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Abstract—Accurately reconstructing functions with disconti-
nuities is the key tool in many bio-imaging applications as, for
instance, in Magnetic Particle Imaging (MPI). In this paper,
we apply a method for scattered data interpolation, named
mapped bases or Fake Nodes approach, which incorporates
discontinuities via a suitable mapping function. This technique
naturally mitigates the Gibbs phenomenon, as numerical evidence
for reconstructing MPI images confirms.

Index Terms—Magnetic Particle Imaging, interpolation, radial
basis functions, kernels

I. INTRODUCTION

Magnetic Particle Imaging (MPI) is a tracer-based tomo-

graphic technique of recent development that uses dynamic
magnetic fields to provide in vivo functional images in a
less invasive way compared to nuclear imaging, with high
resolution and short acquisition time. MPI systems detect the
spatial distribution of superparamagnetic nanoparticle tracers
injected in the body, which are then naturally expelled by the
animal body.
Image acquisition in MPI is performed by generating magnetic
Field Free Point (FFP), which moves along a chosen sampling
trajectory and induces a measurable voltage signal in a receive
coil. The scattered data obtained from this signal acquisition
process can then be interpolated and evaluated over a regular
grid in order to obtain a human readable image. However such
approximation may result inaccurate when dealing with highly
varying signals, due to the well-known Gibbs effect [3[], [20].
In this work we consider the so-called Fake Nodes approach
[15] in order to deal with the artifacts caused by the Gibbs
phenomenon, providing a stable and reliable approximation.
We compare the results with other standard approximation
techniques.

II. MAGNETIC PARTICLE IMAGING

Commonly used trajectories in MPI are Lissajous curves
and thus we will use samples along Lissajous trajectories as
approximation nodes.
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A. Sampling on Lissajous nodes

For a vector of relatively prime numbers n = (n1,n,) € N?
and € € {1, 2}, the Lissajous nodes are generated by equidis-
tant samples along the curves

A (1) = (Cos(ngt), cos (nlt - ;;21%)) . 1)

These 2m-periodic Lissajous curves are the superposition of
two perpendicular harmonic motions in the square [—1,1]2.
For € = 1, the curve 7%") (t) is degenerate, i.e. traversed twice
as t varies from 0 to 27, and is coincident to the generating
curve of the Padua points [3], [6], [16] if n = (n,n + 1).
For ¢ = 2, the curve ’yén) (t) is non-degenerate and is a
typical sampling trajectory used in magnetic particle imaging,
see [17], [22f, [23]]. Based on the curves ,Yén) as generating
trajectories, the Lissajous nodes are defined as the equidistant
samples
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whose cardinality is
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In the upcoming experiments, we will use the nodes LSégS’?’Q)
as reference interpolation nodes. These node sets were as
well used in [11]-[13]], [17], [22]] for applications in magnetic
particle imaging. A more accurate description of the data set
is given in what follows.

B. Simulated dataset

As test data, we consider simulated MPI-measurements
on a virtual phantom consisting of ferromagnetic particles
aggregated in the form of two diagonal bars and discretized on
an equidistant 201 x 201 grid in the square [—1, 1]2. To obtain
the MPI voltage signal we apply a measured MPI-system



matrix from [22] to this phantom. Based on the description
given in [22], a reduced reconstruction is first performed on
the Lissajous nodes. A full reconstruction is then obtained by
the application of proper approximation methods as considered
in this work. From now on we will refer to reconstruction
when dealing with the process of approximating the full image
from Lissajous samples.

III. MULTIVARIATE APPROXIMATION

Multivariate approximation (see e.g. [10]) is one of the
most investigated topics in applied mathematics and finds
applications in a wide variety of fields, such as in MPL In
what follows, we introduce the basic theory of approximation
schemes and we remark that it fits many successful methods,
such as multivariate splines, meshfree or meshless approaches
and polynomial least squares. Then, we also introduce the
approach based on mapped bases or Fake Nodes.

A. Approximation methods

Given N + 1 d-dimensional samples, N,d € N
{(xi,yi) st € QC R y; € RYico v,
and a set of M + 1 basis functions (M < N)
B=1{b:QCR" — R}izo. .,

the process of finding a set of real-valued parameters
{¢i}i=0,... m so that for M = N the interpolant

M
Pu(x) = Z cibi(x),
i=0

satisfies
’PM(wi):yZ- Vz’zO,...,N, (3)

is called scattered data interpolation.

