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Abstract

We discuss a generalization of Berrut’s first and second rational interpolants to the case of equally
spaced points on a triangle in R2.
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1 Introduction

Berrut ([2, 4, 3] ) introduced two versions of a univariate rational interpolation procedure that has proven
to be efficient and effective, even for equally spaced points in an interval. Of note is that the complexity
of these procedures is linear in the number of points. The derivation of these procedures is based on the
classical Whittaker-Shannon sampling theorem. [16, 15, 6]).

Theorem 1 Suppose that f ∈ C(R) ∩ L1(R) and that f̂(ω) = 0 for |ω| ≥ h/2. Then

f(x) =

∞∑
k=−∞

f(kh)sinc

(
1

h
(x− kh)

)
. (1)

where, as usual,

sinc(x) :=
sin(πx)

πx
,

is the sinc function.
In the case of f with domain restricted to some compact subinterval of R, say to [0, 1], considering

equally spaced points with h = 1/n, we may consider the partial sum

f(x) ≈ Fn(x) :=
n∑

k=0

f(k/n)sinc (n(x− k/n))

=
n∑

k=0

f(xk)sinc (n(x− xk)) (2)

*AMS Subject classification: 41A17, 41A63. Key words and phrases:
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where we have set xk := k/n, 0 ≤ k ≤ n.
Figure 1 shows a plot of the approximant F11 and F41 of the function f(x) = x2 where it is evident

that increasing n the quality of the approximation improves.
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Figure 1: Fn(x) for f(x) = x2 and n = 11 and n = 41

Although (2) no longer reproduces f for all x ∈ [0, 1], it is an interpolant in that

Fn(xj) = f(xj), 0 ≤ j ≤ n, (3)

as easily follows from the cardinality property of the translated sinc functions, i.e.,

sinc(n(xj − xk)) =


1 if j = k

0 if j ̸= k
.

This interpolant Fn was already studied by de la Vallée Poussin (1908) who showed that under some
weak regularity conditions on f(x),

lim
n→∞

Fn(x) = f(x), x ∈ [0, 1],

with error essentially of O(1/n). The reader interested in further details may find them in the excellent
survey by Butzer and Stens [1].

In order to alleviate the poor approximation quality of Fn, Berrut in [3] suggested normalizing the
formula (2) for Fn to obtain what we refer to as the first Berrut rational interpolant:

B(1)
n (x) :=

n∑
k=0

f(xk)sinc (n(x− xk))

n∑
k=0

sinc (n(x− xk))

. (4)

B
(1)
n remains an interpolant of f at the nodes xk, k = 0, · · · , n but has the advantage of reproducing

constants, that is if f(x) = 1 then B
(1)
n (x) = 1.
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Figure 2: Berrut B
(1)
n (x) for f(x) = x2 and n = 11 and n = 41

The formula (4) may be simplified. Notice that

sinc(n(x− xk)) = (−1)k
sin(nπx)

nπ(x− xk)
.

hence,

B(1)
n (x) =

∑n
k=0 f(xk)sinc (n(x− xk))∑n

k=0 sinc (n(x− xk))

=
sin(nπx)

∑n
k=0(−1)k f(xk)

x−xk

sin(nπx)
∑n

k=0(−1)k 1
x−xk

=

∑n
k=0(−1)kf(xk)/(x− xk)∑n

k=0(−1)k/(x− xk)
. (5)

An example of this first interpolant is shown in Figure 2 again for f = x2 and n = 11, 41.

Remark. Besides being an improved approximant, B
(1)
n is also numerically stable as its associated

Lebesgue constant has O(log(n)) growth, as was shown in [7]. □

Berrut also proposed a second improvement by making a simple boundary adjustment in the definition

of B
(1)
n to obtain an interpolant that also reproduced polynomials of degree one. Specifically, let

B(2)
n (x) :=

n∑
k=0

(−1)kβkf(xk)/(x− xk)

n∑
k=0

(−1)kβk/(x− xk)

(6)

where

βk =

{
1 1 ≤ k ≤ (n− 1),
1/2 k = 0, n

.

