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Introduction

Main target: interpolate (large) scattered data sets using efficient and accurate algorithms.

[Allasia, Besenghi, Cavoretto, De Rossi (AMC, 2011)]: new 2D efficient implementation of
the modified Shepard’s algorithm using MLSAs and RBFs as nodal functions ⇒ novelty of
the partition of the domain in strips for constructing a strip-based searching procedure.

[Cavoretto, De Rossi (JCAM, 2010)]: extension of the previous idea to the spherical case
using ZBFs (instead of RBFs) ⇒ partition of the domain in spherical zones ⇒ spherical
zone searching procedure.

[Cavoretto, De Rossi (AML, 2012)]: the spherical zone algorithm has been generalized
using the partition of unity method.

[Cavoretto, De Rossi (CAMWA, 2014)]: new 2D partition of unity algorithm which is based
on the partition of the domain in cells (squares) using a double structure of crossed-strips
⇒ cell-based searching procedure.

[Cavoretto, De Rossi (Submitted, 2014)]: extension of the 2D algorithm to the 3D case
partitioning the domain in cells (cubes).

[Cavoretto, De Rossi, Perracchione (Submitted, 2015)]: generalization for generic 2D and
3D domains using a new block-based searching procedure.

⇓

BLOCK-BASED INTERPOLATION ALGORITHMS
FOR GENERIC DOMAINS

roberto.cavoretto@unito.it (Univ. Torino) UniPd 2015 May 7th, 2015 2 / 38



Scattered data interpolation problem

Since many applications either arise from a function approximation problem, or include function
interpolation as a fundamental component, we consider the scattered data interpolation problem
which requires the use of meshfree methods and algorithms.

⇓

Xn = {x i , i = 1, . . . , n}, set of data points or nodes;

Fn = {fi = f (x i ), i = 1, . . . , n}, set of data values or function values.

Definition

Given a set Xn = {x i , i = 1, . . . , n} of n distinct data points on the domain Ω ⊂ R
N and a set

Fn = {fi , i = 1, . . . , n} of the corresponding data values of an (unknown) continuous function
f : Ω → R, the interpolation problem is to find a continuous function I : Ω → R which satisfies the
interpolation conditions, i.e.

I(x i ) = fi , i = 1, . . . , n.

References: [Buhmann (2003), Fasshauer (2007), Wendland (2005)]
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RBF interpolation

The standard RBF interpolation problem is to find an interpolant R : Ω → R of the form

R(x) =
n

∑

i=1

ciφ(||x − x i ||2), x ∈ Ω, (1)

where || · ||2 is the Euclidean norm, and φ : [0,∞) → R is a RBF. The coefficients {ci}
n
i=1

are determined by enforcing the interpolation conditions

R(x i ) = fi , i = 1, . . . , n. (2)

Imposing the conditions (2) leads to a symmetric linear system of equations

Φc = f , (3)

where Φki = φ(||xk − x i ||2), k , i = 1, . . . , n, c = [c1, . . . , cn]T , and f = [f1, . . . , fn]T . When
c is found by solving the system (3), we can evaluate the RBF interpolant at a point x as

R(x) = φ̄(x)c,

where φ̄(x) = [φ(||x − x1||2), . . . , φ(||x − xn||2)].
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Examples of standard RBFs

RBF φ(r)

Gaussian C∞ (G) e−α2r2
, α > 0

Inverse MultiQuadric C∞ (IMQ) (1 + γ2r2)−1/2, γ > 0

MultiQuadric C∞ (MQ) (1 + γ2r2)1/2, γ > 0

Mat́ern C4 (M4) e−ǫr (ǫ2r2 + 3ǫr + 3), ǫ > 0

Wendland C4 (W4) (1 − cr)6
+

(

35c2r2 + 18cr + 3
)

, c > 0

Wendland C2 (W2) (1 − cr)4
+ (4cr + 1) , c > 0
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Partition of unity interpolation

Definition

Given a partition of the open and bounded domain Ω ⊆ R
N into d subdomains Ωj such that

Ω ⊆
⋃d

j=1 Ωj with some mild overlap among the subdomains, the partition of unity method is
obtained selecting a family of compactly supported, non-negative, continuous functions Wj with
supp(Wj ) ⊆ Ωj such that

d
∑

j=1

Wj (x) = 1, x ∈ Ω.

