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Abstract

In this paper we address the problem of approximating functions with discontinuities via
kernel-based methods. The main result is the construction of discontinuous kernel-based
basis functions. The linear spaces spanned by discontinuous kernels lead to a very flexible
tool which sensibly reduces the well-known Gibbs phenomenon in reconstructing functions
with jumps. For the new basis we provide error bounds and numerical results that support
our claims. The method is also effectively tested for approximating satellite images.

1 Introduction

Radial Basis Function (RBF) methods (refer e.g. to [12, 13, 24, 26]) have become one of the
most popular tools for solving multidimensional scattered data problems. Thanks to their
independence from the mesh and to their easy implementation, they find applications in a
wide varieties of fields, such as population dynamics, machine (deep) learning, solution of
PDEs and image registration.

Even if such meshfree approaches have been extensively studied in the recent years, es-
pecially focusing on the efficiency and stability of the interpolant (cf. e.g. [4, 5, 10, 15])
not much effort has been addressed to construct robust approximants for functions with
jumps. Indeed, infinitely smooth RBFs, such as Gaussians and Multiquadrics, theoretically
show spectral accuracy, which is no longer preserved when interpolating functions with dis-
continuities. This fact, first observed in the context of truncated Fourier expansions and

∗Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova, Italy
†Dipartimento di Salute della Donna e del Bambino, Università di Padova, Italy
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later used to characterize non-physical oscillations in the approximation of discontinuous
functions, is known as Gibbs phenomenon.

To mitigate this effect for kernel-based approximation one can use linear RBFs (see e.g.
[14] for a general overview). This has been done in [18], where the Multiquadric has been
replaced by the linear spline in regions around discontinuities. Alternatively, post-processing
techniques, such as Gegenbauer reconstruction procedure [16] or digital total variation [23],
are well-established tools. Finally, we point out that also the so-called Variably Scaled Ker-
nels (VSKs) [1] are truly performing when reconstructing functions with gradient disconti-
nuities, as proven in [22]. Further, VSKs for detecting jumps have also been experimentally
used in [21]; see also [3].

Based on the last mentioned papers, here we investigate both computationally and the-
oretically their behaviour. The basis associated to the discontinuous RBFs, constructed by
means of what we will call the Variably Scaled Discontinuous Kernels (VSDKs), enables
us to naturally reconstruct jump discontinuities (even with the family of Gaussians). The
only drawback of the procedure lies in the fact that the algorithm needs to know where the
discontinuities occur. To address this computational issue, one can consider widely used
schemes, such as Canny or Sobel edge detection (cf. [2, 25]).

After providing a theoretical analysis of the scheme for the one dimensional case, we ex-
tend the idea to higher dimensions and we provide very general error bounds in terms of the
well-known power function. Extensive numerical experiments are devoted to show the effec-
tiveness of the method. We also point out that we provide a Matlab code, freely available
for the scientific community at www.math.unipd.it/~demarchi/RBF/RBFCAA.html, that can
be used to reproduce the tests and experiments presented in the paper. To conclude, we also
present applications to the reconstruction of satellite images (see[19]).

The paper is organized as follows. In Section 2, we briefly review the main theoretical
aspects of kernel-based approximation methods and introduce the VSKs. Section 3 presents
our method for VSDKs and in Section 4 we show extensive numerical experiments. Appli-
cations to real world data are reported in Section 5. In the last section we conclude.

2 Kernel-based approximation methods

Let X = {xi, i = 1, . . . , N} ⊂ Ω be a set of distinct data points (or data sites or nodes)
arbitrarily distributed on a domain Ω ⊆ Rd and let F = {fi = f(xi), i = 1, . . . , N} be an
associated set of data values ( measurements or function values) obtained by sampling some
(unknown) function f : Ω −→ R at the nodes xi. We can reconstruct f by interpolation,
that is by finding a function R : Ω −→ R satisfying the conditions

R(xi) = fi, i = 1, . . . , N. (1)

The interpolation problem (1) has unique solution if R ∈ span{Φε(·,xi),xi ∈ X}, where
Φε : Ω×Ω −→ R is a strictly positive definite and symmetric kernel. R can also depend on
a so-called shape parameter ε > 0. The resulting kernel-based interpolant, denoted by Rε,X ,
can be written as

Rε,X (x) =
N∑
k=1

ckΦε(x,xk), x ∈ Ω. (2)

2
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We can write (1) by using the matrixAε ∈ RN×N which has entries (Aε)ik = Φε(xi,xk), i, k =
1, . . . , N . Then, letting f = (f1, . . . , fN)T the vector of data values, we can find the coef-
ficients c = (c1, . . . , cN)T by solving the linear system Aεc = f . Since we consider strictly
positive definite and symmetric kernels, the existence and uniqueness of the solution of the
linear system is ensured.

More precisely, we are interested in the class of strictly positive definite and symmetric
radial kernels Φε so defined.

