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Inverse kinematics calibration is a technique used to improve the accuracy of robot munipulutors when 
they are programmed off-line. This technique requires an approximation of position deviations of the 
end-effector of the robot. In this paper three-variate splines ure used as approximuting functions: a 
stable and efficient algorithm for their computation is presented. Many experimental tests are per- 
formed to evaluate the merits of the approximation. The improvements in the accuracy of the robot, 
obtained after calibration, demonstrate the validity of the method. 
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1. Introduction 

There are many applications in engineering in which 
the availability of a suitable approximation algorithm is 
required; one of these is robot calibration. The opera- 
tion of a robot manipulator is usually specified in terms 
of a succession of poses of the end-effector. If a teach- 
ing method is used, an operator leads the robot to the 
desired poses and records in the memory of the robot 
the corresponding values of joint displacements. The 
sequence is then repeated automatically and the end- 
effector pose is affected only by the repeatability devi- 
ations that are of stochastic nature. If an off-line pro- 
gramming technique is used, the succession of desired 
poses is specified by means of a computer. When a 
robot is programmed off-line, joint displacements are 
calculated by performing inverse kinematic analysis of 
the nominal model of the robot. The nominal model 
usually differs from the actual model of the manipula- 
tor because of manufacturing errors, clearances, joint 
compliances, etc.; therefore joint displacements calcu- 
lated by means of the nominal model are not correct 
and produce deviations in the end-effector pose that 
add to the stochastic deviations. Therefore a calibra- 
tion technique is required to increase the manipulator 
accuracy when a robot manipulator is programmed off- 
line. 
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Some authors developed so-called forward calibra- 
tion (see Refs. l-3). The aim of their work was to 
obtain a more accurate model of the robot by identi- 
fying the actual parameters of the robot on the basis of 
measurements in the workspace. This approach can 
give good results but may be difficult, and some prob- 
lems arise if an inverse model of the robot is required. 
In fact, for the “nominal robot” the inverse solution is 
usually available because it is kinematically simple 
(some axes intersect or are parallel) but for the “actual 
robot” with axis misalignments, many offsets, and 
nongeometric errors, sometimes only a numerical solu- 
tion can be found. 

To cope with these problems, the “inverse calibra- 
tion” approach was proposed by some authors (see, 
for example, Refs. 4 and 5). With this approach no 
attempt to modify the robot model is made, but some 
correction Junctions are calculated. If the corrections 
are added to the Cartesian parameters that define the 
pose, the calibration is called precorrective. If the cor- 
rections are added to the nominal joint angles that 
would produce the desired pose, the inverse calibra- 
tion is called postcorrective. The correction functions 
are calculated by evaluating the position and orienta- 
tion deviations in some poses in the workspace. When 
pose k is implemented in the computer, joint displace- 
ments 5 are calculated and the end-effector reaches 
pose 2’. Then, the measured pose deviation is I!?,, = $’ 
- 2. If pose 2 is commanded, the correction -eP 
must be implemented. Indeed on the basis of 2’ - E,, 
= 2, the computer calculates joint displacements that 
locate the end-effector in the desired pose. Thus, if a 
precorrective technique is used, correction vector 
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-&, must be calculated in all the locations of the 
workspace. Since it is impossible to carry out all the 
measurements, the vector -E, is measured only in 
some positions of the workspace (these positions are 
called rraining points) and the corrections in the other 
poses are calculated by means of approximation func- 
tions. 

In previous works, linear functions (see Ref. 4) and 
third-order three-variate polynomials (see Ref. 5) were 
proposed and tested as correction functions. 

The aim of this paper is to contribute to the develop- 
ment of pre-corrective inverse calibration by testing 
the effectiveness of approximation with multivariate 
spline functions. 

The paper is subdivided in two main parts: Section 2 
concerns approximation with spline functions; section 
3 deals with the application of approximating splines to 
a robot calibration problem. 

2. Approximation by spline functions 

In this section, we give the basic ideas that we have 
followed in choosing the class of spline functions as the 
set of our approximating functions. Our problem can 
be formulated as follows: 

Problem 1. Which class offunctions is eligible to be 
correction functions? From the literature it is known 
that the class of polynomials is generally suitable on 
small intervals. Moreover, polynomials tend to show 
oscillations close to the limits of the interval. This 
tendency to oscillate becomes increasingly pro- 
nounced as the order of the polynomial is increased 
(see Ref. 6). Another limitation of the approximation 
by polynomials is the global definition. This means 
that if we change a point in the set of the points chosen 
as knots, all the behavior of the approximating polyno- 
mial will be changed. This obviously leads to increased 
computation. 

