑡𝑡 is the insulin concentration in the blood



Numerical solution
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Numerical solution of the ODEs system using multiquadrics and 5 ×
106 equally spaces interpolation points



Numerical solution
error 𝒙𝒙𝟏𝟏 − 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒙𝒙𝟐𝟐 − 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒙𝒙𝟑𝟑 − 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄
IRBFN 2.8 × 10−2 2.9 × 10−2 2.5 × 10−2

ODE45 3.5 × 10−2 2.8 × 10−2 7.1 × 10−3



conclusions
IRBFN approach is definitely better than DRBFN one

Some kernels behave better because of
 Better localization properties
 Derivatives that belongs to the native space

SCALING OF THE DOMAIN vs RILEY METHOD

There exist a very natural extension of the concept of RKHS for vector valued functions

Solid theory for vector valued functions interpolations



Future directions
Trying grids different from equally spaced points

Changing method for parameter analysis for the determination of matrix 𝐶𝐶

Trying different kernels from multiquadrics

Solve the whole system of equations of the biological model



Thank you for your 
attention!
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