Definition 2.1 Φε is called radial kernel if there exists a continuous function ϕε : [0,+∞) −→
R, depending on the shape parameter ε > 0, such that

Φε(x,y) = ϕε(‖x− y‖2), (3)

for all x,y ∈ Ω.

From (3) it follows that if Φε is radial, then it is completely identified by the function ϕε
and we can indifferently use Φε or ϕε for denoting the interpolant in (2).

To Φε we associate a real pre-Hilbert space HΦε(Ω) with reproducing kernel Φε

HΦε(Ω) = span{Φε(·,x), x ∈ Ω},

equipped with a bilinear form (·, ·)HΦε (Ω). We then define the native space NΦε(Ω) of Φε as

the completion of HΦε(Ω) with respect to the norm || · ||HΦε (Ω), that is ||f ||HΦε (Ω) = ||f ||NΦε (Ω)

for all f ∈ HΦε(Ω) (for details see the mongraphs [13, 26]).
The accuracy of the interpolation process is usually expressed in terms of the power

function. Let Aε(X ) be the interpolation matrix related to the set of nodes X and the kernel
Φε. Also let Aε(Y) the matrix associated to the augmented set Y := {x} ∪ X , x ∈ Ω. The
power function is the positive function (cf. [7, 11])

PΦε,X (x) :=

√
det(Aε(Y))

det(Aε(X ))
. (4)

obtained by the ratio of two determinants.
The following result holds (see e.g. [13, Th. 14.2, p.117]).

Theorem 2.1 Let Φε ∈ C(Ω×Ω) be a strictly positive definite kernel and that X = {xi, i =
1, . . . , N} ⊆ Ω has distinct points. For all f ∈ NΦε(Ω)

|f (x)−Rε,X (x) | ≤ PΦε,X (x)||f ||NΦε (Ω), x ∈ Ω.

Remark 2.1 Theorem 2.1 bounds the error with respect to the power function that depends
on the kernel and data but is independent of the function values.

2.1 From RBF to VSK interpolation

As well-known, the choice of the shape parameter ε is a crucial computational issue in RBF
interpolation which also lead to instability problems. To overcome such problems in [1] were
introduced the so called VSKs and in [22] they have been used to reconstruct functions with
gradient discontinuities.

We recall that in VSKs the tuning of the shape parameter is replaced by the choice of a
scale function. More precisely a VSK is defined as follows. (cf. [1, Def. 2.1]).

3



Definition 2.2 Letting I ⊆ (0,+∞) and Φε a positive definite radial kernel on Ω × I
depending on the shape parameter ε > 0. Given a scale function ψ : Ω −→ I, we define a
VSK Φψ on Ω as

Φψ(x,y) := Φ1((x, ψ(x)), (y, ψ(y))), (5)

for x,y ∈ Ω.

Defining the map Ψ(x) = (x, ψ(x)) on Ω, the interpolant on the set of nodes Ψ(X ) :=
{(xk, ψ(xk)), xk ∈ X} with fixed shape parameter ε = 1 takes the form

R1,Ψ(X )(Ψ(x)) =
N∑
k=1

ckΦ1(Ψ(x),Ψ(xk)), (6)

with x ∈ Ω, xk ∈ X .
By analogy with the interpolant in (2), the vector of coefficients c = (c1, . . . , cN)T in (6)

is determined by solving the linear system Aψc = f , where (Aψ)ik = Φψ(xi,xk) and f is the
vector of data values. We point out that the considered linear system has a unique solution
since Φψ is strictly positive definite.

Once we have the interpolant R1,Ψ(X ) on Ω × I, we can project back on Ω the points
(x, ψ(x)) ∈ Ω× I. In this way, we obtain a VSK interpolant Vψ on Ω that is, using (5),

Vψ(x) :=
N∑
k=1

ckΦψ(x,xk) =
N∑
k=1

ckΦ1(Ψ(x),Ψ(xk)) = R1,Ψ(X )(Ψ(x)). (7)

The error and stability analysis of this varying scale process on Ω coincides with the analysis
of a fixed scale kernel on Ω×I. For further details and the analysis of the case with continuous
scale functions, we refer the reader to [1]. We now briefly formalize the computational
algorithm presented in [21] and we then investigate error bounds.

3 Variably scaled discontinuous kernels

We start by presenting the construction in the one dimensional case observing that the
extension to the multidimensional case is almost straightforward (see below Subsection 3.2).

Let Ω = (a, b) ⊂ R be an open interval and let ξ ∈ Ω. We consider the discontinuous
function f : Ω −→ R

f(x) :=

{
f1(x), a < x < ξ,
f2(x), ξ ≤ x < b,

where f1, f2 are real valued smooth functions such that lim
x→a+

f1(x) and lim
x→b−

f2(x) exists finite

and
f2(ξ) 6= lim

x→ξ
f1(x) .

