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|
Introduction

Main target: interpolate (large) scattered data sets using efficient and accurate algorithms.

@ [Allasia, Besenghi, Cavoretto, De Rossi (AMC, 2011)]: new 2D efficient implementation of
the modified Shepard’s algorithm using MLSAs and RBFs as nodal functions =- novelty of
the partition of the domain in for constructing a strip-based searching procedure.

@ [Cavoretto, De Rossi (JCAM, 2010)]: extension of the previous idea to the spherical case
using ZBFs (instead of RBFs) — partition of the domain in = spherical
zone searching procedure.

@ [Cavoretto, De Rossi (AML, 2012)]: the spherical zone algorithm has been generalized
using the partition of unity method.

@ [Cavoretto, De Rossi (CAMWA, 2014)]: new 2D partition of unity algorithm which is based
on the partition of the domain in (squares) using a double structure of crossed-strips
= cell-based searching procedure.

@ [Cavoretto, De Rossi (Submitted, 2014)]: extension of the 2D algorithm to the 3D case
partitioning the domain in (cubes).

@ [Cavoretto, De Rossi, Perracchione (Submitted, 2015)]: generalization for generic 2D and
3D domains using a new block-based searching procedure.
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I
Scattered data interpolation problem

Since many applications either arise from a function approximation problem, or include function
interpolation as a fundamental component, we consider the scattered data interpolation problem
which requires the use of meshfree methods and algorithms.

4

@ X, ={x;,i=1,...,n}, setof
@ Fn={fi=1(xj),i=1,...,n}, setof

Definition
Given a set Xn = {X;,i = 1,...,n} of n distinct data points on the domain Q c RN and a set
Fn = {fi,i =1,...,n} of the corresponding data values of an (unknown) continuous function

f : Q — R, the interpolation problem is to find a continuous function Z : Q2 — R which satisfies the
interpolation conditions, i.e.
.'Z:(Xi)Zfi7 i=1,...,|"l.

References: [Buhmann (2003), Fasshauer (2007), Wendland (2005)]
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I
RBF interpolation

@ The standard RBF interpolation problem is to find an interpolant R : Q2 — R of the form

R(x) = cie(llx —xill2), x €%, )

i=1

where [| - |2 is the Euclidean norm, and ¢ : [0, c0) — R is a RBF. The coefficients {c;}{!
are determined by enforcing the interpolation conditions

R(xj)=f, i=1,...,n. 2
@ Imposing the conditions (2) leads to a linear system of equations
dc =1, 3)
where &y = ¢(||Xk — Xi|l2), k,i=1,...,n,¢ =[cy,...,cn]T,and f = [f1,...,fa]T. When
¢ is found by solving the system (3), we can evaluate the RBF interpolant at a point x as
R(x) = ¢(x)c,

where ¢(x) = [¢(|[x —X1[2), .., ¢(/x —xnl[2)].
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I
Examples of standard RBFs

RBF #(r)
Gaussian C* (G) e 4>0
Inverse MultiQuadric C>° (IMQ) (1+~2r)-12 450
MultiQuadric C*° (MQ) (1+~2)2 4>0
Matérn C* (M4) e "(?r2 4+ 3er +3), >0
Wendland C* (W4) (1 —cr)8 (35¢%r2 +18cr +3), ¢ >0
Wendland C2 (W2) (1—cr)f(4er+1), ¢c>0
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I
Partition of unity interpolation

Definition
Given a partition of the open and bounded domain Q C RN into d subdomains Q; such that
QC U Q; with some mild overlap among the subdomains, the is

obtalned selectlng a family of compactly supported, non-negative, continuous functions W; with
supp(W;) C ©; such that

d
dwWix)=1, xeQ
j=1

The global approximant Z : Q — R takes the form

d
I(x) = Y _Ri(x)Wj(x), x€Q, (4)
where R; are local approximants satisfying the interpolation conditions at nodes x;,i =1,...,n
@ Shepard’s weights:
Wi =W/ > W.
k
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—
Local RBF interpolants

@ Here R :  — R defines a RBF interpolant of the form

no )
Ri(x) =S co(lx —xP|l2),
i=1

where ¢ : [0,00) — R represents a RBF, || - ||z denotes the Euclidean norm, and 1

indicates the number of data points in €, i.e. the points xi(” €& =aNQY.