Remark. Floater and Hormann ([12]) subsequently introduced the more general formula
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Figure 3: B
(1)
n (x) and B

(2)
n for f(x) = x4 and n = 12

FHn(x) :=

n∑
k=0

(−1)kβ
(d)
k f(xk)/(x− xk)

n∑
k=0

(−1)kβ
(d)
k /(x− xk)

. (7)

where the weights β
(d)
k are chosen so that FHn reproduces polynomials of degree at most d

In the specific case of equally spaced nodes their formula for the β
(d)
k reduces to

β
(d)
k :=



∑k
j=0

(
d
k

)
0 ≤ k ≤ d

2d d ≤ k ≤ n− d

βn−k n− d ≤ k ≤ n

(8)

where n ≥ 2d, by assumption.
The cases of d = 0, 1 correspond to Berrut’s first and second interpolants, respectively.
In this work we will consider bivariate extensions of Berrut’s first and second interpolants. The more

general Floater-Hormann case will be the topic of a subsequent paper. □

In Figure 3 we show a comparison between the Berrut interpolants for f(x) = x4 and n = 12.

2 The Extension of Berrut’s First Interpolant to Equally Spaced Points
on a Triangle

The bivariate Whittaker-Shannon sampling operator is defined as follows. Set xi := i/n and yj := j/n
then

f(x, y) =
∞∑

i=−∞

∞∑
j=−∞

f(xi, yj)sinc(n(x− xi))sinc(n(y − yj)) (9)
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We can now truncate triangularly (this is equivalent to consider equally spaced points on the triangle, as
illustrated in Figure 4). Let

T := {(x, y) ∈ R2 : 0 ≤ x, y, x+ y ≤ 1}
be the standard triangle in R2 and set

Fn(x, y) :=
∑

(i,j)∈nT

f(xi, yj) sinc(n(x− xi)) sinc(n(y − yj))

=
∑

0≤i+j≤n

f(xi, yj) sinc(n(x− xi)) sinc(n(y − yj)).
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Figure 4: Equally Spaced Points in a Triangle

Furthermore, by normalizing as in the one dimensional Berrut case, we get

B(1)
n (x, y) :=

∑
0≤i+j≤n

f(xi, yj) sinc(n(x− xi)) sinc(n(y − yj))∑
0≤i+j≤n

sinc(n(x− xi)) sinc(n(y − yj))
(10)

Finally we simplify, just as in the univariate case, to get

B(1)
n (x, y) :=

∑
0≤i+j≤n

(−1)i+j f(xi, yj)

(x− xi)(y − yj)∑
0≤i+j≤n

(−1)i+j 1

(x− xi)(y − yj)

, (11)

Remark. Of course the summation can be truncated to regions P other than just the triangle to obtain
multivariate versions of the Berrut rational interpolation at integer lattice points contained in P. However,
we consider in this first work only the case of P = T a triangle. □

Proposition 1 We have that B
(1)
n (x, y) is an interpolant, i.e.,

B(1)
n (xα, yβ) = f(xα, yβ), 0 ≤ α+ β ≤ n,

and that B
(1)
n reproduces constants. Moreover, restricted to the vertical grid lines x = xs and horizontal

grid lines y = yt, B
(1)
n agrees with the univariate Berrut interpolant for the interpolation points along those

lines
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Proof. It is easy to verify these properties. Interpolation is guaranteed by the singularities at the inter-
polation points while the reproduction of constants is self evident.

To see the grid line first rationalize by multiplying the numerator and denominator by ωn(x)ωn(y)
where

ωn(z) :=

n∏
i=0

(z − xi)

to obtain

B(1)
n (x, y) =

∑
0≤i+j≤n

(−1)i+jf(xi, yj)

n∏
k=0, k ̸=i

(x− xk)

n∏
k=0, k ̸=j

(y − yj)

∑
0≤i+j≤n

(−1)i+j
n∏

k=0, k ̸=i

(x− xk)

n∏
k=0, k ̸=j

(y − yj)

.

