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Abstract. Choosing the scale or shape parameter of radial basis functions (RBFs) is
a well-documented but still an open problem in kernel-based methods. It is common
to tune shape parameter according to the applications, and it plays a crucial role
both for the accuracy and stability of the method. In this paper, we first devise an
explicit relation between the shape parameter of RBFs and their curvature at each
point. This leads to characterizing RBFs to scalable and unscalable ones. We prove
that all scalable RBFs lie in the 1

c2
-class which means that their curvature at the

point xj is proportional to 1
c2j

, where cj is the corresponding spatially variable shape
parameter at xj . Some of the most commonly used RBFs are then characterized
and classified accordingly to their curvature. Then the fundamental theory of plane
curves helps us recover univariate functions from scattered data, by enforcing the
exact and approximate solutions have the same curvature at the point where they
meet. This leads to introducing curvature-based scaled RBFs with shape parameters
depending on the function values and approximate curvature values of the function
to be approximated. Several numerical experiments are devoted to show that the
method performs better than the standard fixed-scale basis and some other shape
parameter selection methods.
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1 Introduction

Given a set of n distinct points {xj}nj=1 ⊂ Rd and corresponding data values
{fj}nj=1, the RBF interpolant is given by

s(x) =
n∑
j=1

λjϕ(∥x− xj∥), (1.1)

where ϕ(r), r ≥ 0, is some radial function (cf. e.g. [19]). The expansion
coefficients λj are determined from the interpolation conditions s(xj) = fj
for j = 1, . . . , n, which leads to a symmetric linear system Aλ = f , where
A = [ϕ(∥xi − xj∥)]1≤i,j≤n . The existence of a solution is assured for positive
definite RBFs and also for conditionally positive definite RBFs by adding a
lower degree polynomial to (1.1). We can introduce a shape parameter as
ϕ
(
r
c

)
allowing to scale the basis function ϕ making it flatter as c → ∞ and

spiky as c→ 0. In order for the system matrix to be well-conditioned, the shape
parameter c must not be too large, but large shape parameters are required to
obtain better accuracy for the interpolation with RBF (cf. e.g. [17]).

In spatially scaled RBFs the shape parameter varies with the centers getting
a more flexible approximation. This means working with functions ϕ

(
∥x−xj∥
cj

)
for 1 ≤ j ≤ n. For more details see [2, 5, 9].

In [1], the scale parameter is considered as a scale function and treating
it as an additional coordinate. This approach can be fully understood as the
standard fixed-scale method applied to a certain sub-manifold of Rd+1. For a
scale function c : Rd → (0,∞), a variably scaled kernel (VSK) can be written
as ϕ(∥x− xj∥2 + (c(x)− c(xj))

2), in which the tuning of the shape parameter
is replaced by the choice of a suitable scale function depending on the data. A
question arises: how to find the scale function? Recently, Rossini [14] consid-
ered the problem of interpolating functions with gradient faults and tried to
provide a strategy to choose a proper scaling function. But it needs to know
the discontinuity curve.

In this paper, we propose an explicit formula for the shape parameter of
RBFs varying with the translation based on the value of the curvature in each
point. This leads to characterizing RBFs to scalable and unscalable ones. Some
of the most commonly used RBFs are then characterized. Then we use the
fundamental theory of plane curves for recovering univariate functions from
scattered data by enforcing the exact and approximate solutions have the same
curvature at the point where they meet. This leads to introducing curvature-
based scaled RBFs.

The paper is organized as follows. In the next section, we provide some basic
definitions and theorems from differential geometry [11]. The characterization
of RBFs based on the relation between their shape parameter and curvature at
each point is outlined in Section 3. In Section 4, curvature-based scaled RBFs
are introduced in order to interpolate univariate functions. Some numerical
examples are presented in Section 5. The last section is devoted to a brief
conclusion and description of future works.
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2 Differential geometry basics

Let us consider parametric vector-valued curves α : [a, b] ⊂ R → Rn, n ≥ 1.

Definition 1. Let α : [a, b] → Rn be a regular curve. Then

T (t) =
α′(t)

∥α′(t)∥
, s(t) =

∫ t

a

∥α′(u)∥du,

are the unit tangent vector of α(t) and its arc length from a to t, respectively.

Theorem 1. Let C be a regular plane curve given by α(t). Then the curvature
κ of C at t is given by [11]

κ[α](t) =

∥∥∥∥dTds
∥∥∥∥ ,

which measures the rate of change of the unit tangent vector with respect to arc
length. It is a measure of how much a curve deviates from a straight line.

The following definition can be simply resulted from the above theorem.

Definition 2. Let f ∈ C2[a, b]. The curvature of the plane curve y = f(x)
with α(x) = (x, f(x)) is given by

κf (x) =
|f ′′(x)|

(1 + (f ′(x))2)
3
2

. (2.1)

3 Curvature-based characterization of RBFs

In this section, we present the relation between the spatially variable shape
parameter and the curvature of RBFs. Then, we can classify RBFs to scalable
and unscalable functions. Hereafter, we assume that ϕ(r) is at least in C2[0,∞).

