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global vs local

Global:

1 Spectral Methods (orthogonal polynomials-based methods)

2 Meshless Methods (RBF-based methods)

Local:

1 Finite Element Method

2 Finite Volume Method

3 Finite Differences Method
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Global approach

Global

I(x) = R(x) =
N∑

k=1

ckΦ(x , xk)

Ac = f with Ai ,k = Φ(xi , xk)
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Partition of Unity

Partition of Unity

d⋃
j=1

Ωj = Ω

Wj s.t.
d∑

j=1

Wj(x) = 1 ∀x ∈ Ω

I(x) =
d∑

j=1

Wj(x)Rj(x) with Rj(x) =

Nj∑
k=1

c jkΦ(x , x jk)

Ajcj = fj
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Collocation method

Collocation

L(I(xi )) = g1(xi ) xi ∈ Ω

I(xi ) = g2(xi ) xi ∈ ∂Ω
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Poisson’s equation

In our case L = −∆.
Local Matrix:

Lj = (W̄∆
j Aj + 2W̄∇

j A∇j + W̄jA
∆
j )A−1

j

Where:

(A∆
j )i ,k = ∆Φ(x ji , x

j
k) (A∇j )i ,k = ∇Φ(x ji , x

j
k)

(Aj)i ,k = Φ(x ji , x
j
k)

(W̄∆
j )k,k = ∆Wj(x

j
k) (W̄∇

j )k,k = ∇Wj(x
j
k)

(W̄j)k,k = Wj(x
j
k)
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Poisson’s equation

Global Matrix

Li ,k =
d∑

j=1

(Lj)ζi,jζk,j

Finally you solve the global linear system:

LI = f

with
I = (I(x1), ..., I(xN)) f = (f1, ..., fN)

with fi = g1(xi ) for xi ∈ Ω̇ and fi = g2(xi ) for xi ∈ ∂Ω
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Stability Issues

1 Tikhonov regularization

2 Variably Scaled Kernel

3 Hybrid Variably Scaled Kernel
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Tikhonov regularization

Original LS system

min
I

(||LI− f||22)

Tikhonov regularization

min
I

(||LI− f||22 + ||ΓI||22)

Where usually Γ =
√

(γ)I and γ = 10−10 ∼ 10−15
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Separation Distance & fill distance

Separation distance:

qXN
=

1

2
min
i 6=k
||xi − xk ||2

Fill Distance:

hXN
= sup

x∈Ω
( min
x∈XN

||x− xk ||2)
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Convergence Estimate for interpolation

Suppose Ω ⊆ RM is bounded and satisfies an interior cone
condition. Suppose that Φ ∈ C 2k(Ω× Ω) is symmetric and
strictly positive definite and let f ∈ NΦ(Ω), where NΦ is the
native space of Φ. Then, there exist positive constants h0 and
C , independent of x, f , and Φ, such that:

|f (x)− R(x)| ≤ ChkXN

√
CΦ(x)||f ||NΦ(Ω)

Provided h
N
≤ h0 and f ∈ NΦ(Ω), where

CΦ(x) = max
|β|=2k

( max
x,z∈Ω∩B(w ,C2hN

(|Dβ
2 Φ(w, z)|))
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Variably Scaled Kernel

Ψj : x→ (x, ψj(x))

Increase of distances:

||Ψj(x)−Ψj(y)||22 ≥ ||x− y||22

VSK:

K((x, ψ(x)), (y, ψ(y))) ∀x, y ∈ RM

Local interpolant:

Rψj
(x) =

Nj∑
k=1

c jkK((x, ψ(x)), (xjk , ψ(xjk))) x ∈ Ωj
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Variably Scaled Kernel

Discrete local operator:

L̄ψj
= (W̄∆

j Aψj
+ 2W̄∇

j A∇ψj
+ W̄jA

∆
ψj

)A−1
ψj

Where simply A∆
ψj

, A∇ψj
, Aψj

are little modifications of the
previous definitions arising from the fact that:

Φ = Φ((||x− xjk ||
2 + (ψj(x)− ψj(x

j
k))2)

1
2 )
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HVSK

Algorithm 1 HVSK

1: for j = 1 to d do
2: Computing Aj

3: Checking σm
4: if σm < (1e − 16)/ε4 then
5: VSK
6: else
7: STANDARD
8: end if
9: end for
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Residual Adaptive Subsampling Scheme

We first start from a set

XN = {x(1)
i , i = 1, ...,N(1)}

where we compute the solution and a test set of interior points:

YÑ(1) = {y(1)
i , i = 1, ..., Ñ(1)}

then we compute the residual on the test set:

r
(1)
i = f (y

(1)
i )− IN(1)(y

(1)
i )
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Residual Adaptive Subsampling Scheme

then we define the following two sets of points:

S
T

(1)
1

= {y(1)
i : r

(1)
i > τ1, i = 1, ...,T

(1)
1 }

S
T

(1)
2

= {x̄(1)
i : r

(1)
i < τ2, i = 1, ...,T

(1)
2 }

Finally at the next step we will consider a new set X :

X (k+1)
N = X (k+1)

Nb

⋃
X (k+1)
Nc

where
X (k+1)
Nc

= (X (k)
Nc

⋃
S
T

(k)
1

)\S
T

(k)
2
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Results

RMSE

RMSE :=

√√√√1

s

s∑
i=1

|f (x̃i )− I(x̃i )|2

ψj Map

ψj =

Nj∑
i=1

|pji (x, x
j
i )|

with

pji (x, x
j
i ) =

1

π
arctan(hji (x1 − x ji1)e−5(x2−x ji2))
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Map ψj

Nc data set hXN
qXN

81 original 1.03e-1 1.07e-2
mapped 2.93e-1 3.68e-2

289 original 5.72e-2 2.07e-3
mapped 6.34e-2 6.73e-3

1089 original 3.27e-2 1.12e-3
mapped 5.79e-2 4.34e-3

4225 original 1.68e-2 1.74e-4
mapped 4.85e-2 6.79e-4

Table: Separation and fill distances of the original data set compared
with the ones mapped via VSKs (Halton points)
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RMSE vs ε

Figure: RMSEs obtained by varying ε for the Gaussian C∞ kernel.
From left to right, top to bottom, we consider Nc = 81, 289, 1089
and 4225 Halton data.



RBF-based
partition of

unity method
for elliptic

PDEs:
Adaptivity and
stability issues

via VSKs

Niccoló
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RASS

Figure: An illustrative example of RASS procedure
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RASS

Figure: The iterations versus the MR and RMSE for Halton data. In
the left frame we use the HVSK approach, while in the right one the
standard bases
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Summary

1 Global + Local
1 Classical PU collocation method → stability issues

1 Tikhonov regularization
2 VSK → HVSK + RASS
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Work in progress

1 Different PDEs (parabolic)

2 Parallel computing implementation