In this way, we have constructed a function f that has a jump discontinuity in ξ ∈ Ω, being
smooth elsewhere.

Our aim consists in approximating the function f on the set of nodes X ∈ ⊗. Unfortu-
nately the presence of jumps is the cause of oscillations of the recosrtructing process known
as Gibbs phenomenon.

4



To approximate f on X we take interpolants of the form (7) with the main issue of
considering discontinuous scale functions in the interpolation process.

Let α, β ∈ R, α 6= β and S = {α, β}. We propose the following scale function ψ : Ω −→ S
defined as:

ψ(x) :=

{
α, x < ξ,
β, x ≥ ξ.

The function ψ is piecewise constant, having a jump discontinuity at ξ, as the function f .
Let Φε be a positive definite radial kernel on Ω×S, possibly depending on a shape parameter
ε > 0. We can consider a variably scaled kernel Φψ on Ω as in (5).

More precisely, according to (3) we start by analysing the function ϕ1 related to the kernel
Φ1 with fixed shape parameter ε = 1, that is

ϕ1(‖Ψ(x)−Ψ(y)‖2) = ϕ1(‖(x, ψ(x))− (y, ψ(y))‖2) = ϕ1(
√

(x− y)2 + (ψ(x)− ψ(y))2) .

This implies

ϕ1(‖Ψ(x)−Ψ(y)‖2) =

{
ϕ1(|x− y|), x, y < ξ or x, y ≥ ξ,
ϕ1(‖(x, α)− (y, β)‖2), x < ξ ≤ y or y < ξ ≤ x,

since ϕ1(‖(x, α)− (y, β)‖2) = ϕ1(‖(x, β)− (y, α)‖2).
The so-constructed interpolant Vψ : Ω −→ R on the set X = {xk, k = 1, . . . , N} is a

discontinuous linear combination of functions Φψ(·, xk) so defined:

• a < xk < ξ

Φψ(x, xk) =

{
ϕ1(|x− xk|), x < ξ,
ϕ1(‖(x, α)− (xk, β)‖2), x ≥ ξ,

• ξ ≤ xk < b:

Φψ(x, xk) =

{
ϕ1(|x− xk|), x ≥ ξ,
ϕ1(‖(x, α)− (xk, β)‖2), x < ξ.

Therefore, the interpolant Vψ is a linear combination of functions having a step discontinuity
at ξ. See also [21]. We can easily generalize this procedure for a set of distinct discontinuity
points on Ω; see the next section.

3.1 VSDKs: one dimensional case

To generalize the discussion carried out above, we first give the following definition.

Definition 3.1 Let Ω = (a, b) ⊂ R be an open interval, S = {α, β} with α, β ∈ R>0, α 6= β
and let D = {ξj, j = 1, . . . , `} ⊂ Ω be a set of distinct points such that ξj < ξj+1 for every
j. Let ψ : Ω −→ S be defined as

ψ(x) :=

{
α, x ∈ (a, ξ1) or x ∈ [ξj, ξj+1), where j is even,
β, x ∈ [ξj, ξj+1), where j is odd,

and

ψ(x)|[ξ`,b) :=

{
α, ` is even,

β, ` is odd.

With this choice of the scale function ψ and referring to (5), we call the kernel Φψ a VSDK
on Ω.
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Intuitively, if we deal with a function having jumps then we can approximate it with a linear
combination of functions Φψ(x, xk) having jumps at the same locations.

For the analysis of the VSDKs introduced in Definition 3.1 we cannot rely on some
important and well-known results of RBF interpolation. Therefore, before stating upper
bounds for the VSDK interpolants in terms of the power function, we need some preliminary
analysis.

Let Ω and D be as in Definition 3.1 and n ∈ N. We define ψn : Ω −→ I ⊆ (0,+∞) as

ψn(x) :=


α, x ∈ (a, ξ1 − 1/n) or x ∈ [ξj + 1/n, ξj+1 − 1/n) j is even,
β, x ∈ [ξj + 1/n, ξj+1 − 1/n) j is odd,
γ1(x), x ∈ [ξj − 1/n, ξj + 1/n) j is odd,
γ2(x), x ∈ [ξj − 1/n, ξj + 1/n) j is even,

(8)

ψn(x)|[ξ`+1/n,b) :=

{
α, ` is even,

β, ` is odd,

where γ1, γ2 are continuous, strictly monotonic functions such that:

lim
x→ξj+1+1/n

γ1(x) = γ2(ξj − 1/n) = β, lim
x→ξj+1+1/n

γ2(x) = γ1(ξj − 1/n) = α.

From Definition 3.1, it is straightforward to verify that ∀x ∈ Ω the following pointwise
convergence result holds

lim
n→∞

ψn(x) = ψ(x).

We point out that for every fixed n ∈ N the kernel Φψn is a continuous VSK, hence it satisfies
the error bound of Theorem 2.1. Moreover, for VSDKs we have the following results.

