

Fast Computation of RBF-PU Interpolants

Roberto Cavoretto

Joint work with

Alessandra De Rossi, Emma Perracchione

Department of Mathematics “G. Peano”
University of Torino – Italy

Seminar

May 7th, 2015 – Padova, Italy

Introduction

Main target: interpolate (large) scattered data sets using efficient and accurate algorithms.

- [Allasia, Besenghi, Cavoretto, De Rossi (AMC, 2011)]: new 2D efficient implementation of the modified Shepard's algorithm using MLSAs and RBFs as nodal functions \Rightarrow novelty of the partition of the domain in *strips* for constructing a **strip-based searching procedure**.
- [Cavoretto, De Rossi (JCAM, 2010)]: extension of the previous idea to the spherical case using ZBFs (instead of RBFs) \Rightarrow partition of the domain in *spherical zones* \Rightarrow **spherical zone searching procedure**.
- [Cavoretto, De Rossi (AML, 2012)]: the spherical zone algorithm has been generalized using the **partition of unity method**.
- [Cavoretto, De Rossi (CAMWA, 2014)]: new 2D partition of unity algorithm which is based on the partition of the domain in *cells* (squares) using a double structure of crossed-strips \Rightarrow **cell-based searching procedure**.
- [Cavoretto, De Rossi (Submitted, 2014)]: extension of the 2D algorithm to the 3D case partitioning the domain in *cells* (cubes).
- [Cavoretto, De Rossi, Perracchione (Submitted, 2015)]: generalization for generic 2D and 3D domains using a new **block-based searching procedure**.

BLOCK-BASED INTERPOLATION ALGORITHMS FOR GENERIC DOMAINS

Scattered data interpolation problem

Since many applications either arise from a *function approximation problem*, or include *function interpolation* as a fundamental component, we consider the **scattered data interpolation problem** which requires the use of meshfree methods and algorithms.

- $\mathcal{X}_n = \{\mathbf{x}_i, i = 1, \dots, n\}$, set of *data points or nodes*;
- $\mathcal{F}_n = \{f_i = f(\mathbf{x}_i), i = 1, \dots, n\}$, set of *data values or function values*.

Definition

Given a set $\mathcal{X}_n = \{\mathbf{x}_i, i = 1, \dots, n\}$ of n distinct data points on the domain $\Omega \subset \mathbb{R}^N$ and a set $\mathcal{F}_n = \{f_i, i = 1, \dots, n\}$ of the corresponding data values of an (unknown) continuous function $f : \Omega \rightarrow \mathbb{R}$, the **interpolation problem** is to find a continuous function $\mathcal{I} : \Omega \rightarrow \mathbb{R}$ which satisfies the interpolation conditions, i.e.

$$\mathcal{I}(\mathbf{x}_i) = f_i, \quad i = 1, \dots, n.$$

References: [Buhmann (2003), Fasshauer (2007), Wendland (2005)]

RBF interpolation

- The standard *RBF interpolation problem* is to find an interpolant $R : \Omega \rightarrow \mathbb{R}$ of the form

$$R(\mathbf{x}) = \sum_{i=1}^n c_i \phi(\|\mathbf{x} - \mathbf{x}_i\|_2), \quad \mathbf{x} \in \Omega, \quad (1)$$

where $\|\cdot\|_2$ is the Euclidean norm, and $\phi : [0, \infty) \rightarrow \mathbb{R}$ is a RBF. The coefficients $\{c_i\}_{i=1}^n$ are determined by enforcing the interpolation conditions

$$R(\mathbf{x}_i) = f_i, \quad i = 1, \dots, n. \quad (2)$$

- Imposing the conditions (2) leads to a *symmetric* linear system of equations

$$\Phi \mathbf{c} = \mathbf{f}, \quad (3)$$

where $\Phi_{ki} = \phi(\|\mathbf{x}_k - \mathbf{x}_i\|_2)$, $k, i = 1, \dots, n$, $\mathbf{c} = [c_1, \dots, c_n]^T$, and $\mathbf{f} = [f_1, \dots, f_n]^T$. When \mathbf{c} is found by solving the *system* (3), we can evaluate the RBF interpolant at a point \mathbf{x} as

$$R(\mathbf{x}) = \bar{\phi}(\mathbf{x}) \mathbf{c},$$

where $\bar{\phi}(\mathbf{x}) = [\phi(\|\mathbf{x} - \mathbf{x}_1\|_2), \dots, \phi(\|\mathbf{x} - \mathbf{x}_n\|_2)]$.