The above considerations imply that it is better to 
find a class of low-order piecewise approximating 
polynomials. Splines are piecewise polynomials that 
are more flexible and hence can fit general functions or 
data (for a prescribed number of parameters) better 
than polynomials. These characteristics apply to both 
interpolation and approximation. 

2.1 Some remarks on spline functions 
In one dimension a spline function of degree n - 1 

(or order n) is a piecewise polynomial belonging to 
clP2([a,b]), where [a,b] is the definition interval.’ 

Definition 2.1.1. Given a strictly increasing set of real 
numbers 

a = x,,xz,. . .,xm = b 

(m f n, generally m > n) a spline function s(x) of order 
n with knots x,, . . . , x, is a function possessing the 
following two properties: 

(1) in each of the intervals 

x5x,; xj_,SxSxjCj=2,...,m); x,5x 

s(x) is a polynomial of degree n - 1 or less; 
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(2) S(X) E c”-* (R). 
We will use the notation S = S(n - 1; x,, . . . , x,) for 
the linear space of spline functions of degree n - 1 
with sequence of knots {x,, . . . , x,}. One representa- 
tion of a spline of degree n - 1 based on the strictly 
increasing set of knots x,, . . . , x, is 

n-l 

s(x) = x CjXj + -g dj(X - xj)y’ x E [ahI (1) 

j=O .j= I 

where (x - xj)+ = max(O,x - xj). The coefficients {cj: 
j=o,. . .) n - 1) and {dj: j = 1, . . . , m} distinguish 
different members of S. The dimension of S is n + m. 
A representation much more convenient for practical 
purposes, still requiring m + n coefficients in its defini- 
tion, is given by expressing s(x) as B-splines as sug- 
gested in Refs. 8 and 9. Then, choosing B = {Bj: j = 1, 

m + n}, a basis of linear independent functions of 
s iha; we will call B-Splines or BS, we can express s(x) 
as a linear combination Of {Bj}j= I,,,,.m+n. TO do this, we 
need to introduce 2n additional knots (see Ref. lo>* 

X- ,,+lrX-,,+21*. . 3x0 

and 

X r,?+l7X,,,+2~~~~ 3 X t?+n 

where 

x_,,+,<x~,,+~<...<x, =a 

and 

b=x,,<x,,+,<~,+~<...<x,+. 

Then, we can write 

,I?+,, 
s(x) = 2 cjBj(x) xE [X03Xm+ 11 (2) 

.j= I 
There are two fundamental algorithms to compute 
B-splines. The former, based on the recursive defini- 
tion of divided differences proved to be unstable.’ The 
second, based on the recursive relation between 
B-splines, was proposed in Refs. 7 and 9. The re- 
cursive relation, for thejth B-spline of order n > 1 is 

Bc,nj(x) = (X - Xj-,lBjE< “(X) + (+j - X)Bjn-“(X) 

J 
Xj - xi~, 

(3) 

Because B:‘f_; ‘j(x), B;“-‘)(x), x - xjP,,, xj - x and xj - 
x,_,, are all positive or null, it follows that there will be 
no cancellation in evaluating the right-hand side of (3). 
This is why the algorithm that calculates the BS basis 
using (3) is stable. 

Instead of using c;“‘(x) as in (3), it is more conve- 
nient to work with normalized B-splines, i.e. 

N:“‘(x) = (xj - x,_,)Bj”‘(x) x E [a,b] (4) 

The following algorithm was used to compute all the 
BS functions, by computing normalized B-splines: 

* As suggested in Ref. 1 I, we can choose the additional knots satisfy- 
ing the order 5. 
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Algorithm 1 
Assume that xi_,, < x < xi; otherwise B:.“‘(x) = 0 

l.Forj=i-n+ l,i-n+2 ,..., ido 

B;“(x) = Is;i - xj-,)-I ifxj_, <x5xj 
otherwise 

B!” = B!“iX). 
2. ForrJ= 2,3,‘. . . ,ndo 

Forj=i-n+r,i-n+r+l,...,ido 

B!” = (X - xj_.)BI’=,“(X) + (xj - X)BI”- “(X) 

.I 
Xj - Xi-r 

At the end we have B:“‘(x) = I$“’ 

2.2 Multivariate parametric approximating splines 
The parametric representation of a bidimensional 

spline S(T), with 7 that varies on a generic interval I c 
R, can be expressed by’2,‘3 

s(7) = +(T; p,, . . . 5 P,) (5) 

The relation (5) says that s depends on m + 2 parame- 
ters: T and the m + 1 two-dimensional points PO,P,, 
. . . ) P,,,. Usually 7 E [O,ll with value r = i/m on the 
ith point Pi. 