Theorem 2. For spatially variable scaled RBFs

ψj(x) = ϕ

(
∥x− xj∥

cj

)
, j = 1, . . . , n (3.1)

we have κψj
(x)
∣∣
x=xj

= η
c2j
, where η is a positive constant.

Proof. By using Taylor series expansion of ϕ at r = 0, we have 2 cases. If ϕ is
an infinitely smooth RBF then we have [4, Theorem 10.1]

ϕ(r) =

∞∑
n=0

a2nr
2n. (3.2)

But if ϕ is a finitely smooth RBF in C2δ[0,∞), 1 ≤ δ < ∞, then we get [4,
Theorem 10.2]

ϕ(r) = a0 + a2r
2 + . . .+ a2δr

2δ + a2δ+1r
2δ+1 + a2δ+2r

2δ+2 + . . . , (3.3)
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or

ϕ(r) = a0 + a2r
2 + . . .+ a2δr

2δ + b2δr
2δ log(r)

+a2δ+2r
2δ+2 + b2δ+2r

2δ+2 log(r) + . . . . (3.4)

Now by considering ψ(r) = ϕ
(
r
c

)
in (3.2), (3.3), or (3.4), we have ψ′(r)|r=0 =

0, ψ′′(r)|r=0 = 2a2
c2 . Then according to (2.1), we have κψ(r) |r=0 = 2|a2|

c2 , which
completes the proof by considering η = 2|a2|, r = ∥x− xj∥.

Remark 1. As an immediate consequence of Theorem 2, the shape parameter
cj is then given by

cj =

√
η

κj
, (3.5)

where, as above, η is a positive constant and κj = κψj
(x)
∣∣
x=xj

.

In the sequel, we discuss how scalable RBFs are described using Theorem 2.

Definition 3. The radial basis function ϕ is called scalable if it has nonzero
curvature at the origin. Otherwise, we call it unscalable.

Remark 2. Scalability means that we can change the curvature of the basis
functions (3.1) at the center point xj by changing the corresponding shape
parameter cj .

Remark 3. It can be noted from Definition 3 that the RBFs which are not at
least C2 at the origin as well as RBFs with zero curvature at the origin are not
scalable. They are shape parameter-free.

3.1 Classification of RBF by curvature

Now we are going to classify some commonly used RBFs into scalable and
unscalable functions. According to Theorem 2, for RBF ϕ̃(r) we consider
ψ̃(r) = ϕ̃

(
r
c

)
and compute its curvature at the origin.

• Radial Powers: ϕ̃(r) = rβ , β > 0, β ̸∈ 2N. Since ϕ̃′(r) = βrβ−1, radial
powers are not differentiable at the origin for 0 < β ≤ 1. Since ϕ̃′′(r) =
β(β − 1)rβ−2, radial powers are not C2 at the origin for 0 < β < 2 and
by using (2.1), we conclude that κψ̃(r)

∣∣∣
r=0

= 0, for β ≥ 2. Hence, radial
powers are unscalable.

• Thin plate splines (TPS): ϕ̃(r) = r2n log(r), n ∈ N. Then

ϕ̃′(r) = r2n−1 (2n log(r) + 1) ,

ϕ̃′′(r) = r2n−2
((
4n2 − 2n

)
log(r) + 4n− 1)

)
.

Since for n = 1, the singularities of the function and first derivative at
the origin are removable, but the singularity of the second derivative at
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the origin is not. TPS are not C2 at the origin for n = 1. Moreover, by
using (2.1), we conclude that κψ̃(r)

∣∣∣
r=0

= 0, for n ≥ 2. As it happens
with radial powers, TPS are unscalable and the use of a shape parameter
c with TPS is pointless.

• Gaussian: ϕ̃(r) = e−r
2

. We know that the Gaussian is C∞ at the origin.
Since

ψ̃′(r) = −2r

c2
e−

r2

c2 , ψ̃′′(r) =
2

c2
e−

r2

c2

(
r2

c2
− 1

)
,

using (2.1), we conclude that κψ̃(r)
∣∣∣
r=0

= 2
c2 , which leads to η = 2 in

(3.5). Gaussian is then scalable.

• Generalized Multiquadrics: ϕ̃(r) =
(
1 + r2

)β
, β ∈ R\N0 (when β < 0

are called inverse multiquadrics) are C∞ at the origin. Since

ψ̃′(r) =
2βx

(
r2

c2 + 1
)β−1

c2
,

ψ̃′′(r) =
2β
(
(2β − 1)r2 + c2

) (
r2

c2 + 1
)β

(r2 + c2)
2 ,

using (2.1), κψ̃(r)
∣∣∣
r=0

= 2|β| 1
c2 , with η = 2|β| in (3.5). Therefore they

are scalable.

