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Mathematics and wine

Stefano De Marchi

Department of Computer Science, University of Verona, 37134 Verona, Italy

Abstract

The aim of the paper is twofold. Firstly, to show that mathematics can also be used to describe many facts and aspects
related to wine and especially wine tasting. Secondly, we would like to show that the wine is a chaotic dynamical system
that, thanks to mathematics, can be properly studied. This can help wine makers and wine tasters to understand better.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The ‘‘leitmotif’’ of this paper is essentially the importance of mathematics in all aspects of real life and also
in many aspects connected to the most important beverage of the ancient world, wine. Thanks to the various
applications of mathematics, people have started to think of mathematics not only as a arid topic for
‘‘strange’’ persons called mathematicians, but as a basic and fundamental tool that everyone should under-
stand, as much as they can, because mathematics can help to model almost everything.

The one who is writing this paper is a mathematician that for fun one day decided to learn more about wine
tasting and took the course for becoming a sommelier. A sommelier judges a wine following the so called sen-

sorial analysis which from the mathematical point of view is an algorithm and in fact, on studying the official
books of the Italian Sommeliers Association [1], one can see many ways of modeling the wine tasting in a
mathematical framework.

The paper is indeed an attempt to show the interesting connections between wine tasting and some related
problems with mathematics. In the next Section we start with two simple problems whose mathematical solu-
tions show at a glance the importance of mathematics also in enology. In Section 3 we discuss an interesting
problem known as the French paradox. After modeling the problem in a probabilistic way, we provide an ana-
lytical solution of it. Then, in Section 4, we move to the various steps of wine tasting finding interesting con-
nections with geometry and analysis. Wine, mathematically speaking, is a dynamical system that has its initial
time corresponding to the production of the must, then after the alcoholic fermentation it becomes a wine and
depending on its characteristics we can age it in ‘‘barriques’’ or in bottles. This is mainly what we show in
Section 5. Moreover, the ‘‘system-wine’’ depends on many variables, part of them come from the environment,
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especially soil and climate, and the others from the grapes, that combine in chaotic way. This is the intuitive
reason why the wine can be considered a chaotic dynamical system. We conclude by suggesting a particular
wine called Chaos, a mix of montelpulciano, syrah and merlot. The wine is produced in the region Marche
in Italy and its label is the Mandelbrot set. Chaos was in some sense the inspiration of this paper.

2. Two simple problems

Our tour in the subject mathematics and wine starts with two mathematical diversions showing that math-
ematics can be useful to solve some interesting problems related also to wine.

2.1. The problem of the three barrels

Problem 1. A man has three barrels, one completely full with 8 hectoliters (hl.) of wine and the other two
empty of 5 and 3 hl., respectively (see Fig. 1). The question is: how can the man divide equally the wine with
the help only of the empty barrels?

The solution runs as follows. At the beginning the barrels contains 8, 0, 0 hl. respectively. If we number
them as 1,2,3, then to get the solution we may proceed as follows.

1. Pour the wine from 1 to 3: we get 5 0 3 hl.
2. Pour the wine from 3 to 2: we get 5 3 0 hl.
3. Pour the wine from 1 to 3: we get 2 3 3 hl.
4. Pour the wine from 3 to 2: we get 2 5 1 hl.
5. Pour the wine from 2 to 1: we get 7 0 1 hl.
6. Pour the wine from 3 to 2: we get 7 1 0 hl.
7. Pour the wine from 1 to 3: we get 4 1 3 hl.
8. Pour the wine from 3 to 2: we get 4 4 0 hl.

The answer is simply an algorithm that dates back to Niccolò Tartaglia in his book number 16 probably
written in 1560. A question for some clever readers is: does there exit a solution with less than 8 steps?. The
answer is ‘‘yes, one exists’’, but we leave it as an exercise.

2.2. The problem of the glasses of water and wine

Problem 2. Take two glasses, one with water and one with wine and transfer a certain quantity of water into
the wine, then the same quantity of the mixture (wine and water) is transferred into the glass of water. The
question is: do we have more water in the glass of wine or wine in the glass of water?