Theorem 3.1 For every x, y ∈ Ω, we have

lim
n→∞

Φψn(x, y) = Φψ(x, y),

where Φψ is the kernel considered in Definition 3.1.

Proof: Let us consider the map Ψn(x) = (x, ψn(x)) on Ω. We can write

lim
n→∞

Φψn(x, y) = lim
n→∞

Φ1(Ψn(x),Ψn(y)) = lim
n→∞

ϕ1(‖Ψn(x)−Ψn(y)‖2).

Recalling (3.1), we get

lim
n→∞

ϕ1(‖Ψn(x)−Ψn(y)‖2) = ϕ1

(
lim
n→∞

‖Ψn(x)−Ψn(y)‖2

)
= ϕ1

(√
lim
n→∞

(x− y)2 + (ψn(x)− ψn(y))2
)

= ϕ1(
√

(x− y)2 + (ψ(x)− ψ(y))2)

= ϕ1(‖Ψ(x)−Ψ(y)‖2)

= Φψ(x, y).
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Corollary 3.1 Let HΦψn
(Ω) = span{Φψn(·, x), x ∈ Ω} be equipped with the bilinear form

(·, ·)HΦψn
(Ω) and let NΦψn

(Ω) be the related native space. Then, taking the limit of the basis

functions, we obtain the space HΦψ(Ω) = span{Φψ(·, x), x ∈ Ω} equipped with the bilinear
form (·, ·)HΦψ

(Ω) and the related native space NΦψ(Ω).

Proof: If f ∈ HΦψ(Ω), then it can be expressed as a linear combination of basis functions
Φψ(·, x), x ∈ Ω. From Theorem 3.1, we get that for every x ∈ Ω

lim
n→∞

Φψn(·, x) = Φψ(·, x),

and so f is also linear combination of the functions limn→∞Φψn(·, x), x ∈ Ω. This proves
the thesis.

We get an immediate consequence for the interpolant Vψ too.

Corollary 3.2 Let Ω, S and D be as in Definition 3.1. Let f : Ω −→ R be a discontinuous
function whose step discontinuities are located at the points belonging to D. Moreover, let
ψn and ψ be as in Theorem 3.1. Then, considering the interpolation problem with nodes
X = {xk, k = 1, . . . , N} on Ω, we have

lim
n→∞

Vψn(x) = Vψ(x),

for every x ∈ Ω.

Proof: Since Vψ is a linear combination of the basis functions, the thesis follows from
Theorem 3.1 and Corollary 3.1.

To provide error bounds, we now only need to introduce the power function for a VSDK
Φψ on the set of nodes X . From (4), we know that it is defined as

PΦψ ,X (x) =

√
det(Aψ(Y))

det(Aψ(X ))
.

From Theorem 3.1 and Corollary 3.1, it easily follows that ∀x ∈ Ω

PΦψ ,X (x) = lim
n→∞

PΦψn ,X (x).

We are now able to state the following error bound for the interpolation via VSDKs.

Theorem 3.2 Let Φψ be a VSDK on Ω = (a, b) ⊂ R. Suppose that X = {xi, i = 1, . . . , N} ⊆
Ω have distinct points. For all f ∈ NΦψ(Ω) we have

|f(x)− Vψ(x)| ≤ PΦψ ,X (x)‖f‖NΦψ
(Ω), x ∈ Ω.

Proof: For every n ∈ N and x ∈ Ω, since the VSK Φψn is continuous, we know that (see
Theorem 2.1)

|f(x)− Vψn(x)| ≤ PΦψn ,X (x)‖f‖NΦψn
(Ω).

Considering the limit as n → ∞ in the previous inequality and recalling all the results of
this subsection, the thesis follows.

Theorem 3.2, as the classical bound for the RBF interpolants, limits the error in terms of
the power function and consequently takes into account both the kernel and data. Similar
results also hold for the multidimensional case, as shown in the next subsection.
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3.2 VSDKs: multidimensional case

VSDKs rely upon the classical RBF bases and therefore in principle they are suitable to be
implemented in any dimension. However, since the geometry now is more complex than in
1D, we need to carefully define the scale function ψ.

Let Ω ⊂ Rd be an open subset with Lipschitz boundary. In our discussion, we consider
step discontinuous functions f : Ω −→ R such that there exists a disjoint partition P =
{R1, . . . , Rm} of regions having Lipschitz boundaries. That is all the jumps of f lye along
(d− 1)-dimensional manifolds γ1, . . . , γp which verify

γi ⊆
m⋃
i=1

∂Ri \ ∂Ω, ∀i = 1, . . . , p.

Then, a suitable scale function ψ for interpolating f via VSDKs can be defined as follows.