• Hyperbolic Secant: ϕ̃(r) = sech (r) . This function is C∞ at the origin.
Since

ψ̃′(r) = −
tanh

(
r
c

)
sech

(
r
c

)
c

, ψ̃′′(r) =
tanh2

(
r
c

)
sech

(
r
c

)
− sech3

(
r
c

)
c2

,

using (2.1) we obtain κψ̃(r)
∣∣∣
r=0

= 1
c2 , which leads to η = 1 in (3.5).

• RTH: It is a new transcendental RBF of the form ϕ̃(r) = r tanh (r) intro-
duced for the first time by Heidari et al. [7]. It can be scaled as r tanh

(
r
c

)
which is a smooth approximant to r with higher accuracy and better con-
vergence properties than the MQ RBF. But according to Theorem 2, we
scale it as ψ̃(r) = r

c tanh
(
r
c

)
. This function is C∞ at the origin. Since

ψ̃′(r) =
1

c
tanh

(r
c

)
+
r

c
sech2

(r
c

)
,

ψ̃′′(r) =

(
2

c2
− 2

( r
c2

)
tanh

(r
c

))
sech2

(r
c

)
,

using (2.1) we obtain κψ̃(r)
∣∣∣
r=0

= 2
c2 , which leads to η = 2 in (3.5).

Math. Model. Anal., Editor’s Version.
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• Bump function: ϕ̃(r) =

{
exp

(
− 1

1−r2

)
, r < 1

0, o.w
. This function is

C∞ at the origin. Since

ψ̃′(r) =

 −
2c2r exp

(
− 1

1−( r
c )

2

)
(c2 − r2)2

, r < c

0, o.w

,

ψ̃′′(r) =

 −
2c2 exp

(
− 1

1−( r
c )

2

)
(c4 − 3r4)

(c2 − r2)
4 , r < c

0, o.w

,

using (2.1), we conclude that κψ̃(r)
∣∣∣
r=0

= 2e−1 1
c2 , which leads to η =

2e−1 in (3.5).

• Poisson function: ϕ̃(r) = Jν(r)

rν
, ν = d

2 − 1, d ≥ 2, where Jν is the
Bessel function of the first kind of order ν. While these functions are not
defined at the origin, they can be extended to be C∞(Rd) [3]. Since

ψ̃(r) =
Jν(

r
c )

( rc )
ν

=
1

2ν

∞∑
k=0

(−1)
k
r2k

4k c2k k! Γ (ν + k + 1)
,

then

ψ̃′(r) =
1

2ν−1

∞∑
k=1

(−1)
k
k r2k−1

4k c2k k! Γ (ν + k + 1)
,

ψ̃′′(r) =
1

2ν−1

∞∑
k=1

(−1)
k
k (2k − 1) r2k−2

4k c2k k! Γ (ν + k + 1)
.

Again using (2.1), we conclude that κψ̃(r)
∣∣∣
r=0

= 1
2ν+1Γ (ν+2)

1
c2 , which

leads to η =
1

2ν+1Γ (ν + 2)
in (3.5).

• Matérn: ϕ̃(r) = rνKν(r), ν > 0, where Kν is the modified Bessel func-
tion of the second kind of order ν, that can be defined as a function of
the Bessel function of the first kind as follows

Kν(r) =
π

2

J−ν(r)− Jν(r)

sin(πν)
, Jν(r) =

(r
2

)ν ∞∑
k=0

(
r2

4

)k
k!Γ (ν + k + 1)

.

Then

ψ̃(r) =

M

(
1

2−ν

∞∑
k=0

r2k

4k k! c2k Γ (−ν + k + 1)
− 1

2ν

∞∑
k=0

r2k+2ν

4k k! c2k Γ (ν + k + 1)

)
,
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ψ̃′(r) =

M

(
1

2−ν

∞∑
k=1

2k r2k−1

4k k! c2k Γ (−ν + k + 1)
− 1

2ν

∞∑
k=1

(2k + 2ν) r2k+2ν−1

4k k! c2k Γ (ν + k + 1)

)
,

ψ̃′′(r) =M

(
1

2−ν

∞∑
k=1

(2k)(2k − 1) r2k−2

4k k! c2k Γ (−ν + k + 1)

− 1

2ν

∞∑
k=1

(2k + 2ν)(2k + 2ν − 1) r2k+2ν−2

4k k! c2k Γ (ν + k + 1)

)
,

where M =
π

2 sin(πν)
. By (2.1) we then have

κψ̃(r)
∣∣∣
r=0

=
π2ν−2

| sin(πν)Γ (−ν + 2)|
1

c2
.

Now the relations

Γ (ν + 1) = νΓ (ν), Γ (ν)Γ (1− ν) =
π

sin(πν)
, (3.6)

leads to η =
2ν−2Γ (ν)

|1− ν|
in (3.5).

• Gaussian-Laguerre: ϕ̃(r) = e−r
2

L1/2
n (r2), where L1/2

n indicates the
Laguerre polynomial of degree n and order 1/2, that is

L1/2
n (t) =

n∑
k=0

(−1)k

k!

(
n+ 1/2
n− k

)
tk.

Then

ψ̃(r) =

n∑
k=0

(−1)k

k!