If M < N we refer to least-squares methods and Py,
is called approximant. Furthermore, the condition (B) is
replaced by the following minimization problem

N
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We now drive our attention towards the Fake Nodes ap-
proach.

B. The Fake Nodes approach
The Fake Nodes approach, introduced in [15] consists in
mapping the nodes with a properly chosen function

S:Q—Q CR?

and computing the interpolant over the mapped nodes
{S(x;)}i=0,.. .~ (or Fake Nodes from now on). For x € €,
the interpolant (or approximant) is given by

M

Pir(@) = Pu(S(x)) = Y cibi(S()),

=0

which satisfies the condition (3)) or (@) in case of interpolation
or least-squares approximation, respectively.

This approach is equivalent to using the mapped basis
B% ={boS:Q CRY — R}ico. w1,

in the classical interpolation setting.

It has been shown in [15] that the Fake Nodes interpolation
allows in many cases to choose a better node set for the given
basis or for the given problem without the need of getting
new samples from another set of nodes, as for instance in [4].
Numerical experiments shown in the next section support our
claims.

IV. NUMERICAL EXPERIMENTS

We will now treat the 2-dimensional case of the MPI
image reconstruction, using a picewise linear mapping func-
tion and two different interpolation methods: least-squares 2D
polynomial approximation and Radial Basis Function (RBF)
interpolation.

A. Choice of the mapping function

Given the presence of different objects in the image, its
interpolation is naturally affected by the Gibbs effect because
of the step in signal intensity along the objects borders. A
suitable mapping function for enhancing the reconstruction can
be defined as follows.

Consider a bounded and compact image domain 2. We now
identify the objects in the image by segmentation, i.e. by
finding subsets I';, such that

Q:

s

Fk and Fiﬂszﬁ Vi,j:l,...7m,

k=1

then we can define the picewise linear mapping function

S(@)=a+ Y anXp, (@),

k=1

where Y is the characteristic function and oy, = (ka,ka) a
vector, where the chosen parameter a € R has to be large
enough to ensure non-overlapping of the Fake Nodes, for
instance:

a > diam(Q) := sup ||z — y||.

x,yc)
The sets 'y, have been estimated by segmentation, using
the technique described in [[13]], [24].
In our setting the domain is © = [—1, 1], The parameter a is
fixed as 2.01. We observed numerically that the reconstruction
is not sensitive to particular choices of a, provided that a is
large enough, as shown also in [[15].

In Figuremwe show the original node set (we fix LS§32’33))
and the Fake Nodes used in incoming experiments.
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Fig. 1. Left: original nodes colored accordingly to the signal intensity. Right
Fake Nodes obtained with the map S and a = 2.01 (right) colored accordingly
to the signal intensity. The two objects were both considered in the same
region and separated from the background.

B. Fake Nodes Polynomial Interpolation

The basis for the 2D polynomials of total degree K can be
written as

— iJ
B = {x1x2

i,j=0,...,Kst.i+j<K}.
For the least squares approximation we fix K = 21.

C. Fake Nodes RBF Interpolation

We also perform experiments using RBFs. The basis for this
method can be written as

B= {K("xi)}izo,..‘,N .

being K (-, x;) = ¢(||-—x;||2) a kernel on 2 x (2, generated by
a univariate radial real-valued function ¢(r), where r denotes
the Euclidean distance. For this experiment we choose the
Matérn functions of different regularities:

o po(r) =exp(—r) € C°

o po(r) =exp(—r)(1+r)eC?

o pu(r) =exp(—r)(3+3r+1r?) e Ct

o (1) = exp(—r)(15 + 157 + 6r2) € C°©
We expect the RBFs of lower continuity to be more suitable
for approximating a signal characterized by steep gradients,
as the MPI signal. We also point out that the Fake Nodes
approach with RBFs shows strong similarities with the use of
the so-called variably scaled (discontinuous) kernels, refer to
(70, [14].

D. Performance evaluation

We evaluate the performance of each approach by compar-
ing each reconstructed image A with the original image [
(both made of K voxels) using the following criteria:

1) Relative 1-norm error (the smaller the better)

K
Zi:l |Ai — I
T .
21:1 ‘Iz|
2) Symmetrized Kullbak-Leibner Divergence (the smaller
the better)

errl(A,I) =

SKL(A,I) = KL(A,I)+ KL(I, A),

where the Kullbak-Leibner Divergence is definded as

S0 wilog ()
KL = == T,
(U7 U/) K
3) The Structural SIMilarity index (or SSIM, the larger the
better)
2AI 2%
sSIM(A, 1) = — AT e)@Bartes) g g

(A2 4+ 12 4 ¢1)(Z4 + 22 + ca)

where A denotes the mean and X 4 the standard devi-
ation, and cq, cs € R two default-chosen numbers used
to stabilize the formula.