Restricting, for example to the vertical grid line x = xs we obtain

B(1)
n (xs, y) =

∑
0≤i+j≤n

(−1)i+jf(xi, yj)

n∏
k=0, k ̸=i

(xs − xk)

n∏
k=0, k ̸=j

(y − yj)

∑
0≤i+j≤n

(−1)i+j
n∏

k=0, k ̸=i

(xs − xk)
n∏

k=0, k ̸=j

(y − yj)

.

However the product ∏
k=0, k ̸=i

(xs − xk) = 0

unless i = s. Hence

B(1)
n (xs, y) =

n∑
j=0

(−1)s+jf(xs, yj)

n∏
k=0, k ̸=s

(xs − xk)

n∏
k=0, k ̸=j

(y − yj)

n∑
j=0

(−1)s+j
n∏

k=0, k ̸=s

(xs − xk)

n∏
k=0, k ̸=j

(y − yj)

=

n∑
j=0

(−1)s+jf(xs, yj)
n∏

k=0, k ̸=j

(y − yj)

n∑
j=0

(−1)j
n∏

k=0, k ̸=j

(y − yj)

which is exactly the univariate Berrut interpolant for the function f(xs, y) along that the line x = xs. □

Remark. The restriction of B
(1)
n (x, y) to the upper edge x+ y = 1 is not a univariate Berrut interpolant,

as is easy to confirm. It follows that B
(1)
n is not symmetric with respect to the barycentric coordinates of

the triangle. □

As we have seen, the formula (11) can be rationalized by multiplying the numerator and denominator
by ωn(x)ωn(y), where

ωn(z) :=

n∏
i=0

(z − xi).
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Indeed, writing B
(1)
n (x, y) = Nn(x, y)/Dn(x, y), let

dn(x, y) : = ωn(x)ωn(y)Dn(x, y)

= ωn(x)ωn(y)
n∑

i=0

n−i∑
j=0

(−1)i+j

(x− xi)(y − yj)

be the resulting polynomial for the denominator in (11). The zeros of dn(x, y) correspond to poles in the

expression for B
(1)
n and are obviously problematic. We conjecture however that there are no poles inside

the triangle, but have been able to prove this only for n ≤ 20, to date.
Our method to do this is elementary, but computationally expensive. Consider first the n = 1 case.

Then

d1(x, y) = ω1(x)ω1(y)

1∑
i=0

1−i∑
j=0

(−1)i+j

(x− i/1)(y − j/1)

= x(x− 1)y(y − 1)

{
1

xy
− 1

(x− 1)y
− 1

x(y − 1)

}
= (x− 1)(y − 1)− x(y − 1)− (x− 1)y

= 1− xy.

Clearly d1(x, y) > 0 for (x, y) ∈ T, but this can also be confirmed by the use of barycentric coordinates.
Indeed, let z := (1− x− y) so that x+ y + z = 1. In particular, the triangle T is given by

T = {(x, y) ∈ R2 : 0 ≤ x, y, z}.

Then, homogenizing and simplifying we have

d1(x, y) = (x+ y + z)2 − xy

= x2 + y2 + z2 + xy + 2xz + 2yz.

As all the coefficients of d1 are non-negative, it follows that d1 > 0 on the interior of the triangle T. By,
the previous proposition, we know that there are also no boundary poles on the edges x = 0 and y = 0.
The upper edge (z = 0) needs to be checked separately, which is easily done.

For higher degrees n it is convenient to change variables letting x′ := nx, y′ := ny, z′ = n− x′ − y′ so
that

dn(x, y) = n−2nω′
n(x

′)ω′
n(y

′)
n∑

i=0

n−i∑
j=0

(−1)i+j

(x′ − i)(y′ − j)

where

ω′
n(t) =

n∏
i=0

(t− i).