(
n+ 1/2
n− k

)
r2k

c2k
e−

r2

c2 ,

ψ̃′(r) =

n∑
k=1

2(−1)k

k!

(
n+ 1/2
n− k

)
e−

r2

c2
(
kc−2kr2 k−1 − c−2k−2r2 k+1

)
,

ψ̃′′(r) =

n∑
k=1

2(−1)k

k!

(
n+ 1/2
n− k

)
e−

r2

c2 S,

where S =
(
k(2k − 1)c−2kr2k−2 − c−2k−2(4k + 1)r2k + 2c−2k−4r2k+2

)
.

Again by using (2.1) κψ̃(r)
∣∣∣
r=0

= 2

(
n+ 1/2
n− 1

)
1
c2 , with η = 2

(
n+ 1/2
n− 1

)
in (3.5).

We summarize our findings in Table 1.

Math. Model. Anal., Editor’s Version.
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Name ϕ̃(r) κ
(
ϕ̃
(

∥x−xi∥
ci

))
at x = xi

Gaussian exp(− r2

2
) η 1

c2i
, η = 1.

Generalized Multiquadrics (1 + r2)
β , β ∈ R\N0 η 1

c2i
, η = 2|β|.

Hyperbolic Secant sech (r) η 1
c2i

, η = 1.

RTH r tanh(r) η 1
c2i

, η = 2.

Bump function ϕ̃(r) =

{
exp

(
− 1

1−r2

)
, r < 1,

0, o.w
η 1
c2i

, η = 2e−1.

Poisson function
Jν(r)

rν
, ν = d

2
− 1, d ≥ 2 η 1

c2i
, η = 1

2ν+1Γ (ν+2)
.

Matérn/Sobolev rνKν(r), ν > 0 η 1
c2i

, η =
2ν−2Γ (ν)

|1− ν|
.

Gaussian-Laguerre e−r2L
1/2
n (r2) η 1

c2i
, η = 2

(
n+ 1/2
n− 1

)
.

Powers rβ , 0 < β ̸∈ 2N unscalable

Thin-plate splines r2n ln(r), n ∈ N unscalable

Table 1. Curvature-based characterization of RBFs: n, β, and ν are RBF parameters.

4 Interpolating univariate functions via curvature-based
scaled radial basis functions

In this section, we intend to recover functions f : Ω ⊂ R → R, from set of
scattered data X = {xj}nj=1, F = {fj}nj=1 , X ⊂ Ω. At first, the fundamental
theorem of curve theory [11] is given, where τ denotes torsion.

Theorem 3. Two space curves C and C∗ with nonzero curvature are congruent
(i.e., differ by the composition of a translation and a rotation) if and only if the
corresponding arclength parametrizations α, α∗ : [a, b] → R3 have the property
that κ(s) = κ∗(s) and τ(s) = τ∗(s) for all s ∈ [a, b].

Corollary 1. If α, α∗ : I −→ R2 are plane curves such that κα = κα∗ , then α
and α∗ are congruent.

Then the Corollary 1 helps us recover univariate functions from scattered data,
by enforcing the exact and approximate solutions have the same curvature at
the point where they meet.

Theorem 4. Let ϕ be a scalable RBF with ϕ(0) ̸= 0, satisfying

lim
m→∞

dk

drk
ϕ (g(m)r) = 0, r ̸= 0, k = 0, 1, 2 (4.1)



Curvature-based characterization of RBFs: Application to interpolation 9

where g is a slowly increasing function. Then, for the interpolant

sκ,X,f (x) =

n∑
j=1

αjψj(x) =

n∑
j=1

αjϕ

(
|x− xj |
cj

)
, (4.2)

with

cj =


√

η|fj |
κj |ϕ(0)| , x = xj ,

1
g(n)

√
η|fj |

κj |ϕ(0)| , x ̸= xj ,

(4.3)

η the positive constant appeared in Theorem 2 and κj = κf (x)|x=xj
, we get

lim
n→∞

κsκ,X,f
(x) |x=xi = κi.

Proof. Now,

sκ,X,f (xi) =

n∑
j=1

j ̸=i

αjψj(xi) + αiψi(xi)

=

n∑
j=1

j ̸=i

αjϕ

(
g(n)|xi − xj |

√
κj |ϕ(0)|
η |fj |

)
+ αiϕ

(
|xi − xi|

√
κi |ϕ(0)|
η |fi|

)
.

By using (4.1) for k = 0 we get

lim
n→∞

|sκ,X,f (xi)| = |αiϕ(0)| .

