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1. Hlustriamo con esempi, I’approccio simmetrico dell’interpolazione di Hermite per 'interpolazione
di Hermite del primo ordine (ovvero quando si conoscono i valori posizionali e i gradienti).

Consideriamo la funzione
_ tanh(9(y — 7)) +1

fla,y) = tanh(9) +1 (1)

di cui possiamo facilmente calcolare le derivate parziali prime.

Usando RBF multiquadriche con parametro di forma e = 6, si confrontino 4 problemi

(a) interpolazione di Lagrange su N punti equispaziati di [0, 1];

(b) interpolazione di Lagrange su 3N clustered points (gruppi di punti) con separation
distance ¢ = h/10, dove h ¢& la fill distance di un insieme di punti equispaziati;

(¢) come nel punto precedente ma con ¢ = h/100;

(d) interpolazione di Hermite dei valori della funzione e valori delle derivate parziali
prime, di N punti equispaziati come nel punto (a).

I files da usare sono:

e per il punto (a), la funzione RBFInterpolation2D.m sostituendo opportunamente la
linea 1 (dove si definisce la RBF usata) e le linee 2-6 (dove si definisce la funzione
test) con ’espressione della funzione (1) ;

e per il punto (b), si usi sempre la funzione RBFInterpolation2D.m, ma sostituendo le
linee 8 e 9 con le seguenti (ricordando di calcolare o leggere preventivamente i dsites)

g=0.1/(sqrt(N)-1);

grid=linspace(0,1,sqrt(N));
shifted=linspace(q,1+q,sqrt(N)); shifted(end)=1-q;
[xcl,ycl]l=meshgrid(shifted,grid);
[xc2,yc2]=meshgrid(grid,shifted);
dsites=[dsites;xcl1(:) ycl1(:); =xc2(:) yc2(:)];

e per (c), come al punto precedente con le opportune modifiche

e per il punto (d) usare lo script RBFHermite_2D.m che fa uso della funzione DifferenceMatrix.m.

Produrre due tabelle, che per ogni approccio, fanno vedere come cambia il RMS-error e il
numero di condizionamento delle matrici d’interpolazione.

Lagrange clustered ¢ = h/10
mesh | RMS-error — Condition number | RMS-error — Condition number




clustered ¢ = h/100 Hermite
mesh | RMS-error — Condition number | RMS-error — Condition number

Le mesh da testare sono di dimensioni: 3 x 3, 5 x5, 9x 9, 17 x 17 e 33 x 33.

Si verifichera che l'interpolazione di Hermite rispetto ai dati clustered con Lagrange,
migliora i risultati soprattutto con la mesh 33 x 33, dove si ha un miglioramento (sen-
sibile) del numero di condizionamento e dell’errore.

. Si consideri ’equazione di Poisson con condizioni al bordo di Dirichlet

Viu(z,y) = —§ﬂ2 sin(7x) cos (%) , (z,y) €Q=10,1]? (2)
u(z,y) = sin(mx) (x,y) €
u(z,y) = 0 (z,y) € I'y

dove I'1 = {(z,y) : 0 <z <1, y=0}ely =00\I'1. La soluzione esatta ¢ u(z,y) =
Ty

sin(mz) cos ().
e usare Kansalaplace_2D.m per risolvere ’equazione (2) con il metodo non-simmetrico
di Kansa con multiquadriche inverse IMQ e con gaussiane G, con € = 3. Lo script
implementa le IMQ.
Per la gaussiana, bisogna sostituire opportunamente le linee nel codice che definiscono
la RBF usata e il suo laplaciano. Per la gaussiana dovremo scrivere

rbf = @(e,r) exp(-(exr)."2); ep=3;

Lrbf = @(e,r) 4%e”2 exp( —(exr)."2) .x((e*xr). 2-1);

In entrambi i casi si prendano N = 32,5292, 172 centri interni e M = 22,42, 62, 8>
centri addizionali sul bordo (che si possono prendere sul bordo del quadrato oppure
al di fuori del bordo del quadrato, come descritto nel codice).

I punti interni possono essere scelti come punti di Halton o equispaziati.

Produrre una tabella con il RMS-error e il numero di condizionamento della matrice
di collocazione.

Nota. Serve il bi-laplaciano della funzione gaussiana. Ricordo le sguenti due formule
del laplaciano e del bi-laplaciano di ¢(r) = ¢(||z||)

A 2 1
3 t33 = = Zo(r) laplaci
<8x2 + 8y2> ezl .2 o(r) + TQD(T) aplaciano
o *» 0 d! 2 d? 1 d? 1 d .



e Usare HermiteLaplace_2D.m per risolvere ’equazione (2) con il metodo simmetrico
di Fasshauer basato sulla collocazione di Hermite. Fare gli stessi esperimenti con IMQ
e G.

Ricordo che il link dove trovare i files delle funzioni Matlab é:
http://www.math.unipd.it/~demarchi/TAA2010