Examples of standard RBFs

RBF	$\phi(r)$
Gaussian C^∞ (G)	$e^{-\alpha^2 r^2}, \alpha > 0$
Inverse MultiQuadric C^∞ (IMQ)	$(1 + \gamma^2 r^2)^{-1/2}, \gamma > 0$
MultiQuadric C^∞ (MQ)	$(1 + \gamma^2 r^2)^{1/2}, \gamma > 0$
Matérn C^4 (M4)	$e^{-\epsilon r}(\epsilon^2 r^2 + 3\epsilon r + 3), \epsilon > 0$
Wendland C^4 (W4)	$(1 - cr)_+^6 (35c^2 r^2 + 18cr + 3), c > 0$
Wendland C^2 (W2)	$(1 - cr)_+^4 (4cr + 1), c > 0$

Partition of unity interpolation

Definition

Given a partition of the open and bounded domain $\Omega \subseteq \mathbb{R}^N$ into d subdomains Ω_j such that $\Omega \subseteq \bigcup_{j=1}^d \Omega_j$ with some mild overlap among the subdomains, the *partition of unity method* is obtained selecting a family of compactly supported, non-negative, continuous functions W_j with $\text{supp}(W_j) \subseteq \Omega_j$ such that

$$\sum_{j=1}^d W_j(\mathbf{x}) = 1, \quad \mathbf{x} \in \Omega.$$

The *global approximant* $\mathcal{I} : \Omega \rightarrow \mathbb{R}$ takes the form

$$\mathcal{I}(\mathbf{x}) = \sum_{j=1}^d R_j(\mathbf{x}) W_j(\mathbf{x}), \quad \mathbf{x} \in \Omega, \quad (4)$$

where R_j are local approximants satisfying the interpolation conditions at nodes \mathbf{x}_i , $i = 1, \dots, n$.

- *Shepard's weights:*

$$W_j = \bar{W}_j / \sum_k \bar{W}_k.$$

Local RBF interpolants

- Here $R_j : \Omega_j \rightarrow \mathbb{R}$ defines a *RBF interpolant* of the form

$$R_j(\mathbf{x}) = \sum_{i=1}^{\bar{n}_j} c_i^{(j)} \phi(||\mathbf{x} - \mathbf{x}_i^{(j)}||_2),$$

where $\phi : [0, \infty) \rightarrow \mathbb{R}$ represents a *RBF*, $||\cdot||_2$ denotes the Euclidean norm, and \bar{n}_j indicates the number of data points in Ω_j , i.e. the points $\mathbf{x}_i^{(j)} \in \mathcal{X}_j = \mathcal{X}_n \cap \Omega_j$.

- Furthermore, R_j satisfies the *interpolation conditions*

$$R_j(\mathbf{x}_i^{(j)}) = f_i^{(j)}, \quad i = 1, \dots, \bar{n}_j. \quad (5)$$

Note: if the *local approximants* satisfy the interpolation conditions (5), then the global approximant also interpolates at this node, i.e.

$$\mathcal{I}(\mathbf{x}_i^{(j)}) = f_i^{(j)}, \quad i = 1, \dots, \bar{n}_j.$$

Solving the *j-th interpolation problem* (5) leads to a system of linear equations of the form

$$\begin{bmatrix} \phi(\|\mathbf{x}_1^{(j)} - \mathbf{x}_1^{(j)}\|_2) & \phi(\|\mathbf{x}_1^{(j)} - \mathbf{x}_2^{(j)}\|_2) & \cdots & \phi(\|\mathbf{x}_1^{(j)} - \mathbf{x}_{\bar{n}_j}^{(j)}\|_2) \\ \phi(\|\mathbf{x}_2^{(j)} - \mathbf{x}_1^{(j)}\|_2) & \phi(\|\mathbf{x}_2^{(j)} - \mathbf{x}_2^{(j)}\|_2) & \cdots & \phi(\|\mathbf{x}_2^{(j)} - \mathbf{x}_{\bar{n}_j}^{(j)}\|_2) \\ \vdots & \vdots & \vdots & \vdots \\ \phi(\|\mathbf{x}_{\bar{n}_j}^{(j)} - \mathbf{x}_1^{(j)}\|_2) & \phi(\|\mathbf{x}_{\bar{n}_j}^{(j)} - \mathbf{x}_2^{(j)}\|_2) & \cdots & \phi(\|\mathbf{x}_{\bar{n}_j}^{(j)} - \mathbf{x}_{\bar{n}_j}^{(j)}\|_2) \end{bmatrix} \begin{bmatrix} c_1^{(j)} \\ c_2^{(j)} \\ \vdots \\ c_{\bar{n}_j}^{(j)} \end{bmatrix} = \begin{bmatrix} f_1^{(j)} \\ f_2^{(j)} \\ \vdots \\ f_{\bar{n}_j}^{(j)} \end{bmatrix},$$

or simply

$$\Phi^{(j)} \mathbf{c}^{(j)} = \mathbf{f}^{(j)}. \quad (6)$$

- In particular, the interpolation problem is *well-posed*, i.e., a solution to the problem exists and is unique, if and only if the matrix $\Phi^{(j)}$ is nonsingular.
- A sufficient condition to have nonsingularity is that the corresponding matrix is *positive definite*. In fact, if the matrix $\Phi^{(j)}$ is positive definite, then all its eigenvalues are positive and therefore $\Phi^{(j)}$ is nonsingular.

