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Abstract

In kernel-based approximation, it is well-known that the direct approach to in-
terpolation is prone to ill conditioning of the interpolation matrix. One simple idea
is to use other better-conditioned bases which span the same space of the translated
kernels i.e. their associated native space. Pazouki and Schaback (2011) [1] tracked
this issue by investigating different factorization of the interpolation matrix in order
to build stable and orthonormal bases for the corresponding native space of the pos-
itive definite kernels. In this paper, we work with the reproducing kernel K for the
native space NΦ corresponding to conditionally positive definite kernel Φ. We give
a well-organized matrix formulation of the evaluation matrix K by constructing the
matrices corresponding to cardinal bases from monomials. Then, we present two pos-
sible ways to find full-rank data-dependent orthonormal bases that are discretely ℓ2
and NΦ-orthonormal. The first approach is given by the factorization of the kernel
matrix K and the next one is based on the eigenpairs approximation of linear operator
associated with the reproducing kernel K given by Mercer’s theorem. In the sequel,
we employ the truncated singular value decomposition technique to find an optimal
low-rank basis with the coefficient matrix whose rank is less than that of the original
matrix. Special attention is also given to error analysis, duality, and stability. Some
numerical experiments are also provided.

1 Introduction

One of the most basic problems in approximation theory is to construct an
approximation of an unknown function f defined on a set Ω ⊂ Rd from n
specified distinct points X = {x1, ...,xn} ⊂ Ω. A simple approach consists
of choosing n functions and then looking for the unique combination of these
functions which effectively fits the data at the specified points X. To ensure
the success of this procedure, the set of chosen functions must be linearly
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independent over the set of interpolation points (also referred as data sites or
centers) X. In this setting, the so-called kernel methods are of growing im-
portance. The kernel can be Positive Definite (PD) or Conditionally Positive
Definite (CPD).

Definition 1. Let Φ : Ω × Ω → R be a continuous symmetric kernel. It
is said that Φ is a conditionally positive semi-definite kernel of order m on
Ω ⊂ Rd if, for all n ∈ N, all pairwise distinct centers {x1, . . . ,xn} ∈ Rd, and
all α ∈ Rn satisfying

n∑
j=1

αjp(xj) = 0, p ∈ Pd
m−1,

the quadratic form
n∑

i,j=1

αiαjΦ(xi,xj) ≥ 0.

Moreover, Φ is said to be conditionally positive definite (CPD) of order m

if equality holds only for α = 0. Finally, when m = 0 the kernel is posi-
tive (semi)-definite, i.e., conditionally positive (semi)-definite kernels of or-
der zero are positive (semi)-definite kernels.

Let Φ be a CPD kernel of order m and and p1, ..., pq be a basis for the
polynomial space Pd

m−1. Then, for the Pd
m−1-unisolvent set of data sites X

and function values f(xj) = fj ∈ R, 1 ≤ j ≤ n, the interpolant of unknown
function f can be written as

sf(x) =
n∑

j=1

cjΦ(x,xj) +

q∑
j=1

djpj(x), ∀ x ∈ Rd. (1)

In order to compute the coefficients cj and dj in (1), we may ask that sf
exactly reproduce the function values {fj}nj=1. This leads to the linear system[

A P
P T 0

] [
c
d

]
=

[
f
0

]
, (2)

with

A = [Φ(xi,xj)]1 ≤ i ≤ n
1 ≤ j ≤ n

, P = [pj(xi)]1 ≤ i ≤ n
1 ≤ j ≤ q

, f = [f(xj)]1 ≤ j ≤ n
,

2



which is uniquely solvable (cf. e.g. [2, Chap. 8]) To investigate the linear
system (2), consider the particular case m = 0 i.e., considering the positive
definite kernels. In this case, the corresponding interpolation system would
be

Ac = f (3)

Although the systems (3) are built to be well-posed for every data distri-
bution, it is also well-known (see e.g [3]) that the interpolation based on
translates of radial basis functions (RBFs) or non-radial kernels is numeri-
cally unstable due to the ill-conditioning of the kernel matrix A. Therefore,
it is natural to devise strategies to prevent such instabilities by either pre-
conditioning the system (see e.g [4]), or by finding a better basis for the
approximation space we are using. The latter case gave rise to stable algo-
rithms and has been introduced in [5] for the particular case of multiquadric
kernels, and extended later to kernels on the sphere in [6]. Another approach
for the construction of a better alternate basis for PD kernels has been in-
troduced in [7] and was extended later in [1]. The main idea is to produce
orthonormal data-dependent bases that span the associated native space NΦ

by decomposing the kernel matrix A using different factorization techniques,
such as SVD or Cholesky factorization. This has led to different bases with
different properties. For these new bases stability issues, recursive compati-
bility, duality and orthogonality properties were investigated.

Following such an idea, in [8] a particular orthonormal basis built on a
weighted singular value decomposition of the kernel matrix has been intro-
duced. This basis is also related to a discretization of the compact integral
operator TΦ given by Mercer’s theorem and provides a connection with the
continuous basis that arises from an eigendecomposition of TΦ.