Then, ignoring the n−2n factor and, by an abuse of notation, suppressing the primes,

d2(x, y) = ω2(x)ω2(y)

2∑
i=0

2−i∑
j=0

(−1)i+j

(x− i)(y − j)

= x(x− 1)(x− 2)y(y − 1)(y − 2)

{
1

xy
− 1

(x− 1)y
− 1

x(y − 1)
+

1

x(y − 2)
+

1

(x− 1)(y − 1)
+

1

x(y − 2)

}
= 2x2y2 − 4x2y + 2x2 − 4xy2 + 7xy − 4x+ 2y2 − 4y + 4,
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a polynomial of degree 4. It can be homogenized to

2x2y2 − 4x2yt+ 2x2t2 − 4xy2t+ 7xyt2 − 4xt3 + 2y2t2 − 4yt3 + 4t4

which becomes, upon setting t = (x+ y + z)/2 (= 1 in barycentric coordinates),

4d2(x, y) = x4 − x3y + 2x3z + 4x2y2 + 4x2yz + 2x2z2 − xy3

+ 4xy2z + 7xyz2 + 2xz3 + y4 + 2y3z + 2y2z2 + 2yz3 + z4.

Not all the coefficients are non-negative and hence we cannot immediately conclude that d2 > 0 on T.
However, we may degree elevate this expression, i.e., multiply by a factor (x+ y + z)r (cf. e.g. [13]). If it
is the case that all the coefficients of the product

(x+ y + z)rd2(x, y)

are non-negative, it follows that d2 > 0 on T. (The lowest power r with this property is related to the
so-called Bernstein degree of d2(x, y).) In this case, consider what occurs if r = 1. Then

4(x+ y + z)1d2(x, y) = x5 + 3x4z + 3x3y2 + 5x3yz + 4x3z2 + 3x2y3

+ 12x2y2z + 13x2yz2 + 4x2z3 + 5xy3z + 13xy2z2

+ 11xyz3 + 3xz4 + y5 + 3y4z + 4y3z2 + 4y2z3 + 3yz4 + z5.

The minimum non-zero coefficient, 1 in this case, provides a certificate of positivity for d2(x, y) on the
interior of T (where x, y, z > 0). Separate certificates for the boundary can be obtained by setting x = 0,
y = 0 and z = 0, respectively. However, as already noted, the restrictions of the bivariate interpolant to
the edges x = x0 = 0 and y = y0 = 0 are the univariate Berrut interpolants and hence have no poles there.
The upper edge z = 0 needs to be done separately.

By these means we may, with the assistance of a computer algebra system, prove the following positivity
result.

Proposition 2 For at least n = 1, 2, · · · , 20,

dn(x, y) > 0, (x, y) ∈ T.

Proof. We produced a positivity certificate for the stated values of n using the Matlab Symbolic Toolbox
and the following code.
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Table 1: Matlab Code for positive certificate

%
% t e s t p o s i t i v i t y o f numerator o f s (x , y)=\sum { i+j \ l e n}1/(( x=i ) ( y=j ) )
%
c l e a r a l l
syms p s t x y z
n=input ( ’ Enter the degree : ’ )
s=0;
f o r i =0:n

f o r j =0:(n=i )
s=s+(=1)ˆ( i+j ) / ( ( x=i )* ( y=j ) ) ;

end
end
[N,D]=numden( s ) ; % to get the numerator
s=expand ( t ˆ(2*n)* subs (N,{ x , y} ,{x/t , y/ t } ) ) ;
s=expand ( subs ( s , t , ( x+y+z )/n ) ) ;
r=input ( ’ Enter degree to r a i s e by : ’ )
s1=expand ( ( x+y+z )ˆ r * s ) ;
c=c o e f f s ( s1 ) ;
c e r t i f i c a t e =[min ( c ) max( c ) ] % c e r t i f i c a t e o f p o s i t i v i t y / n e ga t i v i t y
s2=subs ( s , z , 0 ) ;
s2=expand ( ( x+y)ˆ r * s ) ;
c2=c o e f f s ( s2 ) ;
u p p e r e d g e c e r t i f i c a t e =[min ( c2 ) ,max( c2 ) ]