Definition

Let $\Omega \subseteq \mathbb{R}^N$ be a bounded set. Let $\{\Omega_j\}_{j=1}^d$ be an open and bounded covering of Ω . This means that all Ω_j are open and bounded and that $\Omega \subseteq \bigcup_{j=1}^d \Omega_j$. Set

$\delta_j = \text{diam}(\Omega_j) = \sup_{\mathbf{x}, \mathbf{y} \in \Omega_j} \|\mathbf{x} - \mathbf{y}\|_2$. We call a family of nonnegative functions $\{W_j\}_{j=1}^d$ with $W_j \in C^k(\mathbb{R}^N)$ a k -stable partition of unity with respect to the covering $\{\Omega_j\}_{j=1}^d$ if

- 1) $\text{supp}(W_j) \subseteq \Omega_j$;
- 2) $\sum_{j=1}^d W_j(\mathbf{x}) \equiv 1$ on Ω ;
- 3) for every $\beta \in \mathbb{N}_0^N$ with $|\beta| \leq k$ there exists a constant $C_\beta > 0$ such that

$$\|D^\beta W_j\|_{L_\infty(\Omega_j)} \leq \frac{C_\beta}{\delta_j^{|\beta|}},$$

for all $1 \leq j \leq d$.

We require additional regularity assumptions on the *covering* $\{\Omega_j\}_{j=1}^d$.

Definition

Suppose that $\Omega \subseteq \mathbb{R}^N$ is bounded and $\mathcal{X}_n = \{\mathbf{x}_i, i = 1, \dots, n\} \subseteq \Omega$ are given. An open and bounded covering $\{\Omega_j\}_{j=1}^d$ is called regular for (Ω, \mathcal{X}_n) if the following properties are satisfied:

- (a) for each $\mathbf{x} \in \Omega$, the number of subdomains Ω_j with $\mathbf{x} \in \Omega_j$ is bounded by a global constant K ;
- (b) each subdomain Ω_j satisfies an interior cone condition;
- (c) the local fill distances $h_{\mathcal{X}_j, \Omega_j}$, where $\mathcal{X}_j = \mathcal{X}_n \cap \Omega_j$, are uniformly bounded by the global fill distance $h_{\mathcal{X}_n, \Omega}$, i.e.

$$h_{\mathcal{X}_n, \Omega} = \sup_{\mathbf{x} \in \Omega} \min_{\mathbf{x}_i \in \mathcal{X}_n} \|\mathbf{x} - \mathbf{x}_i\|_2.$$

Theoretical result

Theorem

Let $\phi \in C_\nu^k(\mathbb{R}^N)$ be a strictly conditionally positive definite function of order m . Let $\{\Omega_j\}_{j=1}^d$ be a regular covering for (Ω, \mathcal{X}_n) and let $\{W_j\}_{j=1}^d$ be k -stable for $\{\Omega_j\}_{j=1}^d$. Then the error between $f \in \mathcal{N}_\phi(\Omega)$ and its partition of unity interpolant (4) can be bounded by

$$|D^\alpha f(\mathbf{x}) - D^\alpha F(\mathbf{x})| \leq Ch_{\mathcal{X}_n, \Omega}^{(k+\nu)/2 - |\alpha|} |f|_{\mathcal{N}_\phi(\Omega)},$$

for all $\mathbf{x} \in \Omega$ and all $|\alpha| \leq k/2$.

[Wendland (2005)]

Remark

- If we compare this result with the global error estimates, we can see that the **partition of unity** preserves the **local approximation order** for the global fit.
- This means that we can efficiently compute **large RBF interpolants** by solving **small RBF interpolation problems** and then glue them together with the global partition of unity $\{W_j\}_{j=1}^d$.
- The partition of unity approach is a simple and effective technique to **decompose a large problem** into **many small problems** while at the same time ensuring that the accuracy obtained for the local fits is carried over to the global one.

PART I: block-based interpolation algorithms

Outline of block algorithms

The *interpolation algorithms* can be briefly described as follows:

- 1 Partition the domain Ω into a finite/suitable number of blocks.
- 2 Consider a *block-based searching procedure* that establishes the minimal number of blocks to be examined, in order to localize the set of nodes for each subdomain.
- 3 Apply the *Partition of Unity Method (PUM)* which uses RBFs as local approximants.