@ Furthermore, R; satisfies the interpolation conditions

Ry =10, i=1,.. A (5)

Note: if the satisfy the interpolation conditions (5), then the global
approximant also interpolates at this node, i.e.

Dy =10 =1, R,
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Solving the j-th interpolation problem (5) leads to a system of linear equations of the form

o(I1xV = x V1) o(Ix Y —xP1) o(|IxY) —x

o(I1xY = x V1) o(Ix Y —xP1) o(|[xY) —x

ol =xPll2) - e(lixg) = xPll2) allixg) —x
or simply

el — ).

@ In particular, the interpolation problem is

D) W f]?)
Alle) | | < 2
: ) ()
f—fj)Hz) Cﬁj fﬁj

(6)

) i.e., a solution to the problem exists
and is unique, if and only if the matrix U) is nonsingular.

@ A sufficient condition to have nonsingularity is that the corresponding matrix is positive
definite. In fact, if the matrix ®0) is positive definite, then all its eigenvalues are positive and

therefore ®() is nonsingular.
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Definition
Let Q C RN be a bounded set. Let {Y }j‘":1 be an open and bounded covering of Q2. This means
that all ©; are open and bounded and that Q C U,-d:1 Q;. Set
6 = diam(£) = SUPy y e, [[x —y||2. We call a family of nonnegative functions {W; }J?’:l with
W; € CKX(RN) a k-stable partition of unity with respect to the covering {Q }jd:1 if

1) supp(W;) €

2) YL, Wi(x)=1on;

3) forevery 8 € NQ with | 3] < k there exists a constant Cz > 0 such that

Cs
||DBWj||LOO(QJ-) < W,
]

foralll <j<d.
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We require additional regularity assumptions on the {Y }J!’:l.
Definition
Suppose that Q C RN is bounded and X, = {x;,i = 1,...,n} C Q are given. An open and

bounded covering {; }J?jzl is called regular for (2, Ay) if the following properties are satisfied:

(a) for each x € £, the number of subdomains Q; with x € £; is bounded by a global constant
K;

(b) each subdomain ©; satisfies an interior cone condition;

(c) the local fill distances hXj Kol where &} = Ah N €, are uniformly bounded by the global fill
distance hy, o, i.e.

h =sup min [|x — Xill|».
A2 = sup min, [[x x|
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|
Theoretical result

Theorem

Let ¢ € CK(RN) be a strictly conditionally positive definite function of order m. Let {Y }jd:1 be a
regular covering for (2, &) and let {W; }J.d:1 be k-stable for { }].d:l. Then the error between
f € N4(Q) and its partition of unity interpolant (4) can be bounded by

o a k+v)/2—|a
IDef(x) — DF(x)| < Chl 8271t |, (@),

forallx € Qandall |a| <k/2.

[Wendland (2005)]
Remark

@ If we compare this result with the global error estimates, we can see that the
for the global fit.

@ This means that we can efficiently compute large RBF interpolants by solving small RBF
interpolation problems and then glue them together with the global partition of unity

d
{WJ' }j:].'

@ The partition of unity approach is a simple and effective technique to decompose a large
problem into while at the same time ensuring that the accuracy

obtained for the local fits is carried over to the global one.

y
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PART I: block-based interpolation algorithms
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I
Outline of block algorithms

The interpolation algorithms can be briefly described as follows:
@ Partition the domain Q into a finite/suitable number of blocks.

@ Consider a block-based searching procedure that establishes the minimal number of blocks
to be examined, in order to localize the set of nodes for each subdomain.

e Apply the which uses RBFs as local approximants.