The global approximant I : Ω → R takes the form

I(x) =
d

∑

j=1

Rj (x)Wj (x), x ∈ Ω, (4)

where Rj are local approximants satisfying the interpolation conditions at nodes x i , i = 1, . . . , n.

Shepard’s weights:
Wj = W̄j/

∑

k

W̄k .
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Local RBF interpolants

Here Rj : Ωj → R defines a RBF interpolant of the form

Rj (x) =
n̄j
∑

i=1

c(j)
i φ(||x − x(j)

i ||2),

where φ : [0,∞) → R represents a RBF, || · ||2 denotes the Euclidean norm, and n̄j

indicates the number of data points in Ωj , i.e. the points x (j)
i ∈ Xj = Xn ∩ Ωj .

Furthermore, Rj satisfies the interpolation conditions

Rj (x
(j)
i ) = f (j)i , i = 1, . . . , n̄j . (5)

Note: if the local approximants satisfy the interpolation conditions (5), then the global
approximant also interpolates at this node, i.e.

I(x (j)
i ) = f (j)i , i = 1, . . . , n̄j .
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Solving the j -th interpolation problem (5) leads to a system of linear equations of the form

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or simply

Φ(j)c(j) = f (j). (6)

In particular, the interpolation problem is well-posed, i.e., a solution to the problem exists
and is unique, if and only if the matrix Φ(j) is nonsingular.

A sufficient condition to have nonsingularity is that the corresponding matrix is positive
definite. In fact, if the matrix Φ(j) is positive definite, then all its eigenvalues are positive and
therefore Φ(j) is nonsingular.
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Definition

Let Ω ⊆ R
N be a bounded set. Let {Ωj}

d
j=1 be an open and bounded covering of Ω. This means

that all Ωj are open and bounded and that Ω ⊆
⋃d

j=1 Ωj . Set

δj = diam(Ωj ) = supx,y∈Ωj
||x − y ||2. We call a family of nonnegative functions {Wj}

d
j=1 with

Wj ∈ Ck (RN) a k -stable partition of unity with respect to the covering {Ωj}
d
j=1 if

1) supp(Wj ) ⊆ Ωj ;

2)
∑d

j=1 Wj (x) ≡ 1 on Ω;

3) for every β ∈ N
N
0 with |β| ≤ k there exists a constant Cβ > 0 such that

||DβWj ||L∞(Ωj )
≤

Cβ

δ
|β|
j

,

for all 1 ≤ j ≤ d .
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We require additional regularity assumptions on the covering {Ωj}
d
j=1.

Definition

Suppose that Ω ⊆ R
N is bounded and Xn = {x i , i = 1, . . . , n} ⊆ Ω are given. An open and

bounded covering {Ωj}
d
j=1 is called regular for (Ω,Xn) if the following properties are satisfied:

(a) for each x ∈ Ω, the number of subdomains Ωj with x ∈ Ωj is bounded by a global constant
K ;

(b) each subdomain Ωj satisfies an interior cone condition;

(c) the local fill distances hXj ,Ωj
, where Xj = Xn ∩ Ωj , are uniformly bounded by the global fill

distance hXn,Ω, i.e.

hXn,Ω = sup
x∈Ω

min
x i∈Xn

||x − x i ||2.
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Theoretical result

Theorem

Let φ ∈ Ck
ν(R

N) be a strictly conditionally positive definite function of order m. Let {Ωj}
d
j=1 be a

regular covering for (Ω,Xn) and let {Wj}
d
j=1 be k-stable for {Ωj}

d
j=1. Then the error between

f ∈ Nφ(Ω) and its partition of unity interpolant (4) can be bounded by

|Dαf (x)− DαF (x)| ≤ Ch(k+ν)/2−|α|
Xn,Ω

|f |Nφ(Ω),

for all x ∈ Ω and all |α| ≤ k/2.

[Wendland (2005)]

Remark

If we compare this result with the global error estimates, we can see that the partition of
unity preserves the local approximation order for the global fit.

This means that we can efficiently compute large RBF interpolants by solving small RBF
interpolation problems and then glue them together with the global partition of unity
{Wj}

d
j=1.