The interpolation condition gives

|αiϕ(0)| = |fi| , (4.4)

for sufficiently large n. Now by considering (2.1), we get

lim
n→∞

κsκ,X,f
(x) |x=xi

= lim
n→∞

∣∣∣∣∣∣∣
d2

dx2

 n∑
j=1

j ̸=i

αjψj(x) + αiψi(x)


∣∣∣∣∣∣∣
x=xi1 +

 d

dx

 n∑
j=1

j ̸=i

αjψj(x) + αiψi(x)




2
3
2
∣∣∣∣∣∣∣∣
x=xi

Then according to (4.1) and (4.3), the first and second derivatives appeared in
the above equation approaches to 0 for j ̸= i. So

lim
n→∞

κsκ,X,f
(x) |x=xi

=

∣∣∣∣αi ( d2

dx2ϕ
(√

κi|ϕ(0)|
η|fi| |x− xi|)

)∣∣∣
x=xi

∣∣∣∣(
1 +

(
αi

d
dxϕ

(√
κi|ϕ(0)|
η|fi| |x− xi|

))2) 3
2

∣∣∣∣∣
x=xi

. (4.5)

Math. Model. Anal., Editor’s Version.
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Now (4.5) is nothing than with the curvature at the point x = xi which can be
computed by Theorem 2 as

lim
n→∞

κsκ,X,f
(x) |x=xi = |αi|

η
η|fi|

κi|ϕ(0)|

.

Therefore (4.4) results the proof.

Remark 4. Our theoretical results of Section 3, justify the well-known fact that
the classical RBF approximation has difficulty in accurately approximating
flat functions [8]. Actually, the curvature of flat functions is almost small
and (3.5) leads to large value of the shape parameter c which leads to severe
ill-conditioning problem. But, the factor g(n) in (4.3) controls the shape pa-
rameter cj does not become too large. So, in application, we work with the
following new scaled RBFs which use a more simple and stable version of (4.3).

Definition 4. Let ϕ be a scalable RBF with ϕ(0) ̸= 0 satisfying (4.1). The
curvature-based scaled radial basis functions (CBS RBFs) are defined as

ψj(x) = ϕ

(
|x− xj |
cj

)
, (4.6)

where

cj =
1

g(n)

√
η |fj |

κj |ϕ(0)|
. (4.7)

So the RBF interpolant takes the form sκ,X,f (x) =

n∑
j=1

αjψj(x), where the

coefficients αj are obtained, as usual, by solving the system of linear equations
Aα = f , where the entries of the interpolation matrix A are given by Aij =

ψj(xi), i, j = 1, . . . , n, α = [α1, . . . , αn]
T , and f = [f1, . . . , fn]

T . According to
Theorem 4, using (4.6) makes the exact and approximate solutions have the
same curvature at the point where they meet, for sufficiently large number of
data points and avoids from numerical instability according to Remark 4.

In Table 2, we listed those RBFs having conditions of Definition 4.

Name ϕ(r) η

Gaussian exp(−r2) 2

Inverse Multiquadrics (1 + r2)
β , β ∈ R, β < 0 2|β|

Hyperbolic Secant sech (r) 1

Matérn/Sobolev rνKν(r), ν > 0
2ν−2Γ (ν)

|1 − ν|
Gaussian-Laguerre e−r2

L
1/2
n (r

2
) 2

(
n+ 1/2
n− 1

)

Table 2. RBFs having conditions of Definition 4.
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Remark 5. With a spatially variable cj , the standard proofs for non-singularity
of the RBF interpolation matrix A no longer apply. But for small values of
cj (cj → 0), the A-matrices corresponding to the RBFs in Table 2, will tend
to the identity matrix, and non-singularity is obviously assured. Moreover, for
large values of cj (cj → ∞) the singularities are unlikely to occur [6]. On the
other hand, the factor g(n) in (4.7) controls the shape parameter cj does not
become too large.

As an example for the Gaussian, choosing g(m) =
√
m and knowing that

ϕ(0) = 1, then for r ̸= 0, we have

lim
m→∞

ϕ
(√
mr
)
= lim
m→∞

e−mr2

2 = 0,

lim
m→∞

d

dr
ϕ
(√
mr
)
= lim
m→∞

−mre−mr2

2 = 0,

lim
m→∞

d2

dr2
ϕ
(√
mr
)
= lim
m→∞

(
−me−mr2

2 +m2r2e−mr2

2

)
= 0.

For the Matérn RBF ϕν(r) = rνKν(r), ν > 0, according to the equation

rνKν(r) =
π

2 sin(πν)

(
1

2−ν

∞∑
k=0

r2k

4k k! Γ (−ν + k + 1)
− 1

2ν

∞∑
k=0

r2k+2ν

4k k! Γ (ν + k + 1)

)
,

and the relation (3.6) we have ϕν(0) = 2ν−1Γ (ν). Furthermore by the following
integral representation [16]

ϕν (r) =

√
π

2νΓ
(
ν + 1

2

)r2ν ∫ ∞

1

e−rt
(
t2 − 1

)ν− 1
2 dt,

for r ̸= 0, and g(m) =
√
m, we have

lim
m→∞

ϕν
(√
mr
)
=

√
πr2ν

2νΓ
(
ν + 1

2

) ∫ ∞

1

lim
m→∞

mνe−
√
mrt

(
t2 − 1

)ν− 1
2 dt = 0.