Fig. 1. The three barrels: the leftmost is the full one (see the closed cork).
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The well-known and simple answer is that the quantities are the same. This is due to the fact that if a quan-
tity x of liquid is taken from one glass a similar quantity x goes back to the other glass (see e.g. [5, p. 279]).

The solution to this problem has a logical bug: we are not considering the physical characteristics of the
water and the wine. In fact, when we take from a mixture of two fluids a certain quantity, the quantity of
the single compound in the mixture is different from its quantity in the mixture. The deviation of these two
quantities is of order

ffiffiffi
n
p

, with n the number of moles that we assume to be present in the liquid. Hence,
we probably have the same quantities, as claimed in [5, p. 279], if this deviation in the liquid will be reduced
to �

ffiffiffi
n
p

and it seems possible with 47 mutual exchanges (cf. [5, p. 287]).

3. The French paradox: an estimate

The French paradox refers to the fact that people in France suffer a relatively low incidence of coronary
heart disease, despite their diet being rich in saturated fats. The phenomenon was first noted by the Irish phy-
sician Samuel Black in 1819. In 1991 the French epidemiologist Serge Renaud, in his famous interview during
the program 60 Minutes on the American network CBS, speaking about the connection between pathology of
coronaries and the assumption of lipids, he introduced the name French paradox or Bordeaux effect (see also
[7,8]). As a remark, we recall that Prof. Renaud, for his studies on this field, has been awarded in 2005 by the
President Chirac of the Légion d’Honor which represents the most important award and acknowledgment
given to outstanding people in France.

In simple words the paradox can be stated as follows:
PARADOX. 1 The drinking especially of red wine, determines a significant reduction in the risk of cardio-

vascular diseases even though the diet is rich in lipids.
After Renaud’s studies, we now know that this effect in mostly due to one important substance present in

the wine called reseveratrol. Reseveratrol is a chemical found in wine grape skins and is a form of estrogen
called phytoestrogen, a hormone known to protect against heart disease.

In what follows we propose an estimate of the quantity of daily red wine that we may drink in order to
preserve ourselves from cardiovascular diseases but avoiding liver disease.

Let us assume that the wine behaves like a ‘‘population-wine’’ that evolves in time as a Malthus model.
Thus, the probability p to get a cardio-circulative disease drinking x liters per day, decreases exponentially
by the formula

pðxÞ ¼ p0e�
x

xp ; ð1Þ
where p0 is a constant representing the probability that such disease decreases for an abstainer and xp the
reciprocal growth rate of the ‘‘population-wine’’. In fact, the Eq. (1) is the solution of the Cauchy
problem

p0ðxÞ ¼ � 1

xp
pðxÞ; x P 0;

pð0Þ ¼ p0;

that represents the Malthus model.
On the other hand, the probability of an increase of the same disease can be expressed similarly by

qðxÞ ¼ q0e
x

xq ; ð2Þ
where q0 is a constant representing the probability for an abstainer to catch the disease and xq the correspond-
ing growth rate for this setting.

To get an estimate we sum up both probabilities, that is Eqs. (1) and (2), obtaining

rðxÞ ¼ p0e�
x

xp þ q0e
x

xq : ð3Þ
Our aim is to find the extremal points of rðxÞ. Hence

r0ðxÞ ¼ � 1

xp
p0e�

x
xp þ 1

xq
q0e

x
xq ¼ 0:
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The only point is

x� ¼ xpxq

xp þ xq

� �
log

xq

xp

� �
þ log

p0

q0

� �� �
: ð4Þ

Note that rð0Þ ¼ p0 þ q0 > 0; limx!þ1rðxÞ ¼ þ1; r0ðxÞ is negative for 0 6 x < x� and positive for x > x�, thus
x* is the unique point at which rðxÞ attains its minimum value and so rðx�Þ is its global minimum.

Remark 1. The value x* depends on the quantities p0; q0; xp; xq. Not all choices make sense. For instance in [8]
the authors proposed these (reasonable) choices.