The partition of unity approach is a simple and effective technique to decompose a large
problem into many small problems while at the same time ensuring that the accuracy
obtained for the local fits is carried over to the global one.
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PART I: block-based interpolation algorithms
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Outline of block algorithms

The interpolation algorithms can be briefly described as follows:
1 Partition the domain Ω into a finite/suitable number of blocks.

2 Consider a block-based searching procedure that establishes the minimal number of blocks
to be examined, in order to localize the set of nodes for each subdomain.

3 Apply the Partition of Unity Method (PUM) which uses RBFs as local approximants.

⇓

Properties:

efficiency → optimal searching procedure;

accuracy → RBFs;

high parallelism → PUM + block-based partition process.

——————————————————–

REMARK: in the following, for simplicity, we restrict our focus on the unit square (domain), BUT
our software works with generic (convex) domains!!!
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Basic idea - 2D case

The basic idea in the construction of this searching procedure comes from the repeated use
of a quicksort routine with respect to different directions (essentially, along the y -axis and
the x-axis), enabling us to pass from unordered to ordered data structures.

This process is strictly related to the construction of a partition of the domain Ω in square
blocks, which consists in generating two orthogonal families of parallel strips, where the
original data set is suitably split up in ordered and well-organized data subsets.

More precisely, to obtain the block-based partition structure/procedure, we act as follows:

1 we organize all the data by a quicksorty procedure applied along the y -axis;
2 we consider a first family of q strips, parallel to the x-axis and order the

points of each strip by using a quicksortx procedure;
3 we create a second family of q strips, parallel to the y -axis, which

orthogonally intersect the first strip family ⇒ partition of Ω in square blocks.
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Families of crossed-strips
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Block-based searching procedure

The aim is to construct an efficient searching procedure to be used in the localization of
points, exploiting the data structure and the domain partition we have earlier described.

An effective way to obtain an efficient searching technique is to connect the partition of unity
method with the block-based partition structure, assuming that the block width/side δblock is
equal to the subdomain radius δPU , i.e.

δblock ≡ δPU .

Though this choice might seem to be trivial, in practice such an imposition means that the
search of the nearby points is limited at most to nine blocks: the block on which the
considered point lies, and the eight neighbouring blocks.

The combination between block and subdomain sizes is an optimal choice, since it allows us
to search the closest points only considering a very small number of them (that is only those
points belonging to one of the nine blocks) and a priori ignoring all the other points of Ω.

Obviously, for all those points belonging to the first and last blocks, i.e. the ones close to the
boundary of Ω, a reduction of the total number of blocks to be examined will be required.
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Description of the 2D algorithm

The algorithm consists of three stages:

1. Distribution phase

The nodes in the domain Ω are ordered with respect to a common direction (e.g. the
y -axis), by applying a quicksorty procedure.

For each subdomain point (x̄i , ȳi ), i = 1, . . . , d , a local circular subdomain is constructed,
whose half-size (the radius) depends on the subdomain number d , that is

δPU =

√

2

d
.

A double structure of crossed strips is constructed as follows:

i) a first family of q strips, parallel to the x-axis, is considered taking

q =

⌈

1
δPU

⌉

,

and a quicksortx procedure is applied to order the nodes of each strip;
ii) a second family of q strips, parallel to the y -axis, is considered.

Note that each of the two strip structures are ordered and numbered from 1 to q.
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2. Localization phase

The domain (unit square) is partitioned by a block-based structure consisted of q2 square
blocks, whose length of the sides is given by δblock ≡ δPU . Then, the following structure is
considered:

the sets Xn and Cd are partitioned by the block structure into q2 subsets Xmk

and Cdk , k = 1, . . . , q2,

where mk and dk are the number of points in the k -th block.

After defining which and how many blocks are to be examined, a block-based searching
procedure is applied for each subdomain point of Cdk

, k = 1, . . . , q2, to determine all nodes
belonging to a subdomain. The number of nodes of the j-th subdomain is counted and
stored in nj , j = 1, . . . , d .

Taking the n̄j nodes of the j-th subdomain, a local interpolant Rj , j = 1, . . . , d , is found for
each subdomain point.
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3. Evaluation phase

The evaluation points are ordered with respect to a common direction (e.g. the y -axis), by
applying a quicksorty procedure.