Although effective, this basis is computationally expensive to compute, so
in [9] the authors discussed methods related to Krylov subspaces to compute
this basis in a fast way. Finally, in [10] the authors provide a new way to
compute and evaluate Gaussian RBF interpolants in a stable way by using
Hilbert-Schmidt series expansions of positive definite kernels.

Coming back to the CPD kernels, the linear system (2) may also suffer
from ill-conditioning for some constellations of the interpolation points (see
[11]). However, in contrast with the PD case, the literature contains very
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few contributions that address finding more stable basis for CPD kernels. An
exception is [12] in which the authors tried to extend the previous work in [1]
to the CPD case. But in their idea, it is impossible to have a full orthonormal
basis of n functions if q > 0. Explicitly, it is shown that one can not simply
use factorization techniques due to the augmented polynomial space, and
therefore some care needs to be taken. Another approach is taken in [13] to
find bases that are in a certain sense homogeneous, meaning that they are not
sensitive to poorly scaled problems. Some numerical results regarding these
homogeneous bases are also reported in [14, Chap. 34].

In this paper, we present some possible ways to find full-rank data-dependent
orthonormal bases that are discretely ℓ2 and NΦ-orthornormal. The paper is
organized as follows. In section (2) a brief review of the native space regard-
ing CPD kernels and their formulation in matrix form is provided. Section (3)
contains an analysis of different approaches to obtain more stable bases that
are full-rank orthonormal and span the same native space. Subsequently, in
section (4) we investigate the interpolant representation with respect to the
new bases and its error bounds. Section 5 is dedicated to analyzing dual of
the new bases and their relation with the corresponding evaluation matrices.
Finally, in section (6) some numerical tests are presented.

2 Preliminaries

In this section, we briefly review some basic notions regarding reproducing
kernel which is related to the CPD kernels. A vast discussion can be found
in [2, Chap. 10].

2.1 CPD kernels and associated native space

As mentioned before, the linear system arising in (2) becomes very ill-conditioned
as the number of the data sites X is increased [14]. Therefore it is natural to
devise strategies to prevent such instabilities by finding a more stable basis
for the approximation space. The process of finding a ”better” basis for CPD
kernels is closely connected to finding the reproducing kernel of the associated
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“native” space. To begin with, given α ∈ Rn, xj ∈ Ω such that

n∑
j=1

αjp(xj) = 0 for all p ∈ Pd
m−1,

then the space

HΦ(Ω) =

{
f : f =

n∑
j=1

αjΦ(·,xj)

}
,

is a pre-Hilbert space equipped with the inner product

⟨f, g⟩Φ =

〈
n∑

j=1

αjΦ(·,xj),
m∑
k=1

βkΦ(·,yk)

〉
Φ

=
n∑

j=1

m∑
k=1

αjβkΦ(xj,yk),

and the corresponding Hilbert-space by completion HΦ(Ω) = HΦ(Ω). Now
we define the mapping

R : HΦ(Ω) → C(Ω),

R(f(x)) = f(x)− Πf(x) = f(x)−
q∑

k=1

f(ξk)lk(x),

where lk, 1 ≤ k ≤ q, are the Lagrange basis of Pd
m−1 for the points Ξ =

{ξ1, . . . , ξq} which is assumed to be a Pd
m−1-unisolvent subset of X. Notice

that q = dim(Pd
m−1).

Definition 2. The native space corresponding to a symmetric kernel Φ that
is CPD of order m on Ω is defined by

NΦ(Ω) = R(HΦ(Ω))⊕ Pd
m−1,

equipped with the inner product

⟨f, g⟩NΦ
= ⟨f, g⟩+

q∑
k=1

f(ξk)g(ξk),

where

⟨f, g⟩ =
〈
R−1(f − Πf), R−1(g − Πg)

〉
Φ
.
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With this inner product, NΦ(Ω) becomes a reproducing-kernel Hilbert
space with the kernel

K(x,y) = Φ(x,y)−
q∑

k=1

lk(x)Φ(ξk,y)−
q∑

r=1

lr(y)Φ(x, ξr)

+

q∑
k=1

q∑
r=1

lk(x)lr(y)Φ(ξk, ξr) +

q∑
k=1

lk(x)lk(y). (4)

An advantage of having found the reproducing kernelK is that we can express
the kernel-based interpolant of some function f at a given data set X as

sf(x) =
n∑

j=1

αjK(x,xj), x ∈ Rd.

Note that the kernel K used here is a PD kernel (since it is a reproduc-
ing kernel) with built-in polynomial precision. The coefficients αj are then
determined by the interpolation conditions

sf(xi) = f(xi), i = 1, . . . , n.

In order to obtain a better conditioned interpolation system, we aim to find
different bases for the approximation space.