• xp ¼ 1 and xq ¼ 3. The value for xp comes from usual habit while xq ¼ 3 is related to the story of the dwarf
Percheo and the hugest barrel in the world of the Heidelberg castle (see Fig. 2, left). The inhabitants of the
castle used to drink at least two liters of wine per day while the dwarf Percheo twelve bottles (about 6 l). He
was very healthy till the day he drank, for a lost bet, two glasses of water and suddenly he died . . . maybe
because the water, at those time, was polluted.

• p0 � q0. This is a reasonable choice since both p0 and q0 represent the probability to get or to avoid any
such disease by an abstainer.

For the choice xp ¼ 1; xq ¼ 3; p0 ¼ 0:2; q0 ¼ 0:25 we have the solution x� � 0:76 l (see Fig. 2, right) which
suggests that one bottle per day of red wine (possibly drunk during meals!) is the suitable quantity that pre-
vents from cardiovascular diseases while avoiding any liver disease.

Apart from the resveratrol, in the wine there are many other compounds (at least 600 are very significant)
and the drinking of a bottle of wine per day, as obtained above, if for someone can really prevent from car-
diovascular diseases for the majority of people this will lead to other physical problems. That is why this is a
paradox. On the other hand, the properties of resveratrol are well studied and nowadays there are medicines
based on the chemical components of resveratrol used to prevent the flu.

4. The mathematics of wine tasting

In this section we try to present various aspects of wine tasting technique, used by experts like sommeliers
and enologists, that can be defined mathematically. In particular, when a wine is tasted, in order to understand
its characteristics there are essentially three steps or analyses that must be done. The first one is the so-called
visual analysis of the wine, in which one judge the color, the limpidity, the transparency and, in the case of
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Fig. 2. Left: the huge Heidelberg barrel. Its dimensions are: 7 m. height and 8.5 m. width. It contains 221,726 l. Over the barrel there is
room for a ball stage. Right: the function rðxÞ with the choice of parameters as in Remark 1.
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sparkling wines, the consistency, the number and the persistence of bubbles. A second check is the so-called
olfactory examination where the experts should objectively make an analysis of the olfactory intensity, olfac-
tory persistence and finding some correspondence with known scents and smells. The more scents one can
clearly identify the more complex will be the wine. The third and essentially the last important aspect to check
is the gustative analysis. Here one has to analyze the so-called soft and hard parts of a wine. The soft part is
made up by the sugars, the alcohols and the poly-alcohols while the hard part, is made up by the acids, the
tannins and the mineral salts. Finally, on the basis of the previous analysis one can say that a wine has a
general structure which is thin up to vigorous and also say something about its harmony and evolution.
For more details see, e.g., the Ref. [1].

It is not the aim of this paper to write a treatise on the techniques of wine tasting, but this small introduc-
tion can help us in understanding some of the considerations we are describing.

4.1. The geometry of the olfactory examination

In the olfactory examination one checks firstly two important features of the wine: the intensity and the
complexity of the wine scents. The intensity represents the height of the scents while the complexity is their
persistency in time (i.e. its duration), that is their length. The sum of these two characteristics is the olfactory

quality of our wine. Then, the more intense and complex the wine, the better is its quality.
Therefore, if we use a cartesian plane ðx; yÞ ¼ ðComplexity; IntensityÞ the olfactory quality, qðx; yÞ is an

increasing two-dimensional function. Obviously qðx; yÞ will not increase with the same gradient along x and
y because, for instance, the intensity can be greater than the complexity. In Fig. 3 we show a possible math-
ematical representation of the quality of a wine as the monotone function qðx; yÞ ¼ x4 þ y2. For this function
we may say that the wine is more complex than intense.