The general expression of a parametric spline based 
on normalized B-splines is 

S(T) = 2 PiBy 
i=o 

(6) 

In this case, a suitable choice of a sequence of knots X 
= (x0, . . . I xk} (with k f m) is the following: 

i 

x; = 0 Oliln - 1 
x,=i-n+l nli5m (7) 
x,=m-n+2 m+l5i5m+n 

The sequence (7) is called open uniform sequence of 
knots. The adjective “open” indicates that the knot 
values at the ends are multiple, with multiplicity equal 
to the order n of the spline, i.e., x0 = x, = 1 . . = x,,- , 
=0;~,+,=~,,+~=~~~=x,,,,=m-n+2.1twas 
proved (see Ref. 12) that an open uniform knots se- 
quence is preferable to an open nonuniform knots se- 
quence. Such a choice, which we have adopted, gives 
some information about the coefficient matrix in the 
interpolation problem in the one-dimensional case. 
This matrix contains at most “n” nonzero elements in 
each row and the column position of the first nonzero 
element in each row is a nondecreasing function of the 
row number. By using normalized B-splines we can 
easily verify that the use of the knots sequence (7) 
implies that the elements in position (1,l) and (q,q) 
(with 4 the number of points to interpolate) are equal 
to l.‘O 

A known technique to generate multivariate splines 
on rectangular patches is by tensorial products. We 
want briefly to describe h-variate spline spaces, h 2 1. 

The space of h-variate splines S,, is generated from 
the tensorial product of BS in each direction. For- 
mally, if the directions are given by the vector 

si = (a, ,a,, . . . , a,) 

and 

are the BS basis along those directions, we write 

S, = span 
{ I 

bBU8 i=l 

The problem that we studied consisted of approxi- 
mating a function that depends on three parameters. 
So, given m., + 1, m, + 1, and mi + 1 points on each 
direction and orders n,, n,, n,, the three-variate para- 
metric spline s E S, is given by 

where Pi, is the generic four-dimensional point. 
The algorithm used to compute the 3-variate para- 

metric approximating spline was: 

1. 

2. 

3. 

4. 

3. 

Algorithm 2 

Set the knots sequence in each direction by using 
(7). 
Set the B-splines in each direction by using Algo- 
rithm 1 
Calculate (T_~,T,,,T:), which corresponds to P,,, by a 
coordinate transformation. 
Calculate the value of s(~,,T,,~~) by using (9). 

Calibration of an articulated robot 

3.1 Case studied 
A Microrobot 88-5 robot manufactured by Nakanip- 

pon Electrics was used for calibration tests. It is a 
small articulated manipulator with five degrees of free- 
dom (DOF) (see Figure I). The robot was connected 
with an Olivetti M24 PC and commanded off-line by 
giving the Cartesian coordinates (x,y,z) and the Euler 

END EFFECTOR 

JOINT 2 
JOINT 3 

JOINT 4 

-’ JOINT1 

BASE 

Figure 1. Kinematic scheme of Microrobot 88-5 robot. 
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angles (&O,$) of the desired pose. Angle 4 is always 
set to arctan (y/x) because the robot has only five DOF. 
To assess the effectiveness of multivariate spline ap- 
proximation in the calibration problem we decided to 
perform the pre-corrective inverse calibration of the 
robot in a portion of its workspace. 

The end-effector pose is affected by position and 
orientation deviations. Each deviation includes a 
stochastic component that cannot be reduced by cali- 
bration and a systematic component that depends on 
the five location parameters of the robot. To ease the 
calibration test we decided to carry out the calibration 
of the end-effector position for fixed values of Euler 
angles (0 = 90”, I/J = 180“). In this way the systematic 
component of each deviation depended on the three 
parameters (x,y,z), and three-variate splines were 
used. 