Then, the set Es is partitioned into q2 subsets Epk , k = 1, . . . , q2, so that the evaluation
points of Epk belong to the k -th block.

A block-based searching procedure is applied for each evaluation point of Es , in order to find
all those points belonging to a subdomain of centre (x̄i , ȳi ) and radius δPU . The number of
subdomains containing the i-th evaluation point is counted and stored in ri , i = 1, . . . , s.

A local approximant Rj (x , y) and a weight function Wj (x , y), j = 1, . . . , d , are found for
each evaluation point.

Applying the PUM (4), the surface can be approximated at any evaluation point (x , y) ∈ Es .

roberto.cavoretto@unito.it (Univ. Torino) UniPd 2015 May 7th, 2015 20 / 38



Basic idea - 3D case

The basic idea in constructing this searching procedure comes from the repeated use of a
quicksort routine with respect to different directions (here, along the z-axis, the y -axis and
the x-axis), passing from unordered to ordered data structures.

This process is strictly related to the construction of a partition of the domain (cube) Ω in
smaller cubes, which are obtained generating three orthogonal families of parallelepipeds,
where the original data set is suitably split up in ordered and well-organized data subsets.

More precisely, to obtain the cube-based structure/procedure, we act as follows:

1 organize all the data by a quicksortz procedure applied along the z-axis;
2 consider a first family of q parallelepipeds, parallel to the x-axis, and order

the points of each parallelepiped by using a quicksortx procedure;
3 create a second family of q parallelepipeds, parallel to the y -axis, which

orthogonally intesect the first family, and order the points of each
parallelepiped by using a quicksorty procedure;

4 construct a third family of q parallelepipeds, parallel to the z-axis, which
orthogonally intesect the two previous families ⇒ partition of Ω in cubes.
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Extension to the 3D case

Following the same idea described in the 2D case we obtain that the search of the nearby
points is limited at most to twenty-seven (33) cubes:

the cube on which the considered point lies,
and the twenty-six neighboring cubes.

The combination between cube and subdomain sizes provides also here an optimal choice,
allowing us to search the closest points only considering a very small number of them (only
those belonging to one of the twenty-seven cubes) and a priori ignoring all the other points
of Ω.

For all those points belonging to cubes close to the boundary of Ω, it will be required a
reduction of the total number of cubes to be examined.

⇓

block-based searching procedure
for 3D interpolation
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Complexity of block algorithms

Distribution phase: to build the data structure ⇒ computational cost of order O(M log M) (M =
number of nodes to be sorted) due to the quicksort routine.

O(n log n) for the first sorting of all n nodes.

Localization phase: solution of d linear systems of size n̄j to compute the RBF coefficients:

O(n̄3
j ) arithmetic operations to compute the local RBF interpolants.

Evaluation phase: computational cost of order

ri · O(n̄j ) to evaluate the global interpolant at the i-th evaluation point.

Storage locations:

Nn, Nd and Ns for the data, and n̄j for the coefficients of each local RBF interpolant.
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Comparison: block v.s. kd-tree

N Block-based kd-tree Block-based kd-tree
structure structure search search

2 O(3/2n log n)+ O(2n log n)+ O(1) O(log n)+
O(3/2s log s) O(2s log s) O(log s)

3 O(2n log n)+ O(3n log n)+ O(1) O(log n)+
O(2s log s) O(3s log s) O(log s)
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Numerical experiments I

Tests using the 2D Franke’s function:

f1(x , y) =
3
4 exp

[

− (9x−2)2+(9y−2)2

4

]

+ 3
4 exp

[

− (9x+1)2

49 − 9y+1
10

]

+ 1
2 exp

[

− (9x−7)2+(9y−3)2

4

]

− 1
5 exp

[

−(9x − 4)2 − (9y − 7)2
]

.