Definition 3.2 Let Ω ⊂ Rd be an open subset with Lipschitz boundary, S = {α1, . . . , αm}
real distinct values and P = {R1, . . . , Rm} a partition of Ω whose elements are regions having
Lipschitz boundaries. Define ψ : Ω −→ S as

ψ(x)|Ri := αi.

With this choice of the scale function ψ and referring to (5), we call the kernel Φψ a VSDK
on Ω.

Remark 3.1 In Definition 3.2 we choose a scale function which emulates the properties of
the one-dimensional function of Definition 3.1. The difference is that the multidimensional
ψ could be discontinuous not just at the same points as f , but also on other nodes. Precisely,
if we are able to choose P so that

p⋃
i=1

γi =
m⋃
i=1

∂Ri \ ∂Ω,

then f and ψ have the same discontinuities. Otherwise, if

p⋃
i=1

γi ⊂
m⋃
i=1

∂Ri \ ∂Ω,

then ψ is discontinuous along
⋃m
i=1 ∂Ri \

(
∂Ω ∪

⋃p
i=1 γi

)
, while f is not.

Since our aim is to use ψ to represent f in a proper way near the discontinuities, this
would not be a problem, as we will see later in the numerical examples.

The theoretical analysis in the multidimensional case covers the same path of the one-
dimensional setting. Indeed, we consider continuous scale functions ψn : Ω −→ I ⊆ (0,+∞)
such that ∀x ∈ Ω,

lim
n→∞

ψn(x) = ψ(x),

and
lim
n→∞

Vψn(x) = Vψ(x),

8



for every x ∈ Ω.
We omit this easy extension of all considerations and results of Subsection 3.1 and we

state the following error bound.

Theorem 3.3 Let Φψ be a VSDK as in Definition 3.2. Suppose that X = {xi, i = 1, . . . , N} ⊆
Ω have distinct points. For all f ∈ NΦψ(Ω) we have

|f(x)− Vψ(x)| ≤ PΦψ ,X (x)‖f‖NΦψ
(Ω), x ∈ Ω.

Proof: We refer to Theorem 3.2 and to the considerations made in this section.

The error analysis for VSDKs shows strong similarities with the standard RBF recon-
struction. However, the discontinuity introduced on the scale functions and consequently on
kernels, as evident from the experiments that follow, enables us to intervene on the Gibbs
phenomenon.

4 Numerics

The numerical experiments that follow have been carried out with Matlab on an Intel(R)
Core(TM) i5-4200U CPU @ 2.30 GHz processor. We remark that the software for VSDK
interpolation can be downloaded at the link reported in the introduction.

We consider three strictly positive definite RBFs having different regularities

ϕ1
ε(r) = e−εr, Matern C0,

ϕ2
ε(r) = e−εr (15 + 15εr + 6ε2r2 + ε2r3) , Matern C6,

ϕ3
ε(r) = e−ε

2r2
, Gaussian C∞.

(9)

To point out the accuracy of our tests, both in 1D and 2D cases, we refer to the Maximum
Absolute Error (MAE) and the Root Mean Square Error (RMSE). Once the interpolant is
constructed, we evaluate it on a grid of S evaluation points {z1, . . . ,zS} so that

MAE = max
1≤i≤Z

|f(zi)− Vψ(zi)|, RMSE =

√√√√ 1

Z

Z∑
i=1

(f(zi)− Vψ(zi))
2.

Further, we also estimate the upper bound for the error by computing the Maximum of the
Power Function (MPF)

MPF = max
1≤i≤Z

PΦψ ,X (zi).

In the 2D case we also deal with grey-scale images and thus we consider the Structural
Similarity Index (SSIM), which is a well-known parameter that indicates the similarity be-
tween two images. The SSIM index lies in the interval [0, 1] (the value 1 corresponds to
identical images).
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(a) The function f1.
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(b) The interpolant obtained using ϕ1
ε.
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(c) The interpolant obtained using ϕ2
ε.
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(d) The interpolant obtained using ϕ3
ε.

Figure 1: The function f1 and the classical interpolants on X obtained using different kernel
functions.

4.1 A toy example

Let Ω = (−1, 1),

f1(x) =


e−x, −1 < x < −0.5,
x3, −0.5 ≤ x < 0.5,
1, 0.5 ≤ x < 1.

and

X =

{
xj = −1 +

(j − 1)

39
, j = 1, . . . , 79

}
.

We evaluate then the interpolant on a grid of equispaced points on Ω with step size 5.00E−4.
First, as described in (2), we interpolate the function f1 via classical RBF interpolation

on X , using the kernel functions reported in (9). For such RBFs we select the optimal shape
parameter ε∗ via Leave One Out Cross Validation (LOOCV) ( [12] for a general overview or
to [6] for particular instances on the topic). The resulting interpolants are plotted in Figure
1.

In Table 1 we report the values of MAE and RMSE with respect to f1 and the maximum
values of the power function evaluated at the same set of nodes. The errors are similar expect
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Table 1: Results of classical RBF reconstruction for f1.