4

Properties:
@ efficiency — optimal searching procedure;
@ accuracy — RBFs;

@ high parallelism — PUM + block-based partition process.

REMARK: in the following, for simplicity, we restrict our focus on the unit square (domain), BUT
our software works with generic (convex) domains!!!
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|
Basic idea - 2D case

@ The basic idea in the construction of this searching procedure comes from the repeated use
of a quicksort routine with respect to different directions (essentially, along the y-axis and
the x-axis), enabling us to pass structures.

@ This process is strictly related to the construction of a partition of the domain  in square
blocks, which consists in generating two orthogonal families of parallel strips, where the
original data set is suitably split up in ordered and well-organized data subsets.

@ More precisely, to obtain the block-based partition structure/procedure, we act as follows:

© we organize all the data by a quicksort, procedure applied along the y-axis;

© we consider a first family of q strips, parallel to the x-axis and order the
points of each strip by using a quicksort, procedure;

© we create a second family of q strips, parallel to the y-axis, which
orthogonally intersect the first strip family = partition of Q in square blocks.
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—
Families of crossed-strips

X
\ second family of g strips

parallel to y-axis (in blue)
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—
Block-based searching procedure

@ The aim is to construct an efficient searching procedure to be used in the localization of
points, exploiting the data structure and the domain partition we have earlier described.

@ An effective way to obtain an efficient searching technique is to connect the partition of unity
method with the block-based partition structure, assuming that the block width/side dpjock iS
to the subdomain radius dpy, i.€.

dblock = pu-

@ Though this choice might seem to be trivial, in practice such an imposition means that the
search of the nearby points is limited at most to nine blocks: the block on which the
considered point lies, and the eight neighbouring blocks.

@ The combination between block and subdomain sizes is an choice, since it allows us
to search the closest points only considering a very small number of them (that is only those
points belonging to one of the nine blocks) and a priori ignoring all the other points of Q.

@ Obviously, for all those points belonging to the first and last blocks, i.e. the ones close to the
boundary of ©, a reduction of the total number of blocks to be examined will be required.
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I
Description of the 2D algorithm

The algorithm consists of three stages:

1. Distribution phase

@ The nodes in the domain 2 are ordered with respect to a common direction (e.g. the
y-axis), by applying a quicksorty procedure.

@ For each subdomain point (X;,y;), i =1,...,d, alocal circular subdomain is constructed,
whose half-size (the radius) depends on the subdomain number d, that is
2

@ A double structure of crossed strips is constructed as follows:

i) a first family of g strips, parallel to the x-axis, is considered taking

q= {iw
ey |’
and a quicksorty procedure is applied to order the nodes of each strip;
i) a second family of q strips, parallel to the y-axis, is considered.

Note that each of the two strip structures are ordered and numbered from 1 to g.
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2. Localization phase

@ The domain (unit square) is partitioned by a block-based structure consisted of g2 square
blocks, whose length of the sides is given by dpocx = dpy. Then, the following structure is
considered:

o the sets X, and Cq are partitioned by the block structure into g® subsets Xm,
and Cy, k =1,...,0%
where my and dy are the number of points in the k-th block.

@ After defining which and how many blocks are to be examined, a
is applied for each subdomain point of Cq, , k = 1,. .., g2, to determine all nodes
belonging to a subdomain. The number of nodes of the j-th subdomain is counted and
storedinn;,j=1,...,d.

@ Taking the n; nodes of the j-th subdomain, a local interpolant R;, j = 1,...,d, is found for
each subdomain point.
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3. Evaluation phase

@ The evaluation points are ordered with respect to a common direction (e.g. the y-axis), by
applying a quicksorty procedure.

@ Then, the set &s is partitioned into g2 subsets &y, , k = 1,...,g?, so that the evaluation
points of &, belong to the k-th block.