Another aspect related to the olfactory complexity is the number and types of scents that one can identify in
smelling the wine. These scents are usually grouped in three sets: primaries strictly connected to the particular
kind of grapes and the environment, secondaries formed essentially during the wine fermentation and tertiaries

due to the evolution and ageing processes. The union of these three scents makes the wine olfactory complexity
and the experts afterwards will say that a wine is deficient, poorly complex, quite complex,

complex, wide.
Let Oc be the olfactory complexity. Thus, Oc is the function whose domain is the set

D ¼ P [ S [ T
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Fig. 3. A mathematical representation of the complexity as the monotone function qðx; yÞ ¼ x4 þ y2.
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consisting of the union of the sets representing the primary, secondary and tertiary scents respectively, with
values in the discrete set

A ¼ fdeficient;poorlycomplex;quitecomplex;complex;wideg:

Remark. This functional way to describe the olfactory complexity, can be applied to almost all other aspects of
wine tasting, such as in the description of the acidity or the alcohol (cf. [1]). In fact, sommeliers in describing a
wine associate to any of the wine characteristics a scale of values. These scales represent indeed the images of
the corresponding functions.

4.2. Wideness, length and poly-alcohols of wines

These characteristics are related to the evolution of wines (cf. [10]).

Definition 1. We say that a wine is wide, when its visual, olfactive and gustative sensations are very intense,
nearly explosive, but limited in time.

Therefore the wideness of wine is a function,

W : DW � Rþ ! R3:

which has a very high derivative in each direction. The (temporal) support DW can be considered as a small
interval of Rþ.

On the other hand, the length of a wine expresses slow changes in time.

Definition 2. We say that a wine is long, when its visual, olfactive and gustative sensations show off slowly in
time.

Then, the length of wine is a function,

L : DL � Rþ ! R3:

which has slowly growing derivatives in each direction. The (temporal) support DL can be considered as all
Rþ.

A third aspect, which introduces us to the evolutionary system representing a wine, is found in the gustative
analysis, that is the poly-alcohols. These are the most important compounds of a wine and are fundamental
for its structure, in particular they represent the soft part of the structure. They are mostly due to the glycerine
content. A wine with respect to poly-alcohols can be sharp, scarcely soft, quite soft, soft and velvety. In math-
ematics, these characteristics can be represented, or better, modeled by functions of increasing regularity, posi-
tive and ‘‘bell-shaped’’ like, for instance, polynomial splines. Polynomial splines, or simply splines, are
piecewise continuous polynomials connected with the highest possible degree of continuity at the connection
points. The classic cubic spline, which is of order +4, is globally C2. In general splines of degree k, order k + 1,
are globally k � 1 continuous. Splines have also a stable basis formed by the B-splines or Basic-splines. In
Fig. 4, we plot five B-splines of orders +2 up to +6 on the unit interval, which are Cs; s ¼ 1; . . . ; 5 respectively,
and that can be seen as an original mathematical representation of the corresponding scale of poly-alcohols in
a wine. The readers interested to splines functions can refer, for example, to the fundamental book by Carl de
Boor [2]. An example of wines which are simply continuous, we mention the Italian Verdicchio or the German
Riesling (‘‘trocken’’ type). For wines which are very smooth, i.e., velvety, we may recall the French Sauterns or
the Hungarian Tokaij Aszu.

5. The mathematics in wine fermentation and wine ageing

The intuitive idea that a wine is a dynamical system is the main concern of this Section. The adjective dynam-

ical means something that evolves with respect to time, that is why the theory of dynamical systems is some-
times referred to as the mathematics of time. The dynamical system concept is a mathematical formalization
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for any fixed ‘‘rule’’ which describes the time dependence of a point’s position in its ambient space. Examples
are: the mathematical models used to describe the swinging of a clock pendulum; the flow of water in a pipe;
the number of fish each spring in a lake or the evolution and ageing of wine. The evolution of wine due to the
ageing is treated, for example, in the papers [4,9]. In [4] the authors simply tried to model the changes of oak-
related compounds by studying the diffusion kinetics of some special compounds (lactones, guaiacol and 4-
methylguaiacol, and vanillin) in wine maturation. They showed that when the barrels are new the diffusion
kinetics measured in terms of the rate of accumulation of the compound, can be fit by exponentials functions
of the rate, otherwise, when the barrels are already used, by polynomials of decreasing degree. In [9] the study
of a Fickian diffusion model for simulating the wine losses during ageing in oak barrels, has been presented.
This model is based on Fick’s second law that models non-steady state diffusion processes, that is processes
in which the concentration within the diffusion volume changes with respect to time. Letting uðx; tÞ the
concentration function (subject to some Dirichlet and Robins boundary conditions) the diffusion equation
corresponding to Fick’s second law is

utðx; tÞ ¼ Dux;xðx; tÞ; ð5Þ
where D is the diffusion coefficient which depends on the type of wood.