RBFs ϕ1
ε ϕ2

ε ϕ3
ε

MAE 8.98E− 01 8.96E− 01 8.96E− 01
RMSE 6.49E− 02 6.94E− 02 7.25E− 02
MPF 3.14E− 01 1.15E− 01 2.01E− 02

Table 2: Results of VSK and VSDK reconstruction for f1 using ϕ1
1.

Scale functions ψ10 ψ50 ψ500 ψ

MAE 9.03E− 01 9.59E− 01 1.05E + 00 2.97E− 02
RMSE 6.47E− 02 6.47E− 02 2.70E− 02 1.43E− 03
MPF 2.55E− 01 5.53E− 01 6.56E− 01 1.59E− 01

for ϕ1
ε that guarantees better results. Indeed, as expected, the corresponding reconstruction

is less affected by the Gibbs phenomenon, due to the poor regularity of ϕ1
ε.

Concerning our approach: the function f1 presents two points of discontinuity ξ1 = −0.5
and ξ2 = 0.5. Taking into account (8), we define the scale function for VSKs for f1,

ψn(x) :=


1, x ∈ (−1, ξ1 − 1/n) or x ∈ [ξ2 + 1/n, 1),
2, x ∈ [ξ1 + 1/n, ξ2 − 1/n),
(nx− ξ1n+ 3)/2, x ∈ [ξ1 − 1/n, ξ1 + 1/n),
(−nx+ ξ2n+ 3)/2, x ∈ [ξ2 − 1/n, ξ2 + 1/n).

(10)

Moreover, considering the pointwise limit as n → ∞ of ψn(x) we consider for VSDKs the
discontinuous scale function:

ψ(x) =

{
1, x ∈ (−1, ξ1) or x ∈ [ξ2, 1),

2, x ∈ [ξ1, ξ2).
(11)

Finally, for each of the RBFs considered in (9) we first take the scale function ψn and
compute the VSK interpolation of f1 by considering increasing values of n (n = 10, 50, 500).
Then we approximate f1 using the VSDK determined by ψ (see formulae (10) and (11)).
The graphical results for the three variably scaled (discontinuous) kernels are reported in
Figures 2–4, while the accuracy indicators are shown in Tables 2–4.

From the figures, we can graphically note how the reconstruction via VSDKs is indeed
the limit of the continuous case. As expected the C0 RBF combined with the VSKs does
not show a huge Gibbs phenomenon. Using the other kernels, we note that such oscillations
are progressively reduced as n increases and graphically disappear when using VSDKs.

From the results reported in this subsection it is evident that the maximum value of the
power function decreases as n increases. The fact that the power function for VSDKs assumes
smaller values than thos of VSKs is confirmed only by numerical evidence. Indeed, in some
cases the maximum value attained by the power function is sensibly higher for VSDKs, even
compared to the classical RBF reconstruction.
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(a) The VSK interpolant using ψ10.
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(b) The VSK interpolant using ψ50.
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(c) The VSK interpolant using ψ500.
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(d) The VSDK interpolant using ψ.

Figure 2: VSK and VSDK reconstructions of f1 on X using ϕ1
1.

Table 3: Results of VSK and VSDK reconstruction for f1 using ϕ2
1.

Scale functions ψ10 ψ50 ψ500 ψ

MAE 8.96E− 01 8.92E− 01 8.89E− 01 6.08E− 06
RMSE 6.96E− 02 5.86E− 02 2.60E− 02 3.34E− 07
MPF 5.11E− 02 6.40E− 02 1.79E− 01 5.70E− 02

Table 4: Results of VSK and VSDK reconstruction for f1 using ϕ1
3.

Scale functions ψ10 ψ50 ψ500 ψ

MAE 8.96E− 01 8.86E− 01 9.92E− 01 1.19E− 04
RMSE 9.78E− 02 5.84E− 02 2.51E− 02 3.50E− 05
MPF 1.21E− 02 2.07E− 02 3.36E− 01 1.96E− 02
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(a) The VSK interpolant using ψ10.
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(b) The VSK interpolant using ψ50.
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(c) The VSK interpolant using ψ500.
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(d) The VSDK interpolant using ψ.

Figure 3: VSK and VSDK reconstructions of f1 on X using ϕ2
1.
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(a) The VSK interpolant using ψ10.
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(b) The VSK interpolant using ψ50.
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(c) The VSK interpolant using ψ500.
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(d) The VSDK interpolant using ψ.

Figure 4: VSK and VSDK reconstructions of f1 on X using ϕ3
1.
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Table 5: Results of classical RBF reconstruction for f2.