These three measures will be evaluated both for standard
and Fake Nodes approximations to show the difference. Com-
putations are all performed in the cloud via MATLAB Online
webpage: matlab.mathworks.com.

V. RESULTS

The resulting accuracy indicators for each image reconstruc-

tion method are shown in Table |l For both polynomials and
RBFs the introduction of the Fake Nodes leads to a better
reconstruction according to all the considered metrics, except
for the case of RBF (9, where curiously the SKL increases
when using the Fake Nodes.
It has to be noticed that RBF methods using basis functions
with low regularities slightly outperform polynomial recon-
struction both with and without the usage of the Fake Nodes
in all metrics except for SKL. As can be observed in Figure 2]
the polynomial approximation tends to smooth out the image
with respect to RBF interpolation methods, which however
tend to include some of the noise generated in synthesis.

[ [ erl | SKL [ SSIM |
Polynomial 1.6763 | 1.3581 | 0.2191
Fake-Polynomial | 1.1541 | 0.6424 | 0.5546
RBF g 1.1120 | 0.7369 | 0.6843
Fake-RBF g 1.1078 | 0.6833 | 0.7091
RBF 2 1.0995 | 0.7947 | 0.6759
Fake-RBF (2 1.0689 | 0.8117 | 0.7135
RBF ¢4 1.1036 | 0.8050 | 0.6651
Fake-RBF ¢4 1.0686 | 0.9137 | 0.7110
RBF g 1.4674 | 1.0779 | 0.1571
Fake-RBF g 1.2159 | 1.0154 | 0.4152

TABLE I

PERFORMANCES OF EACH METHOD IN THREE METRICS.

VI. DISCUSSION AND FUTURE WORKS

We presented an effective method for the reconstruction
of MPI images based on the so-called Fake Nodes. In
doing so we also compared the accuracy of two different
reconstruction tools, i.e. polynomial least squares and kernel-
based interpolation. In their standard form both methods suffer
from Gibbs artifacts, while when using the Fake Nodes such
oscillations are mitigated for both bases. The results show
that the two methods are comparable for this bio-imaging
application, even if the kernel-based interpolation via Fake
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Fig. 2. Top left: reconstructed image by means of polynomial least-squares
on the original data. Top right: reconstruction with polynomial least-squares
on Fake Nodes. Bottom left: reconstruction with RBF with (g on original
data. Bottom right: reconstruction with RBF (with ¢p) on Fake Nodes.

Nodes slightly outperforms the approximation obtained via
polynomial least squares, provided that the regularity of the
kernel is small enough. In fact increasing the regularity of
the basis function leads in our experiments to slightly better
results in terms of errl and SSIM until the Matérn C°, while
on the other side the error in terms of SKL seems to get
higher progressively as the regularity increases. This seems
to indicate a greater sensitivity of SKL measure in measuring
errors in this kind of images, indicating ¢ as the best basis
function between the ones that are tested.

The advantage of the Fake Nodes approach based on kernels
is that the so-constructed basis, being data-dependent, allows
us to interpolate at the nodes. On the opposite with the
polynomial basis, we have to relax the interpolation conditions
and perform a least square approximation. This might lead,
as in our case, to a decrease of the accuracy in the recon-
struction, due to the excessive smoothing effect. However, the
polynomial least squares approximation is suggested when the
number of nodes grows. Indeed, to interpolate with RBFs, we
need to solve a linear system whose system matrix belongs to
RVADX(N+1) In the considered examples, the polynomial
Vandermonde matrix has a smaller size. Precisely it belongs to
RWVADX(M+1) "and if M < N, this surely leads to a saving in
terms of memory needs. In view of these considerations, work
in progress consists in investigating the Fake Nodes scheme
in the context of other bio-medical applications such as image
denoising [_8], resolution approximation of an imaging system
[9] and MEG/EEG reconstruction [1]], [2]. Moreover we intend
to investigate the use of Fake Nodes interpolation in clinical
imaging studies [19]] and how the kernel Moving Least Squares
(see e.g. [18], [21]])) performs for MPI images.
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