Properties:

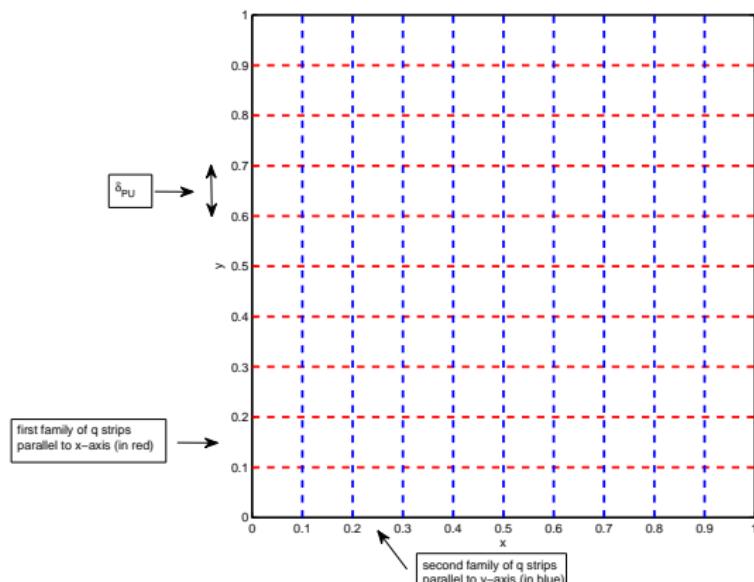
- efficiency \rightarrow optimal searching procedure;
- accuracy \rightarrow RBFs;
- high parallelism \rightarrow PUM + block-based partition process.

REMARK: in the following, for simplicity, we restrict our focus on the unit square (domain), BUT our software works with generic (convex) domains!!!

Basic idea - 2D case

- The basic idea in the construction of this searching procedure comes from the **repeated use** of a *quicksort routine* with respect to **different directions** (essentially, along the y -axis and the x -axis), enabling us to pass **from unordered to ordered data** structures.
- This process is strictly related to the construction of a partition of the domain Ω in **square blocks**, which consists in generating **two orthogonal families of parallel strips**, where the original data set is suitably split up in ordered and well-organized data subsets.
- More precisely, to obtain the block-based partition structure/procedure, we act as follows:
 - 1 we organize all the data by a *quicksort_y procedure* applied along the y -axis;
 - 2 we consider a **first family** of q strips, parallel to the x -axis and order the points of each strip by using a *quicksort_x procedure*;
 - 3 we create a **second family** of q strips, parallel to the y -axis, which orthogonally intersect the first strip family \Rightarrow partition of Ω in square blocks.

Families of crossed-strips

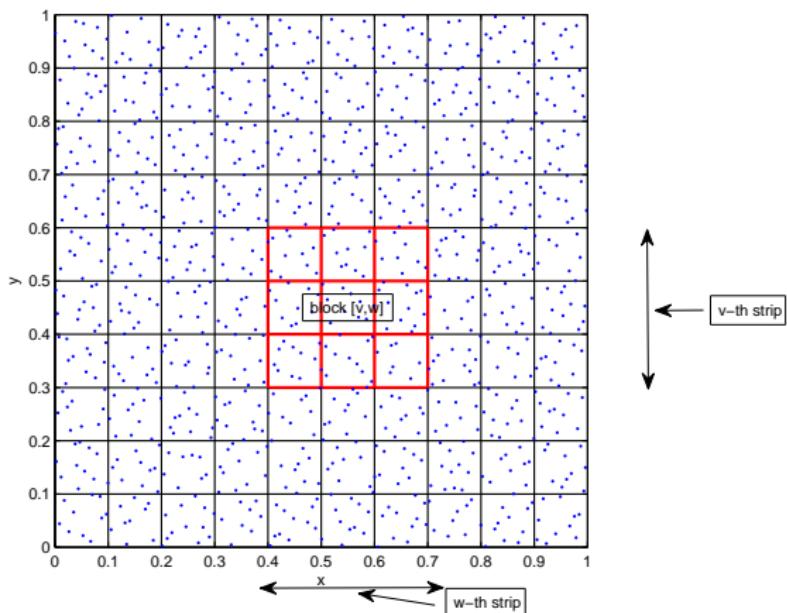


Block-based searching procedure

- The aim is to construct an **efficient searching procedure** to be used in the **localization of points**, exploiting the data structure and the domain partition we have earlier described.
- An effective way to obtain an efficient searching technique is to connect the partition of unity method with the block-based partition structure, assuming that the **block width/side** δ_{block} is **equal** to the **subdomain radius** δ_{PU} , i.e.

$$\delta_{block} \equiv \delta_{PU}.$$

- Though this choice might seem to be trivial, in practice such an imposition means that the search of the nearby points is limited at most to **nine blocks**: the block on which the considered point lies, and the eight neighbouring blocks.
- The combination between block and subdomain sizes is an **optimal** choice, since it allows us to search the closest points only considering a very small number of them (that is only those points belonging to one of the nine blocks) and *a priori* ignoring all the other points of Ω .
- Obviously, for all those points belonging to the **first and last blocks**, i.e. the ones close to the boundary of Ω , a **reduction** of the total number of blocks to be examined will be required.