The minimal values of degree elevation are

Table 2: Degree Elevation r for Degree n

n r —— n r

1 0 —— 11 89
2 1 —— 12 103
3 5 —— 13 123
4 8 —— 14 143
5 14 —— 15 169
6 22 —— 16 188
7 33 —— 17 215
8 44 —— 18 238
9 56 —— 19 271
10 70 —— 20 296

Notice that the minimal elevation degree r grows quite quickly with n. In principle one can continue
with this procedure proving positivity for one degree n at a time. A general proof evades us for the time
being. □
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In the univariate case it is known that in fact there are no real poles whatsoever. In contrast, in the
bivariate case there are real poles, however, due to Proposition 2 they are necessarily outside the triangle.

Proposition 3 For any set of weights wij , the denominator

dn(x, y) := ωn(x)ωn(y)
∑

0≤i+j≤n

wij
1

(x− i/n)(y − j/n)

has real zeros at
(
α
n ,

β
n

)
for 0 ≤ α, β ≤ n and α+ β > n.

Proof. Notice that

dn(x, y) =
∑

0≤i+j≤n

wij

 n∏
k=0,k ̸=i

(x− k/n)

 n∏
m=0,m ̸=j

(y −m/n)

 .

But for α + β > n we must have (α, β) ̸= (i, j), for all (i, j) with i+ j ≤ n, i.e., either α ̸= i or β ̸= j (or
both). Hence at least one of the products

n∏
k=0,k ̸=i

(α/n− k/n),

n∏
m=0,m ̸=j

(β/n−m/n)

must be zero, and thus dn(α/n, β/n) = 0. □

Remark. Although there are no real poles in the univariate case, there are complex poles. Figure 5 shows
these poles for degree n = 40. In fact it is possible to analyze the asymptotics of these poles. Indeed, it
was shown in [6] that

Dn(x) :=
n∑

j=0

(−1)j

x− j/n
=

n

2

{
2π csc(nπx) +G(nx+ 1) + (−1)n+1G(n(1− x) + 1)

}
where G(x) is the so-called Bateman G-function

G(x) = 2

∫ ∞

0

e−xt

1 + e−t
dt, ℜ(x) > 0.

Letting z := nx, we obtain

Dn(z/n) =
n

2

{
2π csc(πz) +G(z + 1) + (−1)n+1G(n+ 1− z)

}
.

But notice, from the defining formula, that

lim
n→∞

G(n+ 1− z) = 0

so that the zeros of Dn(x) are aysmptotically the zeros of 2π csc(πz)+G(z+1), divided by n. In particular,
one may find numerically that

z0 :≈ 1.346516491475860 + 1.055160064278170i

is a zero of 2π csc(πz) +G(z + 1) and hence z0/n is approximately a zero of Dn(x). Consequently, in the
univariate case, there are complex poles of distance order 1/n to the interval [0, 1], whereas in the bivariate
case there are real poles of this same order of distance to the triangle T. □

Finally, we show some examples of this bivariate interpolant. Figure 6 shows the bivariate extension of
Berrut’s first interpolant for the function f(x, y) = x2 + y2 and n = 13, 27.

Figure 7 shows the interpolant of f(x, y) = sin(2π((x− 1/3)2 + (y − 1/3)2)) for the same degrees.
One may notice that the interpolant is reasonable for higher values of n but leaves room for improve-

ment.
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Figure 5: Univariate Poles for Degree n = 40

Figure 6: Bivariate Berrut One for f(x, y) = x2 + y2, n = 13, 27

2.1 A Hybrid Interpolant

For any linear interpolant it is possible, by means of a so-called Boolean sum, to create a hybrid version
that reproduces any specifed finite dimensional subspace of functions, the most common example of such
being the space of polynomials of degree one. Indeed, for example, if L(f) denotes the linear interpolant
of f at the three vertices of T, i.e.,

