
Esercitazione

Teoria dell’Approssimazione e Applicazioni

7 maggio 2015

Matlab codes free downloadable at:

http://hdl.handle.net/2318/158790

R. Cavoretto, A. De Rossi, E. Perracchione, Fast computation of partition of unity interpolants

through block-based data structures, submitted (2015).

PUM 2D CSRBF.m scripts performing the partition
PUM 3D CSRBF.m of unity using CSRBFs

BlockBased2D Structure.m scripts that store points into the
BlockBased3D Structure.m different neighbourhoods

BlockBased2D ContainingQuery.m scripts performing
BlockBased3D ContainingQuery.m the containing query procedure

BlockBased2D RangeSearch.m scripts that perform the
BlockBased3D RangeSearch.m range search procedure

BlockBased2D DistanceMatrix.m scripts that form the distance matrix
BlockBased3D DistanceMatrix.m of two sets of points for CSRBFs

inhull.m script that tests if a point belongs
to the convex hull

countingsort.m script that performs a sorting
routine for integers

haltonseq.m script that generates Halton data

Table 1: The Matlab codes for the block-based partition of unity algorithms.

Remark: inhull.m, countingsort.m and haltonseq.m are available online at:

http://www.mathworks.com/matlabcentral/fileexchange/.

PUM 2D CSRBF

%-------------------------------------------------------------------------%

%

% File: PUM_2D_CSRBF(dsites,rbf,wf,ep,testfunction,neval,npu)

%

% Goal: script that performs partition of unity interpolation using

% compactly supported RBFs

%

% Inputs: dsites: NX2 matrix representing a set of N data sites

% rbf: radial basis function. The CSRBF and the weight

% function used with this code must be given

% in shifted form rbf2(u) = rbf(r), u = 1-e*r.

% For example, the Wendland C2

% rbf = @(e,r) max(1-e*r,0).^4.*(4*e*r+1);

% becomes rbf2 @(e,r) r.^4.*(5*spones(r)-4*r)

% wf: weight function

% ep: shape parameter of RBF

% testfunction: test function

% neval: number of evaluation points in one direction

% npu: number of PU subdomains in one direction

%

% Outputs: epoints: the evaluation points

% Pf: the interpolant computed at the evaluation points

%

%-------------------------------------------------------------------------%

1



BlockBased2D Structure

%-------------------------------------------------------------------------%

%

% File: BlockBased2D_Structure(dsites,q,puradius,min_dsites)

%

% Goal: find the data sites located in each of the q^2 cells and in the

% neighbouring cells

%

% Inputs: dsites: NX2 matrix representing a set of N data sites

% q: number of cells in one direction

% puradius: radius of PU subdomains

% min_dsites: minimum of data sites among two directions

%

% Calls on: countingsort: by B. Moore, from MATLAB Central File Exchange

%

% Outputs: idx_dsites: multiarray containing the indices of the data points

% located in k-th block and in the neighbouring blocks

%

%-------------------------------------------------------------------------%

BlockBased2D ContainingQuery

%-------------------------------------------------------------------------%

%

% File: BlockBased2D_ContainingQuery(puctr,q,puradius,min_dsites)

%

% Goal: script that given a subdomain centre returns the index of

% the square cell containing the subdomain centre

%

% Inputs: puctr: subdomain centre

% q: number of square cells in one direction

% puradius: radius of PU subdomains

% min_dsites: minumim of data sites among two directions

%

% Outputs: index: the index of the square cell containing the subdomain

% centre

%

%-------------------------------------------------------------------------%

BlockBased2D RangeSearch

%-------------------------------------------------------------------------%

%

% File: BlockBased2D_RangeSearch(puctr,puradius,dsites,index)

%

% Goal: find the data sites located in a given subdomain and the distances

% between the subdomain centre and data sites

%

% Inputs: puctr: subdomain centre

% puradius: radius of PU subdomains

% dsites: NX2 matrix representing a set of N data sites

% index: vector containing the indices of the data points

% located in the k-th block (the cell containing the

% subdomain centre) and in the neighbouring cells

%

% Outputs: idx: vector containing the indices of the data points located

% in a given PU subdomain

% dist: vector containing the distances between the data sites

% and the subdomain centre

%

%-------------------------------------------------------------------------%

2



ESERCIZIO

Usando il software Matlab implementato per il metodo di partizione dell’unità, interpolare un insieme di
dati sparsi (Halton) contenuti all’interno di un dominio pentagonale, i cui vertici sono (0.25, 0), (0.75, 0),
(1, 0.5), (0.5, 1) e (0, 0.5). Come funzione peso e RBF locale utilizzare la funzione di Wendland C2, mentre
come funzione test usare la funzione di Franke.

Nota: il numero di sottodomini lungo una direzione è definito da npu =

⌊

1
2 lbox

(

N
AK

)1/2
⌋

, dove

• lbox = maxdsites −mindsites;

• AK = area dell’inviluppo convesso.

Soluzione.

clear all

% Define the convex hull (not input)

X = [0.25 0; 0.75 0; 1 0.5; 0.5 1; 0 0.5];

% Define the number of Halton data in the unit square

N = 4000;

% Compute Halton data

dsites = haltonseq(N,2);

K = convhulln(X);

% Reduce data in taking only those contained in the convex hull

in_dsites = inhull(dsites,X,K);

dsites = dsites(in_dsites,:);

plot(dsites(:,1),dsites(:,2),’.’);

axis square

N = size(dsites,1);

% Compute the ratio between areas to define the number of subdomains

[K,area] = convhulln(dsites); % Compute the convex hull and the area

max1 = max(dsites(:,1)); min1 = min(dsites(:,1));

max2 = max(dsites(:,2)); min2 = min(dsites(:,2));

max_dsites = max(max1,max2); min_dsites = min(min1,min2);

ratio = (max_dsites-min_dsites).^2./area;

% Inputs

ep = 0.5; % Shape parameter

neval = 40; % Parameter for neval-by-neval grid of evaluation points

wf = @(e,r) r.^4.*(5*spones(r)-4*r); % Define weight function

rbf = @(e,r) r.^4.*(5*spones(r)-4*r); % Define RBF function

% Define the testfunction

f1 = @(x,y) 0.75*exp(-((9*x-2).^2+(9*y-2).^2)/4);

f2 = @(x,y) 0.75*exp(-((9*x+1).^2/49+(9*y+1)/10));

f3 = @(x,y) 0.5*exp(-((9*x-7).^2+(9*y-3).^2)/4);

f4 = @(x,y) 0.2*exp(-((9*x-4).^2+(9*y-7).^2));

testfunction = @(x,y) f1(x,y)+f2(x,y)+f3(x,y)-f4(x,y);

% Parameter for npu-by-npu grid of PU subdomains

npu = floor((N./(4))^(1/2)*sqrt(ratio));

PUM_2D_CSRBF(dsites,rbf,wf,ep,testfunction,neval,npu);

3