The interest of these two examples is the fact that the wine and the phenomena connected to the ageing is
dynamically evolving as a diffusion process.

So far we have not yet discussed what is a dynamical system and in particular a chaotic dynamical system:
this is what we are going to say.

To understand a dynamical system we need to know its state. The state of a dynamical system is determined
by a collection of real numbers, or more generally by a set of points in an appropriate state space.

To be clearer, for modeling the dynamics of a system, we start from a set x1; . . . ; xn of measurable quantities
that represent the system’s state at the time t, that is

xðtÞ :¼ ðx1ðtÞ; . . . ; xnðtÞÞ:
If t is a real number, the dynamical system is called continuous otherwise, when t is a natural number, the
system is called discrete.
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Fig. 4. B-splines of orders 2 up to 6 on the unit interval.
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The evolution of system is formally a function, that once the initial state x0 at t0 is known, allows to
uniquely determine the state of the system in any successive time t:

xðtÞ ¼Fðt0; x0; tÞ: ð6Þ
Hence, starting from the initial condition x0ðt0Þ, the set of values obtained by (6) is the trajectory of the system
passing through x0ðt0Þ. In practise, it is not easy to find the operator F and people try to recover it by using
some differential equations representing the local evolution of the system. These equations, in the continuous
setting, describe the variation of each state variable xi w.r.t. the others and itself, too. That is

dxi

dt
¼ fiðx1; . . . ; xnÞ; i ¼ 1; . . . ; n:

Unfortunately only in simple cases, for example with linear differential equations, one can find the analytic
solution of the system satisfying the initial conditions. Similar considerations can be done for discrete dynam-
ical systems where difference equations will be considered instead of differential equations

xiðt þ 1Þ ¼ fiðxðtÞÞ:
It is beyond the aim of this paper to go further in the theory of dynamical systems. What we only want to
understand is why wine is a chaotic dynamical system.

For a dynamical system to be classified as chaotic, most scientists will agree that it must have the following
properties.

• It must be sensitive to initial conditions. That is an arbitrarily small perturbation of the current trajectory
may lead to significantly different future behavior. Sensitivity to initial conditions is often confused with
chaos in popular accounts.

• It must be topologically mixing, in the sense that the system will evolve over time so that any given region or
open set of its phase space will eventually overlap with any other given region. Here, mixing is really meant
to correspond to the standard intuition: the mixing of colored dyes or fluids is an example of a chaotic
system.

• Its periodic orbits must be dense.

A simple example of a real chaotic system is the smoke of cigarettes. In fact, even if cigarettes are lighted in
macroscopical similar conditions, their smoke can behave in very different ways, depending on the air pres-
sure, the air currents, the air temperature and so on.

Similarly, the fermentation of the must, that contains about 2000 known compounds, depends on the air
pressure, humidity, temperature, the lunar phase, and so on. Therefore, small changes in these during the fer-
mentation could influence significantly the production and also the evolution of the wine, so that we can get a
good wine or a ‘‘good vinegar’’. Fig. 5 shows these two chaotic dynamical systems: the match’s smoke and the
must. In many physical and mathematical models of wine fermentation kinetics, people mostly study the dif-
fusion of some compounds and their effect on other compounds, such as yeast cells and sugars, or the diffusion
of the flavors in oak barrels or due to oak chips. These models are essentially a description of chemical phe-
nomena by means of biological mathematical models. As detailed in [12] the fermentation kinetics model can
be subdivided into three parts: a growth model, a substrate model and a product model. Recently the sigmoidal

logistic model has been one of the most popular used for simulations due to its property of good fit of exper-
imental data. In its standard form the sigmoidal curve is the solution of the Cauchy problem

dp
dt
¼ pð1� pÞ; pð0Þ ¼ p0: ð7Þ

This first order non-linear differential Eq. (7) is indeed a special case of the well-known Verhulst logistic model

dp
dt
¼ jp 1� p

C

� �
; pð0Þ ¼ p0: ð8Þ

where the constant j represents the growth rate and C the carrying capacity of the system. This model, in the
discrete case, is usually represented (after a scaling process) by the iterative map
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xnþ1 ¼ rxnð1� xnÞ; n P 0;

which, for values of the parameter r grater than 3.45, shows some chaotic behavior that graphically produces
the well-known bifurcation diagram (see Fig. 6, right).