Lf(x, y) = f(0, 0)(1− x− y) + f(1, 0)x+ f(0, 1)y

then for f̂(x, y) := f(x, y)− Lf((x, y), we may defined

Bh(1)n (x, y) := B(1)
n (x, y) + Lf(x, y)

where B
(1)
n is the interpolant of f̂ .
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Figure 7: Bivariate Berrut One for f(x, y) = sin(2π((x− 1/3)2 + (y − 1/3)2)), n = 13, 27

Figure 8 give a comparison between the original B
(1)
n and its hybrid version, for f(x, y) = 1 + 2x+ 3y

and n = 7.

Figure 8: Berrut One and its Hybrid for n = 7 and f(x, y) = 1 + 2x+ 3y

3 The Extension of Berrut’s Second Interpolant to Equally Spaced
Points on a Triangle

Berrut’s second interpolant involves the introduction of weights, adjusted at the boundary, to ensure the
reproduction of linears. In general, for weights βij , 0 ≤ i+ j ≤ n, we define

B(2)
n (x, y) =

∑
i+j≤n βijf(i/n, j/n)

(−1)i+j

(x−i/n)(y−j/n)∑
i+j≤n βij

(−1)i+j

(x−i/n)(y−j/n)

. (12)
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In the bivariate case the reproduction of linears splits into n odd and n even cases. We consider first
the n odd case for which we define the weights

βij :=


0 (i, j) = (0, 0), (n, 0), (0, n)
1/2 1 ≤ i ≤ n− 1, j = 0
1/2 1 ≤ j ≤ n− 1, i = 0
1/2 1 ≤ i ≤ n− 1, j = i
1 otherwise

(13)

(i.e., 0 at the three vertices, 1/2 at the interior edge points and 1 at the triangle interior points). The
n = 5 case is shown in Figure 9.

Figure 9: Weights on the triangle

Proposition 4 For n > 1 odd and weights given by (13), B
(2)
n (x, y) reproduces polynomials of degree one.

Proof. We remark that the n = 1 case has all weights zero, and hence is not relevant.
We will make use of univariate reproduction formulas for Berrut’s second interpolant.

Lemma 1 For any points x0 < x1 < · · · < xm and weights wi ∈ R,

m∑
i=0

wi
(−1)i

x− xi
xi = x

{
m∑
i=0

wi
(−1)i

x− xi

}

if and only if
m∑
i=0

wi(−1)i+1 = 0.

13



Proof. We calculate

m∑
i=0

wi
(−1)i

x− xi
xi =

m∑
i=0

wi
(−1)i

x− xi
((xi − x) + x)

=
m∑
i=0

wi(−1)i+1 + x

{
m∑
i=0

wi
(−1)i

x− xi

}

= x

{
m∑
i=0

wi
(−1)i

x− xi

}

⇐⇒
m∑
i=0

wi(−1)i+1 = 0. □

Lemma 2 Consider the weights

wi :=

{
a i = 0,m
1 1 ≤ i ≤ m− 1

with a ∈ R a parameter. Then for a = 1/2 and any m ≥ 1, or a = 0 and m odd

m∑
i=0

wi
(−1)i

x− xi
xi = x

{
m∑
i=0

wi
(−1)i

x− xi

}
.

Proof. By Lemma 1 we need only show that
∑m

i=0wi(−1)i+1 = 0.
The a = 1/2 case is the result first proved by Berrut and hence we leave out the details. In case a = 0

and m is odd then we calculate
m∑
i=0

wi(−1)i+1 =
m−1∑
i=1

(−1)i+1 = 0

as this is an alternating sum of ±1 with an even (m− 1) number of terms. □

Now to prove the Proposition. We wish to show that∑
i+j≤n

βijf(i/n, j/n)
(−1)i+j

(x− i/n)(y − j/n)
= f(x, y)

∑
i+j≤n

βij
(−1)i+j

(x− i/n)(y − j/n)

for any f(x, y) = ax+ by + c. Clearly it suffices to show this for f(x, y) = x, which we now proceed to do.
First note that, by scaling by a factor of n this is equivalnet to showing that∑

i+j≤n

βiji
(−1)i+j

(x− i)(y − j)
= x

∑
i+j≤n

βij
(−1)i+j

(x− i)(y − j)
.

