
A new stable basis for radial basis function interpolation

Chiara Todesco

Università degli studi di Padova

12 December 2017

Chiara Todesco (Unipd) A new stable basis for radial basis function interpolation 12 December 2017 1 / 51



Presentation

1 Problem and Basic Notions

2 ”Natural” basis

3 General bases

4 Weighted SVD bases

5 Weighted discrete least-square approximation

6 Numerical examples (Part 1)

7 The new basis

8 Lanczos method

9 Construction of the new basis

10 Approximation

11 Numerical examples (Part 2)

Chiara Todesco (Unipd) A new stable basis for radial basis function interpolation 12 December 2017 2 / 51



Problem and Basic Notions

Problem

The purpose of approximation theory is the reconstruction of given
function defined on a set Ω ⊆ Rs from some values sampled at a finite set
X ⊂ Ω. This process is required to be convergent and stable, namely the
approximant should reproduce the original function in a chosen norm.

Problem : The kernel methods although they are built to be well-posed for
every data distribution, it is also well known that the interpolation based
on translates of radial basis functions (RBF) is numerically unstable due to
the ill-conditioning of the kernel matrix.
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Problem and Basic Notions

Obiective : Find a general way to build stable and orthonormal bases for
the native space NΦ(Ω) associated to a kernel Φ: Ω× Ω→ R with
Ω ⊆ Rs , based on a suitable factorization of the kernel matrix

A := (Φ(xi , xj)).

Furthermore, after that, find a method to compute in a fast way the basis
using methods related to Krylov subspaced.
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Problem and Basic Notions

Basic Notions

Consider Φ strictly positive definite and radial kernel defined on a set
Ω ⊆ Rs , and X is a finite set of n ∈ N distinct points in Ω. Since the
kernel is radial, ther exist a unique function ϕ : [0,+∞)→ R and ε ∈ R>0

such that

Φ(x , y) = Φε(x , y) = ϕ(ε‖x − y‖2) ∀x , y ∈ Ω
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Problem and Basic Notions

Theorem

Every SPD Φ on domain Ω has a unique native Hilbert space NΦ(Ω). It is
the closure of the space

HΦ(Ω) :=


M∑
j=1

λjΦ(xj ,·) : λj ∈ R, M ∈ N, xj ∈ Ω


of all function of form s(x) =

∑M
j=1 λj Φ(‖xj − x‖2) under the inner

product

(Φ(x , ·),Φ(y , ·))Φ = Φ(x , y) ∀x ∈ Ω, ∀f ∈ HΦ(Ω).

The elements of the native space can be interpreted as function via the
reproduction formula

f (x) = δx(f ) = (f ,Φ(x , ·))Φ ∀x ∈ Ω, ∀f ∈ HΦ(Ω)
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Problem and Basic Notions

Theorem

Assume
∫

Ω Φ(x , x) dx < +∞ to hold for a SPD Φ on Ω. Then the
integral operator

C [v ](x) =

∫
Ω
v(t)Φ(x , t) dt

of generalized convolution type maps L2(Ω) continuosly into the native
NΦ(Ω). It satisfies

(f , v)L2(Ω) = (f ,C [v ])Φ ∀f ∈ NΦ(Ω), v ∈ L2(Ω)

We will consider the operator TΦ : L2(Ω)→ NΦ(Ω) ⊆ L2(Ω) defined by

TΦ[f ](x) =

∫
Ω

Φ(x , y)f (y) dy ∀f ∈ L2(Ω), ∀x ∈ Ω

that maps L2(Ω) continuously into NΦ(Ω). It is the adjoint of the
enbedding operator of NΦ(Ω) into L2(Ω) i.e.

(f , v)L2(Ω) = (f ,TΦ[v ])Φ ∀f ∈ NΦ(Ω), v ∈ L2(Ω)
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Problem and Basic Notions

Basic Notions

If Φ is SPD function on Ω, one can interpolate any function f ∈ NΦ(Ω)
on any scattered set {x1, . . . , xM} ⊂ Ω by an unique function

s∗f (x) =
M∑
j=1

λj ϕ(‖xj − x‖2)

. The error functional

ε∗x : f 7→ f (x)− s∗f (x)

is in the dual of the native space, and it’s norme P∗(x) = ‖ε∗x‖Φ x ∈ Ω is
called the Power function. the standard error bound is

|f (x)− s∗f (x)| ≤ P∗(x) ‖f ‖Φ ∀f ∈ NΦ(Ω), ∀x ∈ Ω
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”Natural” basis