Now since K ′
ν (r) = −Kν−1 (r)− ν

rKν (r) , we have

lim
m→∞

d

dr
ϕν
(√
mr
)

= lim
m→∞

d

dr

((√
mr
)ν
Kν

(√
mr
))

= lim
m→∞

((√
m
)ν
νrν−1Kν

(√
mr
)
+
(√
mr
)ν √

mK ′
ν

(√
mr
))

= lim
m→∞

[(√
m
)ν
νrν−1Kν

(√
mr
)

+
(√
mr
)ν √

m

(
−Kν−1

(√
mr
)
− ν√

mr
Kν

(√
mr
))]

= lim
m→∞

−mrϕν−1

(√
mr
)

=

√
πr2ν−1

2ν−1Γ
(
ν − 1

2

) ∫ ∞

1

lim
m→∞

mνe−
√
mrt

(
t2 − 1

)ν− 3
2 dt = 0.

Math. Model. Anal., Editor’s Version.
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Similarly, we can show that lim
m→∞

d2

dr2
ϕν
(√
mr
)
= 0. The other RBFs in Table

2 can be handled similarly.

Remark 6. The relation (4.7) shows that the shape parameter selection in uni-
variate RBF interpolation method with scalable RBFs relates to the function
values and curvature values of the function to be approximated. Moreover, we
can observe the following.

• The scalable RBFs are not good candidates for approximating functions
having zero curvature everywhere, like lines. So one should use classical
fixed-scale RBF interpolation method with an unscalable RBF. Clearly
the power RBF ϕ(r) = r is the most appropriate one.

• The classical RBF interpolation method with scalable RBFs may lead to
inaccurate solutions for functions having very small values of κj .

We discuss these situations in the next section devoted to numerical experi-
ments.

Now, consider the two variable function f : R2 → R. Then it corresponds
with a parametric surface F : R2 → R3 called the graph of f by F (x, y) =
(x, y, f(x, y)). The fundamental theorem of surfaces states that the congruent
parametric surfaces in R3 have the same first and second fundamental forms
and conversely two parametric surfaces in R3 with the same first and second
fundamental forms are congruent [12]. Discussion about the concepts of the first
and second fundamental forms and the methodology of recovering multivariate
functions in differential geometry points of view, needs a detailed study, and
we leave it to our further work.

5 Numerical results

We now provide some examples that show different roles of the curvature-based
scaled RBFs. We take different number of equidistant and Chebyshev-Gauss-
Lobatto (CGL) center points in [a, b]. We use the maximum absolute error
norm L∞ = max

1≤i≤m
|fi − f̄i|, where f and f̄ represent the exact and approx-

imate solutions, respectively. In order to compute interior curvature values
κj , j = 2, . . . , n − 1, we use the formula for the curvature of the circle which
circumscribes the triangle formed by three two-dimensional points (xj−1, fj−1),
(xj , fj), and (xj+1, fj+1) [13]. That would be an approximation for the curva-
ture at the middle point xj . The computation goes as follows.

B =
√
(xj−1 − xj)2 + (fj−1 − fj)2, C =

√
(xj − xj+1)2 + (fj − fj+1)2,

D =
√

(xj+1 − xj−1)2 + (fj+1 − fj−1)2,

S =
1

2
|(xj − xj−1)(fj+1 − fj)− (fj − fj−1)(xj+1 − xj)|, κj =

4S

BCD
,

where B, C, and D are the lengths of three sides, S is the area of the triangle,
and κj is the curvature of circumscribing circle. The values of κ1 and κn can be
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obtained by (2.1) using the following numerical differentiation formulas which
are of second-order accuracy [18].

f ′(x1) ≈
(

2x1−x2−x3

(x2−x1)(x3−x1)

)
f1 f ′(xn) ≈

(
xn−xn−1

(xn−xn−2)(xn−1−xn−2)

)
fn−2

+
(

x3−x1

(x2−x1)(x3−x2)

)
f2 +

(
xn−2−xn

(xn−1−xn−2)(xn−xn−1)

)
fn−1

+
(

x1−x2

(x3−x2)(x3−x1)

)
f3, +

(
2xn−xn−1−xn−2

(xn−xn−1)(xn−xn−2)

)
fn,

f ′′(x1) ≈ f ′′(xn) ≈(
6x1−2x4−2x3−2x2

(x1−x2)(x1−x3)(x1−x4)

)
f1

(
−4xn+2xn−1+2xn−2

(xn−2−xn−3)(xn−1−xn−3)(xn−xn−3)

)
fn−3

+
(

−4x1+2x4+2x3

(x1−x2)(x2−x3)(x2−x4)

)
f2 +

(
4xn−2xn−1−2xn−3

(xn−2−xn−3)(xn−1−xn−2)(xn−xn−2)

)
fn−2

+
(

4x1−2x4−2x2

(x1−x3)(x2−x3)(x3−x4)

)
f3 +

(
−4xn+2xn−3+2xn−2

(xn−1−xn−2)(xn−1−xn−3)(xn−xn−1)

)
fn−1

+
(

−4x1+2x3+2x2

(x1−x4)(x2−x4)(x3−x4)

)
f4. +

(
6xn−2xn−3−2xn−1−2xn−2

(xn−xn−2)(xn−xn−1)(xn−xn−3)

)
fn.