Now write the summation by rows as

n∑
j=0

(−1)j

{
n−j∑
i=0

βiji
(−1)i

(x− i)(y − j)

}
.

For the first row, j = 0, the weights correspond to the lower edge and are

0, 1, 1, · · · , 1, 0
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and we apply the univariate Lemma with a = 0 and m = n to obtain

n−0∑
i=0

βi0i
(−1)i+j

(x− i)(y − j)
= x

n−0∑
i=0

βi0
(−1)i+j

(x− i)(y − j)
.

For the other rows, j = 1, · · · , (n− 1) the weights are

1

2
, 1, · · · , 1, 1

2

and we may apply the univariate Lemma with a = 1/2 and m = n− j to obtain

n−j∑
i=0

βiji
(−1)i+j

(x− i)(y − j)
= x

n−j∑
i=0

βij
(−1)i+j

(x− i)(y − j)
.

For the top row (actually a singleton), β0,n = 0 and so there is nothing to do. □

Remark. The zero weights at the vertices means that B
(2)
n (x, y) will not interpolate at those points. It

will however provide an order 1/n approximation to the corresponding value of f , provided it is minimally
smooth. The approximation properties of these interpolants will be discussed in a forthcoming work. □

Just as in the first interpolant case, by Lemma 3, there are poles at (α, β), 0 ≤ α, β ≤ n, α + β > n.
But, just as in the first case, there are no poles in the triangle T.

Proposition 5 For at least n = 1, 3, · · · , 21,

dn(x, y) > 0, (x, y) ∈ T.

Proof. We do this in exactly the same manner as in the first case, by using degree elevation to produce a
positivity certificate, one degree at a time.

The minimal values of degree elevation are displayed in Table 3. □

Table 3: Degree Elevation r for Degree n

n r —— n r

3 0 —— 13 75
5 7 —— 15 101
7 17 —— 17 131
9 33 —— 19 165
11 51 —— 21 203

The n even case splits into two subcases.

3.1 n a Multiple of Four

In case n is a multiple of four we introduce the weights of 1 at interior points and along each edge

0,
1

2
, · · · , 1

2
,
1

4
,
1

2
,
1

4
,
1

2
. · · · , 1

2
, 0 (14)

where the 1/2 bracketed by 1/4 to the left and right is the middle entry, i = n/2.
We first remark that in the univariate case the rational interpolant with these weights, for n a multiple

of four, reproduces linears.
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Figure 10: Above: Berrut’s one. Below: Berrut’s two

Lemma 3 For n a multiple of four and the weights given by (14),

n∑
i=0

wi
(−1)i

x− xi
xi = x

{
n∑

i=0

wi
(−1)i

x− xi

}
.

Proof. Applying Lemma 1 we calculate

n∑
i=0

wi(−1)i+1 =
n−1∑
i=1

wi(−1)i+1 (as w0 = wn = 0)

=
1

2

n−1∑
i=1

(−1)i+1 − 1

4

{
(−1)(n/2−1)+1 + (−1)(n/2+1)+1

}
=

1

2

n−1∑
i=1

(−1)i+1 − 1

4
{(+1) + (+1)} (as n/2 is even)

=
1

2
(+1)− 1

2
= 0

and the result follows. □
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Proposition 6 For the weights qij given by (14) and n a multiple of four, the Berrut two extension
reproduces linears.

Proof. We will show that∑
i+j≤n

βijf(xi, yj)
(−1)i+j

(x− xi)(y − yj)
=

∑
i+j≤n

βij
(−1)i+j

(x− xi)(y − yj)

for any f(x, y) = ax+ by + c. Again, it suffices to show this for f(x, y) = x, i.e., that

∑
i+j≤n

βijxi
(−1)i+j

(x− xi)(y − yj)
= x

 ∑
i+j≤n

βij
(−1)i+j

(x− xi)(y − yj)

 .