”Natural” basis

A particular and in some sense ”natural” basis for NΦ(Ω) comes from
Mercer’s theorem

Theorem (Mercel)

Every continuous positive definite kernel Φ on bounded domain Ω ⊆ Rs ,
defines an operator TΦ : N (Ω)→ N (Ω)

TΦ[f ](x) =

∫
Ω

Φ(x , y)f (y) dy

which is bounded, compact and self-adjoint. It has an enumerable set of
eigenvalus {λj}j>0 s.t. λ1 ≥ λ2 ≥ · · · > 0 and eigenvectors {ϕj}j>0 i.e.

λjϕj =

∫
Ω

Φ(x , y)ϕj(y) dy ∀x ∈ Ω

which form an orthonormal basis for NΦ(Ω).
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”Natural” basis

”Natural” basis

Theorem (Mercel)

In particular

(1) {ϕj}j>0 is orthonormal in NΦ(Ω);

(2) {ϕj}j>0 is orthogonal in L2(Ω): ‖ϕj‖2
L2(Ω) = λj ;

(3) limj→+∞ λj = 0;

Morover the kernel has a series expansions

Φ(x , y) =
+∞∑
j=1

ϕj(x)ϕj(y) ∀x , y ∈ Ω

where the {ϕj} are eigenfunctions, which is absolutely and uniformely
convergent

Chiara Todesco (Unipd) A new stable basis for radial basis function interpolation 12 December 2017 10 / 51



”Natural” basis

”Natural” basis

Remark

The operator TΦ is a trace class operator, that is to say∑
j>0

λj =

∫
Ω

Φ(x , x) dx = ϕ(0) |Ω|

where |Ω| := meas(Ω). Morover as consequence of Mercer’s theorem’s
propety (2) ∀j > 0

(f , ϕj)L2(Ω) = (f ,TΦ[ϕj ])Φ = λj(f , ϕj)Φ = ‖ϕj‖2
L2(Ω)(f , ϕj)Φ

= (ϕj , ϕj)L2(Ω) (f , ϕj)Φ. ∀f ∈ NΦ(Ω)
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General bases

General bases

We show the connection between a change of basis and a decomposition
of the kernel matrix A.
Let Ω ⊆ Rs , X = {x1, . . . , xN} ⊂ Ω and let be

TX = {Φ(·, xi ) : xi ∈ X} standard basis of translates

U = {ui ∈ NΦ(Ω), i = 1, . . . ,N} new basis s.t.

NΦ(X ) := span(U) = span(TX )

At x ∈ Ω, TX and U can be expressed as row vectors:

T (x) = [Φ(x , x1), . . . ,Φ(x , xN)] ∈ RN

U(x) = [u1(x), . . . , uN(x)] ∈ RN
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General bases

General bases

Theorem (characterization of the basis U)

Any basis U arises from a factorization of the kernel matrix A:

A = VU · C−1
U

where

. VU = (uj(xi ))1≤i ,j≤N matrix of the new basis valueted at X;

. CU = (cij)1≤i ,j≤N matrix of change of basis that is
U(x) = T (x) · CU i.e.

uj(x) =
N∑
i=1

cijΦ(x , xi )
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General bases

General bases

Proposition

The interpolant Px [f ] on X ⊂ Ω of a function f ∈ NΦ(Ω) can be rewritten
as

Px [f ](x) =
N∑
j=1

∆j(f ) uj(x) = U(x) ·∆(f ) ∀x ∈ Ω

where ∆(f ) = [∆1(f ), . . . ,∆N(f )]T ∈ RN is a column vector of values of
linear function defined by

∆(f ) = C−1
U A−1EX (f ) = V−1

U EX (f )

while EX (f ) is the column vector given by the evaluation of fon X
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General bases

Proposition (stability estimate)

Let GU := ((ui , uj)Φ)1≤i ,j≤N , and K2(GU ) the corresponding 2-condition
number. Then ∀x ∈ Ω

|PX [f ](x)|2 ≤ ‖U(x)‖2
2 ‖∆U (f )‖2

2 ≤ K2(GU )ϕ(0) ‖f ‖2
Φ

Corollary

If U is a Φ-orthonormal basis, the stability estimate becomes

|PX [f ](x)| ≤
√
ϕ(0) ‖f ‖Φ

Theorem

Each Φ-orthonormal basis U arisee from a decomposition

A = BT · B,

with BT = VU and B−1 = CU .
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Weighted SVD bases