3.2 Calibration volume and measurement system 
The following calibration volume was first chosen: 

1 

350SrS400mm 
-15”SpS7.5” (IO) 
200IzS300mm 

The origin and the z-axis of the cylindrical coordinates 
system coincide with the origin and the z-axis of carte- 
sian coordinates in which the end-effector position is 
specified. The dimension in the r direction could not be 
increased because of the dimension of the robot work- 
space. 

In this calibration volume four meridian sections 
(with 7.5” spacing) were identified and in each (r,z) 
plane a square mesh (with a side of 50 mm) was estab- 
lished with three points in the z direction and two 
points in the r direction (see Figure 2). 

The second calibration test was carried out on a 

Figure 2. Training points in the calibration volume. 
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larger calibration volume with - 22.5” 5 p 5 22.5” and 
42 knots points. To measure the actual end-effector 
position before and after the calibration, a measure- 
ment apparatus with an accuracy of 0.05 mm was de- 
veloped. This equipment consists of a fixture with 
three perpendicular slides in x, y. and z directions that 
can position a small parallelepiped block in the calibra- 
tion volume. 

The end-effector of the robot was replaced by a rod 
with a spherical tip on the tool center point; a weight 
could be mounted on the rod to simulate the payload. 
Both the manipulator and the fixture were mounted on 
a stiff reference plane and each component of the end- 
effector position was measured moving the slides of 
the fixture until one of the faces of the small block 
touched the spherical tip of the robot. 

To generate the knots, on which the approximation 
is based, the robot was located in all the points of the 
mesh (training points). The actual location was mea- 
sured and the position deviations (&,6,,&) were calcu- 
lated. Calibration can reduce systematic deviations de- 
pending on robot configuration but cannot affect 
stochastic deviations. Therefore the best accuracy of a 
well-calibrated robot coincides with its repeatability. 
Hence, before making any test, we decided to carry 
out a repeatability test locating 10 times the end ef- 
fector in the same position (r = 375 mm, p = - 3.75”, 
z = 228 mm). The histograms of the measured devia- 
tions with respect to the normal position are reported 
in Figures 3, 4 and 5 where the deviations were subdi- 
vided in classes with width 0.05 mm and where 
cumulative count means the number of measurements 
with deviations within a certain class. 

The value of repeatability in each direction (in agree- 
ment with The National Machine Tool Builder’s Asso- 
ciation (NMTBA) definition of repeatability in Ref. 14) 
was taken as 3~ (where cr is the standard deviation), 
and the following results were obtained: 

x direction: repeatability = k-O.14 mm 
_v direction: repeatability = -C 0.12 mm 
z direction: repeatability = kO.26 mm 

The offsets of the distributions from 0, caused by sys- 
tematic deviations, are evident. 

3.3 Deviation estimate 

This test was aimed to verify the validity of the ap- 
proximation of the deviations and was carried out with 
a payload of 0.5 kg on the end-effector of the manipula- 
tor. Twelve positions in the calibration volume, lo- 
cated among the knots, were selected and by means of 
the computer program the approximated values of the 
position deviations in those points were calculated. 
The knots in direction p, z, and r respectively were 4,3, 
and 2; thus the three-variate splines of order 2 2 2, 
3 3 2, and 4 3 2 could be used. 

In Tables I, 2 and 3 the calculated deviations and the 

measured deviations are compared for x, y, and z direc- 
tions respectively. The measured deviation is the dif- 
ference between the actual position (measured with a 
maximum error of 0.05 mm) and the position com- 
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Table 1. Deviations in X direction. 

Coordinates 
Measured 

Calculated deviation 

P z r deviation Splines 222 Splines 332 Splines 432 

-11.25 
-3.75 
+3.75 

-11.25 
-3.75 
+3.75 

-11.25 
-3.75 
+3.75 

-11.25 
-3.75 
+3.75 

228 
228 
228 
278 
278 
278 
203 
203 
203 
303 
303 
303 

375 
375 
375 
375 
375 
375 
400 
400 
400 
400 
400 
400 

-0.16 -0.054 -0.051 -0.051 
-0.20 -0.075 -0.070 -0.053 
-0.10 -0.030 -0.029 -0.011 
-0.01 +0.055 +0.054 +0.059 
-0.05 +0.009 +0.014 +0.034 
-0.05 +0.041 +0.044 +0.061 
+0.02 +0.030 +0.025 +0.033 
+0.06 -0.015 -0.015 + 0.011 
+0.11 +0.045 +0.038 +0.059 
io.02 +0.180 +0.173 +0.180 
+0.06 +0.115 +0.115 +0.137 
+0.11 +0.140 +0.137 +0.155 

Table 2. Deviations in Y direction. 