We again proceed row by row. The bottom row j = 0 is the case discussed in Lemma 3. The other rows,
other than for j = n/2± 1, follow from the a = 1/2 case of Lemma 2. For j = n/2− 1 we have

n−j∑
i=0

qij
(−1)i+j

(x− xi)(y − yj)
xi =

(−1)j

y − yj

n−(n/2−1)∑
i=0

qij
(−1)i

x− xi
xi

=
(−1)j

y − yj

n/2+1∑
i=0

qij
(−1)i

x− xi
((xi − x) + x)

=
(−1)j

y − yj


n/2+1∑
i=0

qij(−1)i+1 + x

n/2+1)∑
i=0

qij
(−1)i

x− xi

 .

Now we claim that
n/2+1∑
i=0

qij(−1)i+1 = 0

from which the result for the j = (n/2− 1)th row follows. To see this just note that for row j = n/2− 1,

n/2+1∑
i=0

qij(−1)i+1 =

n/2∑
i=1

(−1)i+1 +
1

4

{
(−1)0+1 + (−1)(n/2+1)+1

}
= 0 +

1

4
{(−1) + (+1)} (as n/2 even)

= 0.

The row j = n/2 + 1 is completely analogous. □

Just as in the previous cases, by Lemma 3, there are poles at (α, β), 0 ≤ α, β ≤ n, α+ β > n. But, we
conjeture that there are no poles in the triangle T.

Proposition 7 For at least n = 4, 8, · · · , 20,

dn(x, y) > 0, (x, y) ∈ T.

Proof. We do this in exactly the same manner as before, by using degree elevation to produce a positivity
certificate, one degree at a time. The minimal values of degree elevation are
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Table 4: Degree Elevation r for Degree n

n r

4 0
8 59
12 175
16 341
20 550

This concludes the proof. □

Figure 11 shows the result of interpolating f(x, y) = x2 + y2 for n = 8 and n = 12.

Figure 11: Berrut Two for n a multiple of four

4 n Even, but n/2 Odd

In case n is even but not a multiple of four, i.e., n/2 is odd, we introduce the weights of 1 at interior points
and along each edge

0,
1

2
, · · · , 1

2
, 0,

1

2
,
1

2
. · · · , 1

2
, 0 (15)

where the 0 in the middle is the entry, i = n/2.
We first remark that in the univariate case the rational interpolant with these weights, for n even but

n/2 odd, reproduces linears.

Lemma 4 For n even but n/2 odd, and the weights given by (15),

n∑
i=0

wi
(−1)i

x− xi
xi = x

{
n∑

i=0

wi
(−1)i

x− xi

}
.

Proof. By Lemma 1, we need only show that

n∑
i=0

wi(−1)i+1 = 0.
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However, in this case

n∑
i=0

wi(−1)i+1 =
1

2


n/2−1∑
i=1

(−1)i+1 +
n−1∑

i=n/2−1

(−1)i+1

 =
1

2
{0 + 0}

as both are alternating sums of ±1 with an even number of terms, n/2− 1 for the first sum and (n− 1)−
(n/2 + 1) + 1 = n/2− 1 for the second. □

Proposition 8 For n even but n/2 odd and the edge weights given by (15), the generalized Berrut inter-
polant reproduces linears.

Proof. We again go row by row. The bottom row is the case of Lemma 4. The rows with 1/2 at the
beginning and end are the classical Berrut case, whereas the middle row j = n/2 with weights

0, 1, 1, · · · , 1, 1, 0

are handled by Lemma 2 as, by assumption, n/2 is odd. □

Figure 12: Berrut Two for n even but n/2 odd

Remark. There are, as always, poles oustide of the triangle T and we conjecture that there are again
no poles inside T. □
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