Weighted SVD bases

The main idea for the construction of the new basis is to discretize the
”natural” basis introduced in Mercel’s theorem. To this aim, consider on
Ω a cubature rule (X ,W)N , N ∈ N, that is a set of distinct points
X = {xj}Nj=1 such that∫

Ω
f (y) dy ≈

N∑
j=1

f (xj)wj ∀f ∈ NΦ(Ω)

Thus, the operator TΦ can be approximate for each eigenvalue λj on X as

λjϕj(xi ) =

∫
Ω

Φ(xi , y)ϕj(y) dy i = 1, . . . ,N, ∀j > 0,

and then discretizied using the cubature rule by

λjϕj(xi ) ≈
N∑

h=1

Φ(xi , xh)ϕj(xh)wh i , j = 1, . . . ,N. (1)
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Weighted SVD bases

Weighted SVD bases

Setting W = diag(wj), it is sufficies to solve the following discrete
eigenvalue problem in order to find the approximation of the eigenvalues
and eigenfunctions(evaluated on X) of TΦ[f ]:

λv = (A ·W )v .

This approach involves a scaled version of the kernel matrix, that is A ·W ,
which is no longer symmetric and that cannot be described as a
factorization of A = BT · B, in fact it doen’t lead directly to the
connection between the discretization version of the ”natural” basis of
Mercel’s theorem and a basis of the subspace NΦ(Ω).
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Weighted SVD bases

Weighted SVD bases

A solution is to rewrite (1), using the fact that the weights are positive, as

λj(
√
wiϕj(xi )) =

N∑
h=1

(
√
wiΦ(xi , xh)

√
wh)(
√
whϕj(xh)) i , j = 1, . . . ,N.

that corrispond to consider the scaled eigenvalue problem

λ
(√

W · v
)

=
(√

W · A ·
√
W
)(√

W · v
)

which is equivalent to the previous one, now involving the symmetric and
positive definite matrix AW :=

√
W · A ·

√
W . This matrix is normal, then

a singular value decomposition of AW is a unitary diagonalization.
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Weighted SVD bases

Weighted SVD bases

Definition (WSVD basis)

A weighted SVD basis U is a basis for NΦ(X ) characterized by the
following matrices:

VU =
√
W−1 · Q · Σ, CU =

√
W · Q · Σ−1

where √
W · A ·

√
W = Q · Σ2 · QT

is a singular value decomposition (and a unitary diagonalization) of the
scaled kernel matrix AW . Σ is a diagonal matrix with
Σjj = σj , j = 1, . . . ,N and σ2

1 ≥ · · · ≥ σ2
N > 0 are the singular values of

AW , and W is a diagonal matrix where Wjj = wj , j = 1, . . . ,N are the
weigths of the cubature rule (X ,W)N .

Chiara Todesco (Unipd) A new stable basis for radial basis function interpolation 12 December 2017 19 / 51



Weighted SVD bases

Remark

It is essential to require that
∑N

j=1 wj = |Ω|, which is equivalent to ask
that for all N ∈ N the cubature rule (X ,W)N is exact at least for the
costant functions. It is also possible to use a set of weigths which does not
provide a cubature rule, but in this way we lose the connection between U
and the eigenbasis {ϕj}j>0, while remains unchanged the stability
propeties

Theorem

Every weighted SVD basis U satisfies:

1 uj(x) = 1
σ2
j

∑N
i=1 wiuj(xi )Φ(x , xi ) ≈ 1

σ2
j
TΦ[uj ](x), ∀j = 1, . . . ,N,

∀x ∈ Ω;

2 U is NΦ(Ω)-orthonornal;

3 U is `2,w (X )-orthogonal s.t. ‖uj‖2
`2,w (X ) = σ2

j ∀uj ∈ U ;

4
∑N

j=1 σ
2
j = ϕ(0) |Ω|;
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Weighted SVD bases