Description of the 2D algorithm

The algorithm consists of three stages:

1. Distribution phase

- The nodes in the domain Ω are ordered with respect to a common direction (e.g. the y -axis), by applying a *quicksort_y procedure*.
- For each subdomain point (\bar{x}_i, \bar{y}_i) , $i = 1, \dots, d$, a local circular subdomain is constructed, whose half-size (the radius) depends on the subdomain number d , that is

$$\delta_{PU} = \sqrt{\frac{2}{d}}.$$

- A double structure of crossed strips is constructed as follows:
 - i) a first family of q strips, parallel to the x -axis, is considered taking

$$q = \left\lceil \frac{1}{\delta_{PU}} \right\rceil,$$

and a *quicksort_x procedure* is applied to order the nodes of each strip;

- ii) a second family of q strips, parallel to the y -axis, is considered.

Note that each of the two strip structures are ordered and numbered from 1 to q .

2. Localization phase

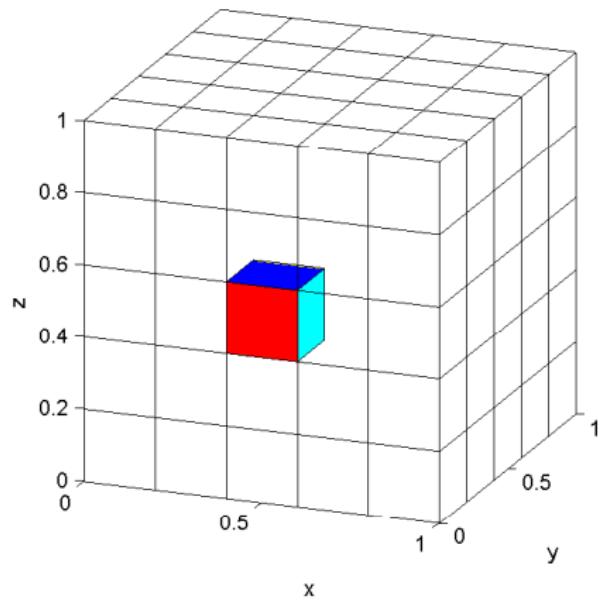
- The domain (unit square) is partitioned by a block-based structure consisted of q^2 square blocks, whose length of the sides is given by $\delta_{block} \equiv \delta_{PU}$. Then, the following structure is considered:
 - the sets \mathcal{X}_n and \mathcal{C}_d are partitioned by the block structure into q^2 subsets \mathcal{X}_{m_k} and \mathcal{C}_{d_k} , $k = 1, \dots, q^2$,
where m_k and d_k are the number of points in the k -th block.
- After defining which and how many blocks are to be examined, a *block-based searching procedure* is applied for each subdomain point of \mathcal{C}_{d_k} , $k = 1, \dots, q^2$, to determine all nodes belonging to a subdomain. The number of nodes of the j -th subdomain is counted and stored in n_j , $j = 1, \dots, d$.
- Taking the \bar{n}_j nodes of the j -th subdomain, a *local interpolant* R_j , $j = 1, \dots, d$, is found for each subdomain point.

3. Evaluation phase

- The evaluation points are ordered with respect to a common direction (e.g. the y -axis), by applying a *quicksorty procedure*.
- Then, the set \mathcal{E}_s is partitioned into q^2 subsets \mathcal{E}_{p_k} , $k = 1, \dots, q^2$, so that the evaluation points of \mathcal{E}_{p_k} belong to the k -th block.
- A block-based searching procedure is applied for each evaluation point of \mathcal{E}_s , in order to find all those points belonging to a subdomain of centre (\bar{x}_i, \bar{y}_i) and radius δ_{PU} . The number of subdomains containing the i -th evaluation point is counted and stored in r_i , $i = 1, \dots, s$.
- A **local approximant** $R_j(x, y)$ and a **weight function** $W_j(x, y)$, $j = 1, \dots, d$, are found for each evaluation point.
- Applying the **PUM** (4), the surface can be approximated at any evaluation point $(x, y) \in \mathcal{E}_s$.