Coordinates 
Measured 

Calculated deviation 

P z r deviation Splines 222 Splines 332 Splines 432 

-11.25 228 
-3.75 228 
+3.75 228 

-11.25 278 
-3.75 278 
+3.75 278 

-11.25 203 
-3.75 203 
+3.75 203 

-11.25 303 
-3.75 303 
+3.75 303 

+ 0.49 +0.385 +0.372 +0.438 
+0.38 +0.328 +0.318 +0.300 
-0.08 +0.194 +0.200 +0.114 
+0.39 -to.301 +0.291 +0.346 
+0.43 +0.275 +0.265 +0.236 
+0.02 +0.128 +0.136 +0.048 
+0.52 +0.455 +0.449 +0.523 
+0.36 +0.405 +0.405 +0.389 
-0.06 +0.290 +0.303 +0.212 
+0.12 +0.180 +0.179 +0.230 
+0.16 +0.170 +0.170 +0.131 
-0.26 +0.005 +0.023 -0.071 

Table 3. Deviations in Z direction. 

P 

-11.25 
-3.75 
+3.75 

-11.25 
-3.75 
+3.75 

-11.25 
-3.75 
+3.75 

-11.25 
-3.75 
+3.75 

Coordinates 

z 

228 
228 
228 
278 
278 
278 
203 
203 
203 
303 
303 
303 

r 

375 
375 
375 
375 
375 
375 
400 
400 
400 
400 
400 
400 

Measured 
deviation 

-1.77 
-1.79 
-1.80 
-1.79 
-1.80 
-1.84 
-1.70 
-1.67 
-1.55 
-1.37 
-1.44 
-1.37 

Splines 222 

-1.675 
-1.705 
-1.765 
-1.841 
- 1.874 
-1.905 
-1.645 
-1.635 
-1.725 
-1.560 
-1.560 
-1.560 

Calculated deviation 

Splines 332 

-1.652 
-1.673 
-1.728 
-1.819 
-1.842 
-1.871 
-1.644 
-1.635 
-1.715 
-1.560 
-1.560 
-1.560 

Splines 432 

-1.680 
-1.683 
-1.711 
-1.834 
- 1.844 
-1.858 
-1.681 
-1.660 
-1.705 
-1.578 
-1.560 
-1.542 

manded by means of computer with two decimal digit 
accuracy. 

In the x direction the measured deviations in the 
knots and in the test points have the same order of 
magnitude as stochastic deviations (-to.14 mm). 
Therefore, the spline functions have to mode1 a phe- 
nomenon strongly affected by stochastic effects and 
the results show that the calculated deviations are only 
a rough estimate of measured deviations. 

In the y and z directions the measured deviations are 
larger than stochastic deviations (20.12 mm and 

? 0.26 mm respectively) and the spline functions give a 
good approximation of the deviations on the test 
points. The increment of the spline order in p and z 
directions causes, in most cases, small modifications of 

Table 4. Approximation errors. 

Spline order 222 332 432 

y direction 0.17 0.18 0.13 
z direction 0.11 0.11 0.11 
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the estimated deviations and the measured deviations 
were calculated. The results (see Table 4) show that a 
small improvement in the approximation can be ob- 
tained with 4 3 2 splines. If the knot points deviations 
were measured many times and the approximation 
were based on the mean value, the mean value would 
be less affected by stochastic deviations. In this case 
the spline functions will give a more accurate approxi- 
mation of the mean value of measured deviations. This 
approach is interesting in theory but cannot be used in 
practical applications. 

It must be pointed out that stochastic deviations 
would have caused problems even though a polynomial 
approximation was used. Moreover, since spline func- 
tions give a local approximation, a large stochastic de- 
viation in a knot causes only local errors. 

the estimates. The presence of stochastic deviations in 
the measurements makes the evaluation of these small 
modifications difficult. 