Weighted SVD bases

Remark

Given a cubature rule (X ,W )N we can define the `2,w (X ) inner product as

(f , g)`2,w (X ) =
N∑
i=1

wi f (xi )g(xi ) f , g ∈ NΦ(Ω)

which is a discerete version of (·, ·)L2(Ω), in fact

(f , g)L2(Ω) =

∫
Ω
f (x)g(x) dx ≈

N∑
j=1

wj f (xj)g(xj) = (f , g)`2,w (X ).
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Weighted SVD bases

Remark

Hence the operator TN : NΦ(Ω)→ NΦ(X )

TN [f ](x) = (f ,Φ(·, x))`2,w (X )

which is the discrete version of TΦ, is defined just by replecing the L2(Ω)
product with its discrete version `2,w (X ) in TΦ. The operator TN has N

eigenvectors, which turns out to be exactly the basis {uj}Nj=1. The
functions uj are essentially a discrete version of the {ϕj}j>0.
Moreover propety (4) of the previous theorem suggest that

N∑
j=1

wjΦ(xj , xj) = tr(
√
W · A ·

√
W ) =

N∑
j=1

σ2
j = ϕ(0) |Ω| =

∫
Ω

Φ(x , x) dx

The integral is exactly approximated by the cubature rule (it is
suppose to be exact at least for constant function)
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Weighted SVD bases

Weighted SVD bases

Remark

The norm of the point-wise erroroperator, namely the Power function
PΦ,X (x), can be expressed in the simpler form

PΦ,X (x)2 = ϕ(0)−
N∑
j=1

uj(x)2

which involves only the basis. Furthermore, it is possible to give an
expansion of the kernel when it acts on functions of NΦ(X ). That is

Φ(x , y) =
N∑
j=1

uj(x)uj(y) ∀x , y ∈ Ω

This is useful when it is required to use a degenerete kernel to approximate
the original one .
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Weighted discrete least-square approximation

Weighted discrete least-squares approximation

The goal is to project the unknown function f ∈ NΦ(Ω) into a proper set
NΦ(X ). In other words we will use a smaller basis U ′ ( U . This is done in
order to obtain better result in terms of stability and computational cost,
without serious loss of convergence speed.

Definition

Given a function f ∈ NΦ(Ω), a discrete subset X ⊂ Ω, a set of cubature
weights W associated with X , a weighted SVD basis U for NΦ(X ) and a
natural number M 6 N = |X |, the weighted discrete least-squares
approximation of order M of f is the function ΛM [f ] that satisfied the
condition

ΛM [f ] = arg min
g∈{u1,...,uM}

‖f − g‖`2,w (X )
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Weighted discrete least-square approximation

Weighted discrete least-squares approximation

Theorem (how to compute ΛM )

The weighted discrete least-squares approximation of a function
f ∈ NΦ(Ω) is given by

ΛM [f ](x) =
M∑
j=1

(f , uj)Φuj(x) =
M∑
j=1

(f , uj)`2,w (X )

σ2
j

uj(x)

that is ΛM [f ] is nothing else but a truncation to the first M terms of PX [f ]
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Weighted discrete least-square approximation

Weighted discrete least-squares approximation

Remark

To compute the weighted least-squares approximant ΛM [f ] it sufficies to
use the first M elements of the interpolant PX [f ], which correspond to the
biggest singular values σ2

j , j = 1, . . . ,N. This approch make sense since in

the singular values
{
σ2
j

}
16j6N

of A accumulate to zero very fast,being in

particular a discrete approximation of the eigenvalues of the compact
operator TΦ[f ]. The rate of decay of the singular values is faster if the
kernel is smoother and if the shape parameter is smaller. Hence the
truncated basis provides a good approximation and allows to deal with a
smaller problem. From a linear algebra point of view, this correspond to
solve the (weighted) linear system associated to the interpolation problem
using a total least-square method. This is opposite to the case of the
standard basis of translates, where the choise of the elements of the basis
to neglect correspond to the choise of a restricted subset Y ⊂ X .
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Weighted discrete least-square approximation

Stability and convergence for weighted discrete
least-squares approximation

Concerning the convergence we can define the norm of the
pointwise-evaluation operator releted to the approximation operator, which
is the equivalent to the power function, is given by