Basic idea - 3D case

- The basic idea in constructing this searching procedure comes from the **repeated use** of a *quicksort* routine with respect to **different directions** (here, along the z -axis, the y -axis and the x -axis), passing **from unordered to ordered data structures**.
- This process is strictly related to the construction of a partition of the domain (cube) Ω in smaller **cubes**, which are obtained generating **three orthogonal families of parallelepipeds**, where the original data set is suitably split up in ordered and well-organized data subsets.
- More precisely, to obtain the cube-based structure/procedure, we act as follows:
 - 1 organize all the data by a *quicksort_z procedure* applied along the z -axis;
 - 2 consider a **first family** of q parallelepipeds, parallel to the x -axis, and order the points of each parallelepiped by using a *quicksort_x procedure*;
 - 3 create a **second family** of q parallelepipeds, parallel to the y -axis, which orthogonally intersect the first family, and order the points of each parallelepiped by using a *quicksort_y procedure*;
 - 4 construct a **third family** of q parallelepipeds, parallel to the z -axis, which orthogonally intersect the two previous families \Rightarrow partition of Ω in cubes.



Extension to the 3D case

- Following the same idea described in the 2D case we obtain that the search of the nearby points is limited at most to **twenty-seven** (3^3) cubes:
 - the **cube** on which the considered point lies,
 - and the **twenty-six** neighboring cubes.
- The combination between cube and subdomain sizes provides also here an **optimal** choice, allowing us to search the closest points only considering a very small number of them (only those belonging to one of the twenty-seven cubes) and *a priori* ignoring all the other points of Ω .
- For all those points belonging to cubes close to the boundary of Ω , it will be required a **reduction** of the total number of cubes to be examined.

**block-based searching procedure
for 3D interpolation**

Complexity of block algorithms

Distribution phase: to build the data structure \Rightarrow computational cost of order $\mathcal{O}(M \log M)$ (M = number of nodes to be sorted) due to the [quicksort routine](#).

- $\mathcal{O}(n \log n)$ for the first sorting of all n nodes.

Localization phase: solution of d linear systems of size \bar{n}_j to compute the RBF coefficients:

- $\mathcal{O}(\bar{n}_j^3)$ arithmetic operations to compute the local RBF interpolants.

Evaluation phase: computational cost of order

- $r_i \cdot \mathcal{O}(\bar{n}_j)$ to evaluate the global interpolant at the i -th evaluation point.

Storage locations:

- Nn , Nd and Ns for the data, and \bar{n}_j for the coefficients of each local RBF interpolant.

Comparison: block v.s. kd-tree

N	Block-based structure	kd-tree structure	Block-based search	kd-tree search
2	$\mathcal{O}(3/2n \log n) + \mathcal{O}(3/2s \log s)$	$\mathcal{O}(2n \log n) + \mathcal{O}(2s \log s)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n) + \mathcal{O}(\log s)$
3	$\mathcal{O}(2n \log n) + \mathcal{O}(2s \log s)$	$\mathcal{O}(3n \log n) + \mathcal{O}(3s \log s)$	$\mathcal{O}(1)$	$\mathcal{O}(\log n) + \mathcal{O}(\log s)$

Numerical experiments I

- Tests using the 2D Franke's function:

$$f_1(x, y) = \frac{3}{4} \exp \left[-\frac{(9x-2)^2 + (9y-2)^2}{4} \right] + \frac{3}{4} \exp \left[-\frac{(9x+1)^2}{49} - \frac{9y+1}{10} \right] \\ + \frac{1}{2} \exp \left[-\frac{(9x-7)^2 + (9y-3)^2}{4} \right] - \frac{1}{5} \exp [-(9x-4)^2 - (9y-7)^2].$$

- RBFs with shape parameter $\epsilon > 0$:

$$\phi(r) = (1 - \epsilon r)_+^4 (4\epsilon r + 1), \quad \text{Wendland } C^2 \text{ function (W2),}$$

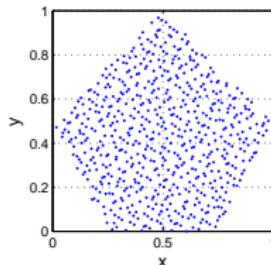
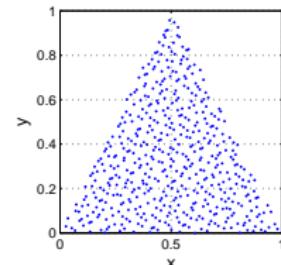
- Maximum Absolute Error (MAE) and Root Mean Square Error (RMSE):

$$MAE = \max_{1 \leq i \leq s} |f(\tilde{\mathbf{x}}_i) - \mathcal{I}(\tilde{\mathbf{x}}_i)|,$$

$$RMSE = \sqrt{\frac{1}{s} \sum_{i=1}^s |f(\tilde{\mathbf{x}}_i) - \mathcal{I}(\tilde{\mathbf{x}}_i)|^2}.$$

Errors and CPU times

- Interpolation nodes: sets of Halton points (scattered data) in convex domains like a polygon $\Omega \subseteq \mathbb{R}^2$ (e.g., triangle, hexagon, etc.).