Nevertheless, to evaluate the variation of the ap- 
proximation error with the order of the splines, the 
root-mean-square values of the differences between 
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Figure 3. Deviations before calibration (A) and errors after cali- 
bration (6) in x direction. 
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Figure 4. Deviations before calibration (A) and errors after 
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Figure 5. Deviations before calibration (A) and errors after cali- 
bration (6) in z direction. 

Table 6. Test points chosen for calibration without payload. 

Points P Z r 

-21 278 390 
-21 228 390 
- 18.75 303 400 
- 18.75 278 375 

- 3.75 278 375 
3.75 303 400 

11.25 228 375 
18.75 228 375 calibration (B) in y direction. 

Table 5. Effect of calibration with payload. 

Measured deviation before calibration Measured error after calibration 

Test point X Y Z X Y Z 

1 -0.16 +0.49 - 1.77 -0.16 +0.19 -0.02 
2 -0.20 + 0.38 - 1.79 - 0.07 - 0.09 - 0.37 
3 -0.10 - 0.08 - 1.80 -0.05 -0.18 +0.15 
4 - 0.01 + 0.39 -1.79 - 0.01 + 0.09 -0.17 
5 - 0.05 + 0.43 -1.80 0.00 + 0.08 - 0.20 
6 - 0.05 + 0.02 -1.84 0.00 -0.13 + 0.30 
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Table 7. Effect of calibration without payload. 

Measured deviation before calibration 

Test point X Y z 

1 + 0.35 +0.91 -0.10 
2 + 0.35 + 0.96 -0.10 
3 + 0.23 + 0.68 + 0.35 
4 + 0.25 + 0.99 0.00 
5 -0.20 +0.48 + 0.05 
6 -0.14 - 0.31 + 0.55 
7 -0.01 - 0.26 +0.10 
8 - 0.02 -0.59 + 0.20 

Measured error after calibration 

X Y z 

0.00 +0.21 -0.10 
0.00 +0.16 -t 0.05 

- 0.02 + 0.03 -0.20 
+ 0.05 +0.19 -0.15 

0.00 +0.18 -0.10 
+0.01 - 0.06 + 0.05 
-0.01 + 0.09 -0.10 
-0.12 +0.11 - 0.30 

3.4 Calibration tests 
The deviations provided by the approximation algo- 

rithm were then used to calibrate robot positioning. 
The approximation with spline functions of orders 2 2 2 
was used. First the calibrated robot, with a payload of 
0.5 kg, was commanded to reach six poses (which 
coincided with the first six poses of the test in section 
3.3) and the positioning errors were measured. Tab/e 5 
summarizes the results of calibration, comparing the 
deviation before calibration with the errors after cali- 
bration on the test points chosen. 

The calibration was efficacious and the errors in the 
three directions were reduced toward the range of the 
repeatability errors. To confirm the effect of calibra- 
tion the robot was located 10 times in the second test 
point (r = 375 mm, p = -3.75”, z = 228 mm) and the 
histograms of the errors after calibration in the three 
directions were drawn. In Figures 3,4, and 5 the his- 
tograms are compared with those obtained before cali- 
bration. A remarkable reduction of systematic errors 
due to calibration is evident, even though the variance 
of the distribution is not modified in a sensible way. 
The second calibration test was carried out without 
payload on the end-effector. A larger calibration vol- 
ume was considered (-22.5” YZ p 5 22.5”) and the 
deviations were measured in 42 training points. 

The deviations in z direction were very different 
from those measured in the first test. The other compo- 
nents were less affected by the absence of the payload, 
as could be expected. The calibrated robot was com- 
manded to reach eight poses located among the knots 
(see Table 6) and the position errors were measured. 
Tuble 7 shows that in this case also the errors were 
reduced by calibrations within the range of stochastic 
errors. 

4. Conclusion 

The algorithms used to calculate B-splines functions 
and multivariate parametric approximating splines 
were applied in an inverse robot calibration problem. 
Spline functions of order 2 gave a good estimate of 
position deviations of the end-effector but stochastic 
deviations prevented a remarkable improvement of the 
approximation when the order of the spline was in- 
creased. Stochastic deviations are related to robot re- 
peatability and higher order splines could be useful for 

the calibration of robots with better repeatability. 
Splines of order 2 were then selected for inverse cali- 
bration tests. The results showed that robot accuracy 
was strongly enhanced and the effectiveness of the 
inverse calibration method was confirmed. 
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