(PM
Φ,X )2 = ‖εMx ‖2

NΦ(Ω)∗ = ϕ(0)−
M∑
j=1

uj(x)2

It is clear that is a simple truncation of the power function. Concerning
the convergence, using the standard error bound, we have

|ΛM [f ]− f (x)|2 6

(
ϕ(0)−

M∑
j=1

uj(x)2

)
‖f ‖2

Φ ∀f ∈ NΦ(Ω)
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Weighted discrete least-square approximation

Stability and convergence for weighted discrete
least-squares approximation

Note that by replacing an exact interpolant with a weighted discrete
least-squares approximant, we can obtain better result in terms of stability.
In particular, the stability estimate can also be refined for the particular
case of a weighted SVD-basis, in fact

|ΛM [f ](x)| 6
( M∑

j=1

uj(x)2

)1/2

‖f ‖Φ 6
√
ϕ(0)‖f ‖Φ, ∀f ∈ NΦ(Ω)

Hence, for convergente approximations, namely for approximations for
which the power function decres to zero, namely we have necessary

M∑
j=1

uj(x)2 → ϕ(0).

That is, the stability bound is maximized by ϕ(0).
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Numerical examples (Part 1)

Comparison between the interpolant and the weighted
least-squares approximant

We compare the approximation error produced using the full
interpolant and some reduced weigted least-squares approximant
starting from 600 trigonometric gaussian centers, and then truncating
the basis for M ∈ {0, 20, . . . , 600};
We reconstruct the oscillatory function f (x , y) = cos(20(x + y)) on
the disk Ω with center C = ( 1

2 ,
1
2 ) and radius R = 1/2;

The experiment has been repeated for the gaussian kernel, the inverse
multiquadric (IMQ) and the cubic matern (3MAT) for a shape
parameterε = 1, 4, 9

We choose the trigonometric gaussian points as centers because they
provide high-accuracy cubature rules while being sufficiently
uniformely distributed in Ω;
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Numerical examples (Part 1)

(a) (b)

(c) (d)

Figura: RMS errors for the reconstruction of f on Ω (d) using ΛM [f ] for different
values of M and different shape parameters, using gaussian kernel (a), the IMQ
(b) and the 3MAT (c)
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Numerical examples (Part 1)

Comparison between the interpolant and the weighted
least-squares approximant

Depending on the choise of the shape parameter ε, the kernels
present a fast decay to zero (Gaussian), a medium decay (IMQ) and a
slow decay (3MAT);

For the 3MAT kernel the interpolant remains stable, except for the
last iterations, for ε = 4, 9, while for ε = 1 is more unstable;

For the IMQ kernel the interpolant becomes unstable for ε = 1, while
remain stable, except for the last iterations,for ε = 4, 9;

For the Gaussian kernel the interpolant becomes unstable for
ε = 1, 4, while remain stable, except for the last iterations,for ε = 9;

The eigenvalues of the Gaussian kernel for ε = 1 are almost all under
the machine precision; moreover the gaussian becomes too flat, and
there is no hope to reconstruct an oscillatory function.
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Numerical examples (Part 1)

Comparison with the standard basis

In this example we try to reconstuct the Franke’s function with the
IMQ-kernel on the lens Ω defined as the intersection of two disk with
centers C = (−

√
2/2, 0) and c = (

√
2/2, 0) and radii R = r = 1;

The test compares the results obtained with the interpolant based on
the standard basis and the new basis, centred on an equally-spaced
points and on a trigonometric-gaussian set of points, respectively and
then is repeated for ε = 1, 4, 9;
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Numerical examples (Part 1)

Comparison with the standard basis

(a) (b) (c)

Figura: RMS errors of the reconstruction of f on the lens Ω using the IMQ kernel
with the standard basis and the new basis with shape parameter ε = 1 (a), ε = 4
(b), ε = 9 (c).
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Numerical examples (Part 1)

Comparison with the standard basis

for ε = 9 there is only a small difference between the two basis;

for ε = 1, 4, although for small data sets X the two basis does not
behave so differently, when N becomes bigger the standar basis
becomes unstable;

the weigthed least-square approximant ΛM [f ] based on the new basis
presents a convergent behavior for each shape parameter, therefore
there is no need to choose a particular ε to guarantee convergence,
even if it slow;

Chiara Todesco (Unipd) A new stable basis for radial basis function interpolation 12 December 2017 34 / 51



Numerical examples (Part 1)

Comparison with a ”stable” standard basis

We want to reconstruct the function

f (x) = −2Φ4(x , (0.5, 0.5)) + Φ4(x , (0, 0)) + 3Φ4(x , (0.7, 0.7))

where Φ4(x , y) is the gaussian kernel with ε = 4 on the square
Ω = [0, 1]2;

To improve the stability of the standard basis we want to find the
optimal ε∗ which guarantees to minimize the residual error. We use
the leave-one-out cross validation strategy;

The RMS errors are plotted using equally-spaced points and Halton
points as centers for the standard basis, while for the new basis, in
both cases, we use the product Gauss-Legendre points.