Some dynamical systems are chaotic everywhere but in many cases chaotic behavior is found only in a sub-
set of the phase space. The cases of great interest arise when the chaotic behavior takes place on an attractor,
since then a large set of initial conditions will lead to orbits that converge to this chaotic region. While most of
the motion types mentioned above give rise to very simple attractors, such as points and circle-like curves
called limit cycles, chaotic motion gives rise to what are known as strange attractors, i.e. attractors that can
have great detail and complexity. For instance, a simple three-dimensional model of the Lorenz weather sys-
tem gives rise to the famous Lorenz attractor (see Fig. 6) well-known for its butterfly shape. Strange attractors
are also fractals whose most important representatives are the Mandelbrot set and the Julia set, famous also as
screen savers.

In conclusion, wine fermentation and wine ageing are not simple dynamical systems to study and the study
of the wine fermentation should be better modeled by reaction–diffusion equations of the form

utðx; tÞ ¼ DDuðx; tÞ þ Kgðuðx; tÞÞ; ð9Þ
where the function g represent the reaction of the system, usually a non-linear function of u, with the function
u depending on the vector x, which represents the variables involved in the evolution, and the time t. For these
equations the solution is usually found by sophisticated numerical methods (cf. e.g. [6]). Unfortunately the
great number of substances that make up wine, make its behavior often chaotic and therefore people solving
numerically the reaction–diffusion equations of the wine evolution, should study other aspects connected to

Fig. 5. (Right) A match’s smoke and (Left) the fermenting must.

Fig. 6. (Left) Lorenz attractor, (Right) the Logist map and its bifurcation diagram.
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the numerical solution, such as stability. It will be the aim of a second paper to provide some stable numerical
methods for wine fermentation and ageing.

6. ‘‘Chaos’’ is also a wine

We have just seen that wine is composed of at least 2000 compounds that combine and mix together and
evolve in time, giving to the wine its ‘‘personality’’. An Italian wine producer, the firm ‘‘Fattoria Le Terrazze’’

whose vineyards are in Numana nearby Ancona, has decided since 1997 to call one of its red wines with the
name Chaos (see also [11]). The producer, on the basis of our previous discussion about the chaos into the wine,
decided to use as label of Chaos, views of the Mandelbrot set. In fact, the Mandelbrot set is a mathematical

object that for many reasons is considered the prototype of chaos in dynamics. In Figs. 7 and 8 we show
all the labels of Chaos.

7. Conclusions

In this paper, we gave an essay of how mathematics can be useful to describe some process connected to
wine tasting and its evolution. But this is not all. Mathematics, for instance, is fundamental to understand
why champagnes, and in general sparking wines, have bubbles. Of bubbles we would like to understand their
birth from the so called nucleation centers situated along the surface of the glass; their growth due to the dif-
ference of pressure in the glass and the outside air; the speed they reach in rising from their birth to their death,
and finally how bubbles die at contact with the air. Mathematics is indeed the perfect tool to simulate all these
processes (see the interesting monograph [3]).

Mathematics can also help in optimizing the distribution of vines in a given area. Moreover we can use
mathematics in describing the geometry of a bottle and in the design of new bottles and glasses (cf. [10]). Many

Fig. 7. Chaos 1997, 1998 and 1999.

Fig. 8. Chaos 2000, 2001 and 2002.
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other aspects, connected to the vine and wine, are better understandable with the help of mathematics. As we
said in the Introduction, mathematics is everywhere . . .also in the wine.
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