Remark 7. Since division by very small numbers leads to magnification of the
absolute error, we use a tolerance σ that one avoids using fj in (4.7) for each
center point with |fj | < σ. We also set κj = ϵM for each center point with
κj < ϵM , with ϵM ≈ 2.204e− 16 the machine epsilon.

The optimal shape parameter c for the standard fixed-scale RBF interpolation
method is founded by trial end error. In all tests, we took σ = 0.3 and m = 125
equidistant evaluation points. All experiments have been done using an Intel(R)
Core(TM) i5-10210U CPU @ 1.60GHz, 2.11 GHz.

5.1 Test problem 1

In the first experiment, we approximate the function (cf. [10])

f1(x) = sin(4.5x), x ∈ [0, 1]. (5.1)

Absolute errors using the proposed CBS and classical fixed-scale RBFs interpo-
lation methods with the Inverse Quadric RBF (β = −1), and Gaussian RBF,
using g(n) = ln(n), and 200 equidistant center points are shown in Figures 1,
and 2, respectively. It should be noted that the results for the CGL center
points are the same. Results show that the proposed method leads to more
accurate results than the fixed-scale RBFs interpolation method. Furthermore,
the numerical errors in Figures 1-2 which are of 10−13 and 10−15 are really
smaller than those reported in [10, p. 904], which is of order 10−6 with 1024
center points. The exact and approximate solutions of f1(x) and κ(f1(x)) us-
ing the CBS RBFs interpolation method with the Gaussian RBF are given in
Figures 3-(a) and 3-(b), respectively. Now let us change (5.1) into the highly
oscillating function

f2(x) = sin(100x), x ∈ [0, 2π].

The oscillations make this function have a lot of turning points with zero cur-
vature and a lot of points with very small values of curvature. According to

Math. Model. Anal., Editor’s Version.
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the relation between the curvature values and the shape parameter of RBFs
in (4.7), we need to use a little faster growing function g(n) and more center
points. The exact and approximate solutions of f2(x) and absolute errors using
the proposed CBS RBFs interpolation method with the Gaussian RBF, using
g(n) =

√
n, and 200 equidistant center points are given in Figures 4-(a) and

4-(b), respectively. Plots for 250 CGL center points are also shown in Figures
5-(a) and 5-(b).
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Figure 1. Absolute errors: CBS RBFs (a), fixed-scale RBFs (b), for n = 200 equidistant
center points with the Inverse Quadric RBF, g(n) = ln(n), c = 0.1; Test problem 1.
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Figure 2. Absolute errors: CBS RBFs (a), fixed-scale RBFs (b), for n = 200 equidistant
center points with the Gaussian RBF, g(n) = ln(n), c = 0.1; Test problem 1.

5.2 Test problem 2

The next function we test is (cf. [15])

f3(x) = arctan(5x) x ∈ [−1, 1].

It is flat near the boundaries but has a steep gradient near x = 0. Absolute
errors using the proposed CBS and classical fixed-scale RBFs interpolation
methods with the Hyperbolic secant RBF, using g(n) =

√
n, c = 0.09 and
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Figure 3. Exact and approximate solutions of f1(x) and κ(f1(x)) using the CBS RBFs
interpolation method for n = 200 equidistant center points with the Gaussian RBF,

g(n) = ln(n); Test problem 1.
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Figure 4. Exact and approximate solutions of f2(x) (a), Absolute errors (b), using the
CBS RBFs interpolation method for n = 200 equidistant center points with the Gaussian

RBF, g(n) =
√
n; Test problem 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

f 2(x
)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

E
rr

or

10-5

(b)

Figure 5. Exact and approximate solutions of f2(x) (a), Absolute errors (b), using the
CBS RBFs interpolation method for n = 250 CGL center points with the Gaussian RBF,

g(n) =
√
n; Test problem 1.
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200, 300 equidistant center points are shown in Figure 6. Results show that
the proposed method leads to more accurate results than the fixed-scale RBFs
interpolation method. Moreover, the numerical errors are smaller than those
reported in [15] for the random, linearly, and exponentially varying shape pa-
rameters. The exact and approximate solutions of f3(x) and κ(f3(x)) using the
CBS RBFs interpolation method with the Gaussian RBF, using g(n) =

√
n,

and 200 CGL center points are given in Figures 7-(a) and 7-(b), respectively.
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Figure 6. Absolute errors: CBS RBFs, n = 200 (a), fixed-scale RBFs, n = 200 (b), CBS
RBFs, n = 300 (c), fixed-scale RBFs, n = 300 (d), for equidistant center points with the

Hyperbolic secant RBF, g(n) =
√
n, c = 0.09; Test problem 2.

5.3 Test problem 3 (Runge function)

In the last example, we consider the Runge function on [−1, 1], that is

f4(x) =
1

1 + 25x2
.