RBFs with shape parameter ǫ > 0:

φ(r) = (1 − ǫr)4
+ (4ǫr + 1) , Wendland C2 function (W2),

Maximum Absolute Error (MAE) and Root Mean Square Error (RMSE):

MAE = max
1≤i≤s

|f (x̃ i )− I(x̃ i )|,

RMSE =

√

√

√

√

1

s

s
∑

i=1

|f (x̃ i )− I(x̃ i )|2.
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Errors and CPU times

Interpolation nodes: sets of Halton points (scattered data) in convex domains like a polygon
Ω ⊆ R

2 (e.g., triangle, hexagon, etc.).
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n MAE RMSE tblock tkdtree

622 1.65E − 03 1.40E − 04 1.0 15.3
2499 5.02E − 04 3.30E − 05 3.7 42.3
9999 4.33E − 05 6.33E − 06 9.1 134.0
39991 9.86E − 06 1.25E − 06 34.1 494.1
159994 1.67E − 06 3.05E − 07 142.3 2013.88

Table: Errors and CPU times for pentagon, ε = 0.5.
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Comparison of CPU times (in seconds)

n tcell tstrip tbasic

4225 0.3 0.4 1.8

16641 0.8 1.3 14.2

66049 2.6 6.5 166.4

263169 10.2 41.2 2662.4
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Numerical experiments II

Tests using the 3D Franke’s function.

W2-RBF with shape parameter ǫ > 0.

Interpolation nodes: sets of Halton points (scattered data) in convex domains like a
polyhedron Ω ⊆ R

3 (e.g., pyramid, cylinder, etc.).

n d q3 tcube tno−cube

4913 512 63 2.2 2.6

35937 4096 123 16.6 35.6

274625 32768 233 138.2 1241.0
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n MAE RMSE tblock tkdtree

3134 5.94E − 03 2.71E − 04 14.8 266.9
12551 1.67E − 03 6.00E − 05 53.1 892.7
50184 4.67E − 04 2.27E − 05 184.5 3141.4
200734 1.22E − 04 7.49E − 06 1758.1 14693.4
802865 3.81E − 05 2.91E − 06 - -

Table: Errors and CPU times for cylinder, ε = 0.5.
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Applications to geometric modelling

Surface approximation from biomathematics:

In dynamical systems saddle points partition the domain into basins of
attraction of the remaining locally stable equilibria.
This situation is rather common especially in population dynamics models,
like competition systems. Trajectories with different initial conditions will
possibly converge toward different equilibria, depending on the locations of
their respective initial conditions.
The set of all points that taken as initial conditions will have trajectories all
tending to the same equilibrium is called the basin of attraction of that
equilibrium point.

Example of competition model:

dx
dt = p

(

1 − x
u
)

x − axy − bxz,

dy
dt = q

(

1 −
y
v
)

y − cxy − eyz,

dz
dt = r

(

1 − z
w
)

z − fxz − gyz.

(7)
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Reconstruction of 3D objects:

Figure: The Stanford Bunny with 8171 (left) and 35947 (right) data points.

roberto.cavoretto@unito.it (Univ. Torino) UniPd 2015 May 7th, 2015 33 / 38



PART II: software
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MATLAB software

MATLAB codes free downloadable at:

http://hdl.handle.net/2318/158790

R. CAVORETTO, A. DE ROSSI, E. PERRACCHIONE, Fast computation of partition of unity
interpolants through block-based data structures, submitted (2015).

—————————————————–

Computational issues:

(i) Range Search: Given a set of data points x i ∈ Xn and a subdomain Ωj , find all points
situated in that subdomain, i.e. x i ∈ Xj = Xn ∩ Ωj .

(ii) Containing Query: Given x i ∈ Ω, return all subdomains Ωj such that x i ∈ Ωj .
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PUM_2D_CSRBF.m scripts performing the partition
PUM_3D_CSRBF.m of unity using CSRBFs

BlockBased2D_Structure.m scripts that store points into the
BlockBased3D_Structure.m different neighbourhoods

BlockBased2D_ContainingQuery.m scripts performing
BlockBased3D_ContainingQuery.m the containing query procedure

BlockBased2D_RangeSearch.m scripts that perform the
BlockBased3D_RangeSearch.m range search procedure

BlockBased2D_DistanceMatrix.m scripts that form the distance matrix
BlockBased3D_DistanceMatrix.m of two sets of points for CSRBFs

inhull.m script that tests if a point belongs
to the convex hull

countingsort.m script that performs a sorting
routine for integers

haltonseq.m script that generates Halton data

Table: The MATLAB codes for the block-based partition of unity algorithms.
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Thank you!
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