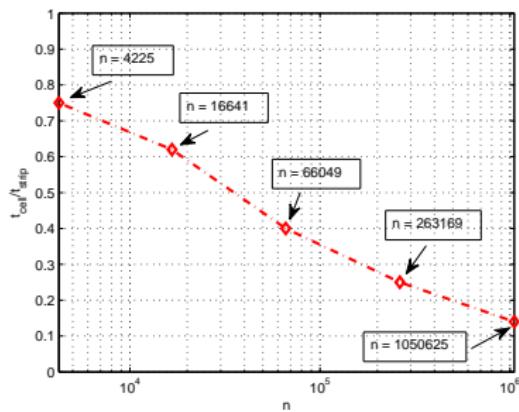


<i>n</i>	MAE	RMSE	<i>t_{block}</i>	<i>t_{kdtree}</i>
622	1.65E – 03	1.40E – 04	1.0	15.3
2499	5.02E – 04	3.30E – 05	3.7	42.3
9999	4.33E – 05	6.33E – 06	9.1	134.0
39991	9.86E – 06	1.25E – 06	34.1	494.1
159994	1.67E – 06	3.05E – 07	142.3	2013.88

Table: Errors and CPU times for pentagon, $\varepsilon = 0.5$.

Comparison of CPU times (in seconds)

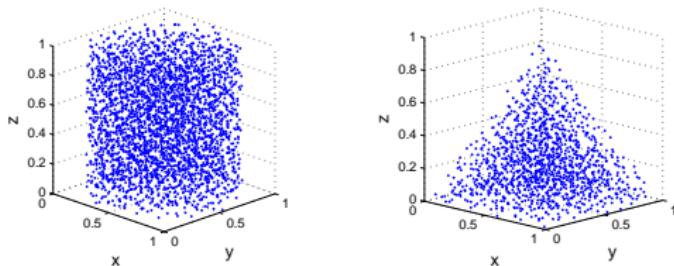
n	t_{cell}	t_{strip}	t_{basic}
4225	0.3	0.4	1.8
16641	0.8	1.3	14.2
66049	2.6	6.5	166.4
263169	10.2	41.2	2662.4



Numerical experiments II

- Tests using the 3D Franke's function.
- W2-RBF with shape parameter $\epsilon > 0$.
- Interpolation nodes: sets of Halton points (scattered data) in convex domains like a polyhedron $\Omega \subseteq \mathbb{R}^3$ (e.g., pyramid, cylinder, etc.).

n	d	q^3	t_{cube}	$t_{no-cube}$
4913	512	6^3	2.2	2.6
35937	4096	12^3	16.6	35.6
274625	32768	23^3	138.2	1241.0



n	MAE	RMSE	t_{block}	t_{kdtree}
3134	5.94E – 03	2.71E – 04	14.8	266.9
12551	1.67E – 03	6.00E – 05	53.1	892.7
50184	4.67E – 04	2.27E – 05	184.5	3141.4
200734	1.22E – 04	7.49E – 06	1758.1	14693.4
802865	3.81E – 05	2.91E – 06	-	-

Table: Errors and CPU times for cylinder, $\varepsilon = 0.5$.

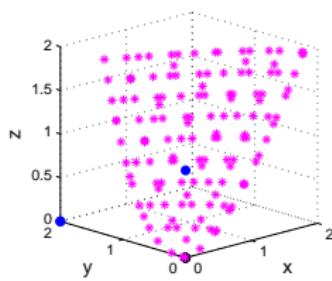
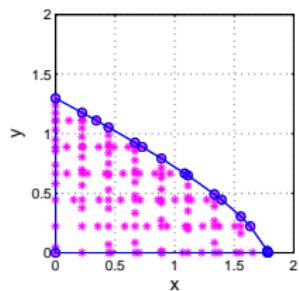
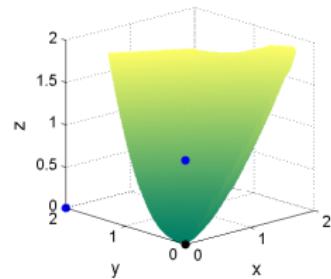
Applications to geometric modelling

- Surface approximation from biomathematics:

- In **dynamical systems** saddle points partition the domain into basins of attraction of the remaining locally stable equilibria.
- This situation is rather common especially in population dynamics models, like competition systems. Trajectories with different initial conditions will possibly **converge toward different equilibria**, depending on the locations of their respective initial conditions.
- The set of all points that taken as initial conditions will have trajectories all tending to the same equilibrium is called the **basin of attraction** of that equilibrium point.