A good choise of the shape parameter reduces the instability of the
standard interpolant, although it does not suffice to avoid it
completely
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Numerical examples (Part 1)

(a) (b)

Figura: RMS errors for the reconstruction of f on the square Ω using the gaussian
kernel with the standard basis of translates with optimal shape parameter ε∗ and
the new basis with ε = 4. The standardinterpolant is computed using equally
spaced points (a) and Halton points (b).
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The new basis

The new basis

As seen before we can compute an orthonormal basis U of NΦ(X ). Its
main propety is that it allows to extract a sub basis {u1, . . . , uM}, with
M < N, which gives an approximant ΛM [f ] as good as the interpolant,
while being much more stable.

Problem: The main problem is the efficiency of the basis
computation. Since the basis is found by a singular value decomposition,
we have to compute all the elements uj , 1 ≤ j ≤ N, and then to leave out
the last N −M terms, the ones for which σ2

j < τ , with τ a prescribed
tolerance.

Obiective: Find a way to slightly modify our basis in order to compute its
most significant part using some tools from the theory of Krylov subspaces.
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Lanczos method

The Lanczos method and the approximation of the SVD

We want to find the solution of the linear system Ax=b with A the kernel
matrix and b = (f (xi ))16i6N .

Let KM(A, b) = span
{
b,Ab, . . . ,AM−1b

}
be the Krylov subspace of

order M genereted by A and b.

The Lanczos method computes an orthonomal basis {p1, . . . , pM} of
KM(A, b) through a Gram-Schmidt orthonormalization.
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Lanczos method

The Lanczos method and the approximation of the SVD

In matrix form the algorithm is

APM = PM+1H̄M , H̄M =

[
HM

h̄eTM

]
,

where

PM = [p1, . . . , pM ] ∈ RN×M ;

HM is a M ×M tridiagonal matrix;

h̄ ∈ R;

eM ∈ RM is the m-th unit vector.

Chiara Todesco (Unipd) A new stable basis for radial basis function interpolation 12 December 2017 39 / 51



Lanczos method

The Lanczos method and the approximation of the SVD

The solution x can be approximated as

x = PM y , where y ∈ RM : H̄M y = ‖b‖2e1.

If A has a good low-rank approximation, we expect that a good
approximation of x can be computed using M components with M � N.
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Lanczos method

The Lanczos method and the approximation of the SVD

Let’s consider the singular value decomposition of

H̄M = UM Σ̄M V T
M , where Σ̄ =

[
Σ2
M

0

]
,

where

UM ∈ R(M+1)×(M+1) unitary matrix;

VM ∈ RM×M unitary matrix;

Σ2
M diagonal matrix having the singular values as its entries.

Remark

Since the last row of Σ̄ is the zero vector, the decomposition does not
change if we remove this row and the last column of UM . From now on we
will denote by UM the matrix without the last column so that the
decomposition becomes H̄M = UM Σ2

M V T
M .
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Construction of the new basis

Construction of the basis

Our idea is using the SVD of H̄M for constructing the new basis.
We can construct a new set of functions {ũj}16j6M ∈ NΦ(X ) similarly to
the construction of the WSVD basis. We stress that the set {ũj} does not
span NΦ(X ) unless M = N when the SVD of H̄M equals to that of A.

Definition

Let A be the kernel matrix for the set X on N distinct points. Let
H̄M , PM , VM , UM , Σ2

M be as intoduced as before. Hence, the basis
Ū = {ū1, . . . , ūM} is characterized by the matrix of change of basis

CŪM = PM VM Σ−1
M

or by the collocation matrix

VŪM = PM+1 UM ΣM
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Construction of the new basis

Construction of the basis

Remark

In this case the basis strongly depens on the particulary function
f ∈ NΦ(Ω) used to construct the Krylov subspace. This dependence
influences the behavior of the approximant.