RBFs ϕ1
ε ϕ2

ε ϕ3
ε

MAE 1.30E− 00 1.72E− 00 1.75E− 00
RMSE 9.80E− 02 1.21E− 01 1.53E− 01
MPF 1.03E− 02 1.11E− 00 9.85E− 01
SSIM 0.908 0.776 0.541

4.2 Tests with artificial data

Let Ω = (−1, 1)2. We consider two test functions,

f2(x, y) =

{
e−(x2+y2), x2 + y2 ≤ 0.6,
x+ y, x2 + y2 > 0.6,

f3(x, y) =


2(1− e−(y+0.5)2

), |x| ≤ 0.5, |y| ≤ 0.5,
4(x+ 0.8), −0.8 ≤ x ≤ −0.65, |y| ≤ 0.8,
0.5, 0.65 ≤ x ≤ 0.8, |y| ≤ 0.2,
0, otherwise.

We take 1089 Halton points on Ω as interpolation nodes and we evaluate the approximant
on equispaced points on Ω with step size 1.00E− 2.

Similarly to the one-dimensional case in Section 4.1, we interpolate the functions f2 and
f3 via classical RBF interpolation on the set of nodes X , using the kernel functions in (9)
and selecting the optimal shape parameter ε via LOOCV. Finally, we apply VSDKs and we
evaluate the final results.

We start our discussion from the function f2. The resulting standard RBF interpolants
for f2 are plotted in Figure 5. As expected, the infinitely smooth Gaussian RBF introduces
huge oscillations, while with functions with low regularity, the Gibbs phenomenon is less
evident.

In Table 5 we report the accuracy indicators. We can observe that ϕ1
ε outperforms the

other two kernels in terms of SSIM index. Indeed, the related reconstruction is less affected
by the Gibbs phenomenon, as graphically visible.

In order to perform a VSDK reconstruction of f2, we need a suitable scale function
satisfying the Definition 3.2. For this purpose, we consider the function ψ2 defined as

ψ2(x, y) =

{
1, x2 + y2 ≤ 0.6,
2, x2 + y2 > 0.6.

(12)

We show the final reconstructions using VSDKs with different kernels in Figure 6, while
in Table 6 we report the values of the considered errors and parameters. We recover also
for the 2D case the pattern already discovered about the fact that VSDKs reconstruct the
jumps without graphically introducing oscillations, also with C∞ RBFs.

Considering now the function f3, we show in Figure 7 and in Table 7 the results obtained
via classic RBF reconstructions.

We can observe a behavior that is similar to what we obtained for f2. Passing to VSDKs
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(a) The function f2. (b) The interpolant obtained using ϕ1
ε.

(c) The interpolant obtained using ϕ2
ε. (d) The interpolant obtained using ϕ3

ε.

Figure 5: The function f2 and the classical RBF interpolants on X obtained using different
kernel functions.

Table 6: Results of VSDK reconstructions for f2.

RBFs ϕ1
1 ϕ2

1 ϕ3
1

MAE 1.82E− 01 8.20E− 05 1.03E− 05
RMSE 5.29E− 03 1.13E− 06 5.70E− 07
MPF 3.52E− 01 1.43E− 02 3.65E− 04
SSIM 0.997 0.999 0.999

Table 7: Results of classical RBF reconstruction for f3.

RBFs ϕ1
ε ϕ2

ε ϕ3
ε

MAE 1.23E− 00 1.56E− 00 1.74E− 00
RMSE 8.60E− 02 9.89E− 02 1.09E− 01
MPF 9.48E− 01 3.80E− 00 9.94E− 01
SSIM 0.843 0.788 0.751
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(a) VSDK reconstruction using ϕ1
1. (b) VSDK reconstruction using ϕ2

1.

(c) VSDK reconstruction using ϕ3
1.

Figure 6: VSDK reconstructions of f2 on X using the scale function ψ2.
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(a) The function f3. (b) The interpolant obtained using ϕ1
ε.

(c) The interpolant obtained using ϕ2
ε. (d) The interpolant obtained using ϕ3

ε.

Figure 7: The function f3 and the classical interpolants on X obtained using different kernel
functions.
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(a) VSDK reconstruction using ϕ1
1. (b) VSDK reconstruction using ϕ2

1.

(c) VSDK reconstruction using ϕ3
1.

Figure 8: VSDK reconstructions of f3 on X using the scale function ψ3.

for f3, we consider the scale function ψ3 defined as

ψ3(x, y) =


1, |x| ≤ 0.5, |y| ≤ 0.5,
2, −0.8 ≤ x ≤ −0.65, |y| ≤ 0.8,
3, 0.65 ≤ x ≤ 0.8, |y| ≤ 0.2,
0, otherwise.

(13)

We point out that the set of discontinuity points of f3 is strictly contained in the set of
discontinuity points of ψ3, which is a situation considered in the Remark 3.1. We presents
the final results in Figure 8 and in Table 8.

We can observe that the VSDK reconstructions using ϕ2
1 and ϕ3

1 are not affected by
the Gibbs phenomenon as in the classical RBF reconstructions and they outperform the
reconstruction obtained using ϕ1

1. The same holds for f3.
Furthermore, for both the test functions considered in this section, the SSIM with VSDKs

is about 1, which means that graphically there is a high similarity between the original and
reconstructed image.