@ A block-based searching procedure is applied for each evaluation point of &s, in order to find
all those points belonging to a subdomain of centre (X;, y;) and radius dpy. The number of
subdomains containing the i-th evaluation point is counted and stored inr;,i =1,...,s.

@ Alocal approximant Rj(x,y) and a weight function W;(x,y),j = 1,...,d, are found for
each evaluation point.

@ Applying the PUM (4), the surface can be approximated at any evaluation point (x,y) € &s.
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Basic idea - 3D case

@ The basic idea in constructing this searching procedure comes from the repeated use of a
quicksort routine with respect to different directions (here, along the z-axis, the y-axis and
the x-axis), passing structures.

@ This process is strictly related to the construction of a partition of the domain (cube) Q2 in
smaller cubes, which are obtained generating three orthogonal families of parallelepipeds,
where the original data set is suitably split up in ordered and well-organized data subsets.

@ More precisely, to obtain the cube-based structure/procedure, we act as follows:

© organize all the data by a quicksort, procedure applied along the z-axis;

@ consider a first family of q parallelepipeds, parallel to the x-axis, and order
the points of each parallelepiped by using a quicksort, procedure;

© create a second family of q parallelepipeds, parallel to the y-axis, which
orthogonally intesect the first family, and order the points of each
parallelepiped by using a quicksorty procedure;

@ construct a third family of q parallelepipeds, parallel to the z-axis, which
orthogonally intesect the two previous families = partition of Q in cubes.
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|
Extension to the 3D case

@ Following the same idea described in the 2D case we obtain that the search of the nearby
points is limited at most to twenty-seven (3%) cubes:

@ the cube on which the considered point lies,
@ and the twenty-six neighboring cubes.

@ The combination between cube and subdomain sizes provides also here an choice,
allowing us to search the closest points only considering a very small number of them (only
those belonging to one of the twenty-seven cubes) and a priori ignoring all the other points
of Q.

@ For all those points belonging to cubes close to the boundary of €, it will be required a
reduction of the total number of cubes to be examined.

4
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—
Complexity of block algorithms

Distribution phase: to build the data structure = computational cost of order O(M logM) (M =
number of nodes to be sorted) due to the qui cksort routine.

@ O(nlogn) for the first sorting of all n nodes.

Localization phase: solution of d linear systems of size i; to compute the RBF coefficients:

) O(ﬁj3) arithmetic operations to compute the local RBF interpolants.

Evaluation phase: computational cost of order

@ 1, - O(0;) to evaluate the global interpolant at the i-th evaluation point.

Storage locations:

@ Nn, Nd and Ns for the data, and i for the coefficients of each local RBF interpolant.
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I
Comparison: block v.s. kd-tree

N Block-based kd-tree Block-based kd-tree
structure structure search search
2 O(3/2nlogn)+ O(2nlogn)+ o(1) O(logn)+
O(3/2slogs) O(2slogs) O(logs)
3 O(2nlogn)+  O(3nlogn)+ 0(1) O(logn)+
O(2slogs) O(3slogs) O(logs)
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—
Numerical experiments |

@ Tests using the 2D Franke’s function:

2 2
f(6y) = 2 exp [ (9x—2) 1—(9y 2)? } 4 3exp [ (9%1) B 9)1461}
+%exp{ O =1y -3 }7§ —(9x —4)2 — (9y — 7)?].
@ RBFs with shape parameter ¢ > 0:
B(r) = (1 —er)’ (der +1), Wendland C2 function (W2),

@ Maximum Absolute Error (MAE) and Root Mean Square Error (RMSE):

MAE = f(Xi) — Z(X;
1r2iagxs| (Xi) (Xil,

RMSE = \J %; [f(Xi) — Z(xi)[2.
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Errors and CPU times

@ Interpolation nodes: sets of Halton points (scattered data) in convex domains like a polygon
Q C R? (e.g., triangle, hexagon, etc.).