Lemma

Let ŨM be the square matrix obtained from UM removing the last row uTM .
Then ŨM and VM coincide exept for the last row, namely only the m-th
row dT

M of the difference is a non zero row vector i.e.

ŨM = VM + eM dT
M
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Construction of the new basis

Theorem

Let the basis Ū be defined as in definition before. Then

ı̇) the basis in `2,w (X )-orthogonal with ‖ūj‖2
`2,w

= σ2
j ;

ı̇ı̇) the basis is near orthonormal on NΦ(Ω), meaning that

(ūi , ūj)Φ = δij + r
(M)
ij , where

RM = (r
(M)
ij )16i ,j6M = Σ−1

M vMdT
MΣM

is a rank one matrix for 1 6 M < N, and r
(M)
ij = 0 when

M = N;

ı̇ı̇ı̇) when M = N, Ū = U .

Remark

The magnitude of rij is close to the machine precision exept if both i and j
are close to M. That is to say that the first elements of the basis are
orthonormal from a numerical point of view.
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Approximation

Approximation

Let’s now compute the approximant. If we take the function f ∈ NΦ(Ω)
from which the basis is constucted, we get the approximant as a projection
with respect to the `2,w (X ) inner product

ΛM [f ](x) = ΣM
j=1σ

−2 (f , ūj)`2,w (X ) ūj ∀x ∈ Ω. (2)

But it can be expressed in terms of the NΦ(Ω) inner product as in the
WSVD basis:

Theorem

If the basis ŪM is constucted from f ∈ NΦ(Ω), for all j = 1, . . . ,M we
have

(f , ūj)`2,w (X ) = σ2
j (f , ūj)Φ. (3)

Hence the approximant ΛM [f ](x) is a projection of NΦ(Ω), or equivalentely

ΛM [f ](x) = ΣM
j=1 (f , ūj)Φ ūj ∀x ∈ Ω. (4)
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Approximation

Approximation

Remark

If we take an other function f̃ ∈ NΦ(Ω), the equality (3) holds with a
residual term on the right hand side. This is due to the fact that in the
case f̃ 6= f the terms depending on pM , pM+1 are not cancelled.
On the other hand, the equation (2) depends only on thr relation
between the left inverse of VŪM , that is Σ−2

M VŪM , and its transpose,
not on the connection with CŪ . This means that we can compute the
approximant of a function f̃ 6= f also using the basis constructed starting
form f .
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Numerical examples (Part 2)

A native space example

Domain Ω is the unit circle

We want to reconstruct the function
f (x) = Φ1(x , p1) + 2 Φ1(x , p2)− 2 Φ1(x , p3) + 3 Φ1(x , p4)
where Φ1 is the gaussian kernel with ε = 1.

We would like a stopping rule for the Lanczos iteration: a reasonably
good choise is when, for a certan tolarance τ > 0, we have∣∣∣∣∣ 1

N

M∑
j=1

(HM)jj − 1

∣∣∣∣∣ < τ.

It seems good enough to control the iteration in the case the
functions lies in the native space of the kernel.
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Numerical examples (Part 2)

(a) (b)

Figura: Decay of the residual (a) compared with the corrisponding RMSE (b)

Chiara Todesco (Unipd) A new stable basis for radial basis function interpolation 12 December 2017 48 / 51



Numerical examples (Part 2)

A general example

We want to approximate the Franke’s function, we choose as kernel the
inverse multiquadratic one (IMQ) with ε = 2 and as domain a lune,
namely defined by the difference of 2 disk of radius 0.5 with centers in
(0,0) and (0.5,0.5). To make the test general we use a set of randomly
distributed data sites X with n = 602.

Remark

In this case the tolerance of the stopping rule have been set to τ = 10−10,
since a smaller value lead to an increase of the RMS error. The failure of
the stopping rule in this case is due to the fact that the Franke’s function
does not belong to the native space of the kernel
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Numerical examples (Part 2)

(a) (b)

(c) (d)

Figura: Franke’s function (a); approximation obtained with a IMQ kernel with
ε = 2 (b) using 602 randomly distributed data points (c); pointwise error
computed on a grid of 60× 60 equally spaced points (d)
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Numerical examples (Part 2)

THANK YOU FOR YOUR ATTENTION
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