The L∞ error norms using the proposed CBS and classical fixed-scale RBFs
interpolation methods with the Gaussian RBF, using g(n) =

√
n, c = 0.08,

and different number of equidistant and CGL center points are reported in
Tables 3 and 4, respectively. It can be noted from Tables 3-4 that the proposed
method leads to more accurate results than the fixed-scale RBFs interpolation
method. The exact and approximate solutions of f4(x) and κ(f4(x)) using the



Curvature-based characterization of RBFs: Application to interpolation 17

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1.5

-1

-0.5

0

0.5

1

1.5

f 3(x
)

Exact
Approximate

(a)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

0

0.5

1

1.5

(f
3(x

))

Exact
Approximate

(b)

Figure 7. Exact and approximate solutions of f3(x) and κ(f3(x)) using the CBS RBFs
interpolation method for n = 200 CGL center points with the Gaussian RBF, g(n) =

√
n;

Test problem 2.

CBS RBFs interpolation method for n = 200 equidistant center points with the
Inverse Multiquadric RBF (β = − 1

2 ), g(n) =
√
n are given in Figures 8-(a) and

8-(b), respectively. In Figure 8(a), we see that no Runge-type oscillations arise.
In order to show the important role of the values κj in the shape parameter
formula (4.7), we multiply 25 by the large number 109, and work with

f5(x) =
1

1 + 25× 109 × x2
.

The exact and approximate solutions of f5(x) and κ(f5(x)) using the CBS
RBFs interpolation method for n = 101 equidistant center points with the
Inverse Multiquadric RBF and g(n) =

√
n are given in Figures 9-(a) and 9-(b),

respectively. As we can see in Figure 9(b), this change leads to the large value
of curvature at the points x = 0. Now, we plot the absolute errors using the
proposed CBS and classical fixed-scale RBFs interpolation methods with the
Gaussian RBF, using the same previous parameters g(n) =

√
n and c = 0.08

in Figure 10. This figure reveals superiority of the proposed method.

Table 3. Comparison of approximation accuracy of CBS and fixed-scale RBFs interpolation
methods with the Gaussian RBF for equidistant center points; Test problem 3.

CBS RBF classical RBF
(g(n) =

√
n) (c = 0.8)

n L∞ cond CPUT (s) L∞ cond CPUT (s)

80 6.3× 10−5 2.0× 1019 0.0351 5.3× 10−8 5.4× 1017 0.0335
100 8.2× 10−9 1.9× 1018 0.0370 1.7× 10−8 6.1× 1018 0.0360
200 1.3× 10−14 1.2× 1019 0.0457 1.3× 10−8 1.0× 1019 0.0363
300 1.0× 10−14 3.9× 1019 0.0541 8.8× 10−9 1.8× 1019 0.0432
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Table 4. Comparison of approximation accuracy of CBS and fixed-scale RBFs interpolation
methods with the Gaussian RBF for CGL center points; Test problem 3.

CBS RBF classical RBF
(g(n) =

√
n) (c = 0.08)

n L∞ cond CPUT (s) L∞ cond CPUT (s)

80 3.1× 10−6 2.4× 1018 0.0455 2.0× 10−7 6.2× 1017 0.0360
100 7.1× 10−9 4.3× 1018 0.0438 3.6× 10−9 3.4× 1018 0.0378
200 1.2× 10−12 2.0× 1019 0.0467 3.3× 10−8 1.8× 1019 0.0396
300 8.2× 10−14 1.1× 1019 0.0519 1.5× 10−8 2.3× 1019 0.0474
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Figure 8. Exact and approximate solutions of f4(x) and κ(f4(x)) using the CBS RBFs
interpolation method for n = 200 equidistant center points with the Inverse Multiquadric

RBF, g(n) =
√
n; Test problem 3.
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Figure 9. Exact and approximate solutions of f5(x) and κ(f5(x)) using the CBS RBFs
interpolation method for n = 101 equidistant center points with the Inverse Multiquadric

RBF, g(n) =
√
n; Test problem 3.
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Figure 10. Absolute errors: CBS RBFs (a), fixed-scale RBFs (b), for n = 101 equidistant
center points with the Gaussian RBF, g(n) =

√
n, c = 0.08; Test problem 3.

6 Conclusion

In this paper, we first introduce an explicit technique for the shape parameter
selection based on the curvature characterization, at r = 0, for RBFs. This
leads to characterizing RBFs to scalable and unscalable ones. Some of the
most commonly used RBFs are characterized and discussed. Then we use the
fundamental theory of plane curves for recovering univariate functions from
scattered data by enforcing the exact and approximate solutions have the same
curvature at the point where they meet. This leads to introducing curvature-
based scaled RBFs. Several numerical experiments are devoted to show that
the method performs better than the standard fixed-scale basis and some other
shape parameter selection methods. In order to generalize the proposed method
to higher dimensions, we should work with parametric surfaces and some more
tools in differential geometry, like first and second fundamental forms. We leave
this to our further works.
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