n MAE RMSE thlock tkdtree
622 1.65E —- 03 1.40E—-04 1.0 15.3
2499 5.02E—04 3.30E-05 3.7 42.3

9999 433E—-05 6.33E—06 9.1 134.0
39991 986E—-06 1.25E—-06 34.1 494.1
159994 167E—-06 3.05E—-07 142.3 2013.88

Table: Errors and CPU times for pentagon, € = 0.5.
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—
Comparison of CPU times (in seconds)

n Leell tstrip thasic

4225 0.3 0.4 1.8

16641 0.8 1.3 14.2
66049 2.6 6.5 166.4
263169 10.2 412 2662.4

o
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I
Numerical experiments |l

@ Tests using the 3D Franke’s function.

@ W2-RBF with shape parameter € > 0.

@ Interpolation nodes: sets of Halton points (scattered data) in convex domains like a
polyhedron Q C R3 (e.g., pyramid, cylinder, etc.).

n d q® teube | tho—cube
4913 512 63 2.2 2.6
35937 4096 | 12°% 16.6 35.6

274625 32768 | 233 1382 | 1241.0
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n MAE RMSE thlock tkdtree
3134 5.94E-03 2.71E-04 14.8 266.9
12551 1.67E—- 03 6.00E — 05 53.1 892.7
50184 4.67E—-04 2.27E—-05 184.5 3141.4
200734 122E—-04 7.49E—-06 1758.1 14693.4
802865 3.81E—05 2.91E-— 06 - -

Table: Errors and CPU times for cylinder, e = 0.5.
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—
Applications to geometric modelling

@ Surface approximation from biomathematics:

@ In dynamical systems saddle points partition the domain into basins of
attraction of the remaining locally stable equilibria.

@ This situation is rather common especially in population dynamics models,
like competition systems. Trajectories with different initial conditions will
possibly converge toward different equilibria, depending on the locations of
their respective initial conditions.

@ The set of all points that taken as initial conditions will have trajectories all
tending to the same equilibrium is called the basin of attraction of that
equilibrium point.

Example of competition model:

((j:i)t( =p(l- é)x —axy — bxz,
W —q-Y)y - oy —eyz, )

?j% =r(1- &)z —fxz —gyz.
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@ Reconstruction of 3D objects:

Figure: The Stanford Bunny with 8171 (left) and 35947 (right) data points.

roberto.cavoretto@unito.it (Univ. Torino) UniPd 2015 May 7th, 2015 33/38



PART II: software
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]
MATLAB software

MATLAB codes free downloadable at:
http://hdl.handle.net/2318/158790

R. CAVORETTO, A. DE RoOssI, E. PERRACCHIONE, Fast computation of partition of unity
interpolants through block-based data structures, submitted (2015).

Computational issues:

0] Given a set of data points x; € &, and a subdomain ;, find all points
situated in that subdomain, i.e. x; € &} = &, N Q.

(i) Given x; € Q, return all subdomains ; such that x; € Q;.
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PUM 2D_CSRBF. m scripts performing the partition
PUM 3D_CSRBF. m of unity using CSRBFs
Bl ockBased2D_Structure. m scripts that store points into the
Bl ockBased3D_Structure. m different neighbourhoods
Bl ockBased2D_Cont ai ni ngQuery. m scripts performing
Bl ockBased3D_Cont ai ni ngQuery. m the containing query procedure
Bl ockBased2D_RangeSear ch. m scripts that perform the
Bl ockBased3D_RangeSear ch. m range search procedure
Bl ockBased2D_Di st anceMat ri x. m  scripts that form the distance matrix
Bl ockBased3D_Di st anceMatri x. m of two sets of points for CSRBFs
script that tests if a point belongs
to the convex hull
script that performs a sorting
routine for integers

inhull.m

countingsort. m

hal t onseq. m

script that generates Halton data
Table: The MATLAB codes for the block-based partition of unity algorithms.
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Thank you!
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