Concerning the maximum value of the power function for VSDKs, we can note that for
both f2 and f3 it is comparable to the one obtained via standard RBFs. However, the reader
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Table 8: Results of VSDK reconstructions for f3.

RBFs ϕ1
1 ϕ2

1 ϕ3
1

MAE 1.68E− 01 5.71E− 04 1.71E− 05
RMSE 6.75E− 03 9.89E− 06 4.84E− 07
MPF 3.52E− 01 2.39E− 02 1.40E− 03
SSIM 0.993 0.999 0.999
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(a) Singular values in 1D.

0 200 400 600 800 1000 1200
10-20

10-15

10-10

10-5

100

105

RBF
VSDK

(b) Singular values in 2D.

Figure 9: Singular values of the interpolation matrices for RBF and VSDK reconstruction.

should note that usually it reaches lower values than the ones achieved via the classical
schemes. This reflects directly on the error (as theoretically proved in Theorem 3.3).

In general, for both 1D and 2D, the most promising results are the ones obtained via
VSDKs and the Gaussian function. Indeed, it is well known that C∞ functions introduce
Gibbs phenomenon. To have a better understanding of the reason why VSDKs outperform
the classical RBF reconstruction when using the Gaussian, we plot the decay of the singular
values of the kernel matrix in Figure 9. In the left frame we plot the singular values for
the equispaced data considered for the 1D, while, in the right frame we consider the 2D
Halton data used in this subsection and the scale function ψ2. We can note that the VSDKs
act somehow as filters, indeed the decay of the singular values is very fast compared to the
standard RBF reconstruction. In this sense, VSDKs could potentially be used together with
compression techniques, such as principal component analysis, leading to reduced models
and maintaining a good accuracy. Further investigations in this direction are needed.

5 Application to satellite images

The modeling and analysis of data, for instance, coming from distributed measurements of
physical quantities and satellite images is a challenging computational issue. Because of the
huge size that some of these data sets achieve, reduced models such as the one presented
in [19] are strongly advised. Nevertheless, the Gibbs phenomenon might affect also in this
case the accuracy of the approximation. Thus, in this example, we show how VSDKs can
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Figure 10: Example of satellite image measuring the soil moisture.

intervene in this direction, sensibly reducing the oscillations.
We consider the satellite image reported in Figure 10, taken by SMAP satellite on April

2015 and measuring the soil moisture over the world. It is composed by a grid of 3856×1624
pixels. For dealing with the whole image, one needs to use reduced models, such as the one
investigated in [20]. Moreover, if one only concentrates on a small portion of the image,
e.g. on Portugal, the high resolution is lost (trivially due to zooming). In this case, a
reconstruction scheme is necessary.

Focusing on Portugal, we obtain an image composed by N = 82×39 = 3198 pixels. After
using these data to reconstruct the image, we evaluate it on a finer grid of evaluation points,
composed by Z = 244× 155 = 28060 pixels. Such a computation can be seen as a standard
zoom, which might introduce Gibbs oscillations. They are indeed visible if, for instance, we
reconstruct the image with the Wendland’s C2 RBF defined by:

ϕ4
ε(r) = (1− εr)4

+(4εr + 1), Wendland C2,

where (·)+ denotes the truncated power function. We consider the Wendland’s compactly
supported C2 RBF because it is well-known that by properly scaling the support of the
basis function, it might lead to sparse interpolation systems and thus gaining in terms of
stability, reducing the usual high condition number of the interpolation matrix. Despite this
ability, the reconstruction via the classical method still suffers from the Gibbs phenomenon,
see Figure 11 (left). Such oscillations are removed by VSDKs; refer to Figure 11 (right).
This example with real data is also devoted to show that VSDKs perform well also when
the discontinuity is analytically unknown. In this case the curve defining the discontinuity
lies along the coast of Portugal and it has been approximated by means of Sobel detection
scheme; see e.g. [25].

6 Conclusions

In this paper we have presented a robust method for sensibly reducing non-physical oscil-
lations due to the Gibbs phenomenon. The accuracy of the proposed method has been
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(a) RBF (b) VSDK

Figure 11: The approximation of soil moisture over Portugal via classical RBF reconstruction
(left) and VSDKs (right).

studied theoretically and many numerical experiments confirm its effectiveness. Indeed, the
reconstruction via VSDKs outperforms the standard one when jumps occur.

Work in progress consists in further investigations about the detection of discontinuities
when dealing with real data. Moreover, the current study might be useful for the problem
of image reconstruction in the context of magnetic particle imaging [8]. Future work in this
direction is also needed. Finally, for smooth RBFs, we should study the behaviour of VSDKs
when rational interpolants are used [9, 17].
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