Example of competition model:

$$\begin{aligned}\frac{dx}{dt} &= p\left(1 - \frac{x}{u}\right)x - axy - bxz, \\ \frac{dy}{dt} &= q\left(1 - \frac{y}{v}\right)y - cxy - eyz, \\ \frac{dz}{dt} &= r\left(1 - \frac{z}{w}\right)z - fxz - gyz.\end{aligned}\tag{7}$$



- Reconstruction of 3D objects:

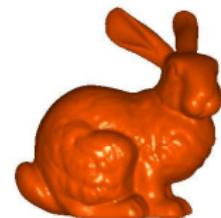


Figure: The Stanford Bunny with 8171 (left) and 35947 (right) data points.

PART II: software

MATLAB software

MATLAB codes free downloadable at:

<http://hdl.handle.net/2318/158790>

R. CAVORETTO, A. DE ROSSI, E. PERRACCHIONE, *Fast computation of partition of unity interpolants through block-based data structures*, submitted (2015).

Computational issues:

- (i) **Range Search:** Given a set of data points $\mathbf{x}_i \in \mathcal{X}_n$ and a subdomain Ω_j , find all points situated in that subdomain, i.e. $\mathbf{x}_i \in \mathcal{X}_j = \mathcal{X}_n \cap \Omega_j$.
- (ii) **Containing Query:** Given $\mathbf{x}_i \in \Omega$, return all subdomains Ω_j such that $\mathbf{x}_i \in \Omega_j$.

PUM_2D_CSRBF.m	scripts performing the partition of unity using CSRBFs
PUM_3D_CSRBF.m	
BlockBased2D_Structure.m	scripts that store points into the different neighbourhoods
BlockBased3D_Structure.m	
BlockBased2D_ContainingQuery.m	scripts performing the containing query procedure
BlockBased3D_ContainingQuery.m	
BlockBased2D_RangeSearch.m	scripts that perform the range search procedure
BlockBased3D_RangeSearch.m	
BlockBased2D_DistanceMatrix.m	scripts that form the distance matrix of two sets of points for CSRBFs
BlockBased3D_DistanceMatrix.m	
inhull.m	script that tests if a point belongs to the convex hull
countingsort.m	script that performs a sorting routine for integers
haltonseq.m	script that generates Halton data

Table: The MATLAB codes for the block-based partition of unity algorithms.

References

- [1] G. ALLASIA, R. BESENGHI, R. CAVORETTO, A. DE ROSSI, *Scattered and track data interpolation using an efficient strip searching procedure*, Appl. Math. Comput. **217** (2011), 5949–5966.
- [2] M. D. BUHLMANN, *Radial Basis Functions: Theory and Implementation*, Cambridge Monogr. Appl. Comput. Math., vol. 12, Cambridge Univ. Press, Cambridge, 2003.
- [3] R. CAVORETTO, A. DE ROSSI, *Fast and accurate interpolation of large scattered data sets on the sphere*, J. Comput. Appl. Math. **234** (2010), 1505–1521.
- [4] R. CAVORETTO, A. DE ROSSI, *Spherical interpolation using the partition of unity method: an efficient and flexible algorithm*, Appl. Math. Lett. **25** (2012), 1251–1256.
- [5] R. CAVORETTO, A. DE ROSSI, *A meshless interpolation algorithm using a cell-based searching procedure*, Comput. Math. Appl. **67** (2014), 1024–1038.
- [6] R. CAVORETTO, A. DE ROSSI, *A trivariate interpolation algorithm using a cube-partition searching procedure*, submitted (2014).
- [7] R. CAVORETTO, A. DE ROSSI, E. PERRACCHIONE, *Fast computation of partition of unity interpolants through block-based data structures*, submitted (2015).
- [8] G. E. FASSHAUER, *Meshfree Approximation Methods with MATLAB*, World Scientific Publishers, Singapore, 2007.
- [9] H. WENDLAND, *Fast evaluation of radial basis functions: Methods based on partition of unity*, in: C. K. Chui, L. L. Schumaker, J. Stöckler (Eds.), *Approximation Theory X: Wavelets, Splines, and Applications*, Vanderbilt Univ. Press, Nashville, TN, 2002, pp. 473–483.
- [10] H. WENDLAND, *Scattered Data Approximation*, Cambridge Monogr. Appl. Comput. Math., vol. 17, Cambridge Univ. Press, Cambridge, 2005.

Thank you!