2.2 Matrix formulation

We start by providing an explicit representation for the matrixK = [K(xi,xj)]1 ≤ i ≤ n
1 ≤ j ≤ n

by considering a cardinal basis of the polynomial-based space. In fact, the
Lagrange basis l = [l1, . . . , lq] , can be expressed by the standard monomials
m̃ = [m̃1, . . . , m̃q] (cf. e.g. [15]) via

l(x) = m̃(x) · Cl, ∀x ∈ Ω (5)

where Cl is known as the construction matrix. Letting

[lj(ξi)]1 ≤ i ≤ q
1 ≤ j ≤ q

= I,
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and the Vandermonde matrix

V = [m̃j(ξi)]1 ≤ i ≤ q
1 ≤ j ≤ q

then by (5)
Cl = V −1.

If the Lagrange basis is needed at another set of evaluation points, say Y =
{y1, . . . ,ys}, by equation (5) we get

V TLT
Y = V T

Y ,

where
LY = [lj(yi)]1 ≤ i ≤ s

1 ≤ j ≤ q

, VY = [m̃j(yi)]1 ≤ i ≤ s
1 ≤ j ≤ q

.

Hence, for the kernel matrix K = K(xi,xj) with

K(xi,xj) = Φ(xi,xj)−
q∑

k=1

lk(xi)Φ(ξk,xj)−
q∑

r=1

lr(xj)Φ(xi, ξr) (6)

+

q∑
k=1

q∑
r=1

lk(xi)lr(xj)Φ(ξk, ξr) +

q∑
k=1

lk(xi)lk(xj), i, j = 1, . . . , n.

we get
K = A− L1 · A1 − A2 · LT

1 + L1 · A3 · LT
1 + L1 · LT

1 ,

where

L1 = [lk(xi)]1 ≤ i ≤ n
1 ≤ k ≤ q

, A1 = [Φ(ξk,xj)]1 ≤ k ≤ q
1 ≤ j ≤ n

,

A2 = [Φ(xi, ξr)]1 ≤ i ≤ n
1 ≤ r ≤ q

, A3 = [Φ(ξk, ξr)]1 ≤ k ≤ q
1 ≤ r ≤ q

.

To end this section, we list the most commonly used global CPD RBFs ϕ(r)
in Table 1, where β is the RBF parameter and ε is the shape parameter
that decide the flatness of the basis and can be found numerically for getting
accurate numerical solutions and conditioning of the collocation matrix.
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Table 1: Some global CPD RBFs

Name ϕ(r) Condition Order (m)

Generalized Multiquadrics (MQ) (−1)⌈β⌉
(
1 + (ϵr)2

)β
0 < β ̸∈ N ⌈β⌉

Radial powers (−1)⌈
β
2
⌉rβ 0 < β ̸∈ 2N ⌈β2 ⌉

Thin-plate splines (TPS) (−1)β+1r2β log(r) β ∈ N β + 1

3 Full-rank orthonormal bases

In what follows, we investigate suitable bases for subspaces of NΦ(Ω) when Φ
is CPD. Hence, let Φ be a fixed CPD kernel with corresponding reproducing
kernel K in (6), X = {x1, ...,xn} a fixed set of centers, and U = [u1, . . . , un]
a general data-dependent basis such that

NΦ(X) = span{K(·,xj) : xj ∈ X} = span{u1, ..., un} ⊂ NΦ(Ω).

Following [1], any element of the basis U can be written as a linear combi-
nations of the translates K(·,xj), j = 1, ..., n via the construction matrix
C

ui =
n∑

j=1

K(·,xj)cji, 1 ≤ i ≤ n, (7)

or in the matrix form

E = KC, (8)

where E = [uj(xi))]1≤i,j≤n. In what follows, instead of NΦ(X) we use NΦ.

Theorem 1. The NΦ and ℓ2 Gramian matrices associated with the general
basis U are symmetric and positive definite with full-rank n.

Proof. The Gramian matrices associated with the basis U corresponding to
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the NΦ and ℓ2 are

GNΦ
= [⟨ui, uj⟩NΦ

]1 ≤ i ≤ n
1 ≤ j ≤ n

= CTKC,

Gℓ2 = [⟨ui, uj⟩ℓ2]1 ≤ i ≤ n
1 ≤ j ≤ n

=

(
n∑

k=1

ui(xk)uj(xk)

)
1 ≤ i ≤ n
1 ≤ j ≤ n

= ETE = CTK2C.

The evaluation matrix E is necessarily full-rank because the basis must allow
unique interpolation on X. Since C = K−1E the construction matrix C is
also full-rank, it results the same for GNΦ

and Gℓ2.The matrices GNΦ
and Gℓ2

are clearly symmetric. Now, since K is a positive definite matrix then, for
all nonzero vectors z ∈ Rn, we have

zT ·GNΦ
· z = (Cz)TK(Cz) > 0.

and since E is a full-rank matrix similarly

zT ·Gℓ2 · z = ⟨Ez, Ez⟩ = ∥Ez∥2 > 0.

We have then show that GNΦ
and Gℓ2 are positive definite.

Remark 1. Suppose that we construct the evaluation matrix E through the
augmented system[

En×n

0q×n

]
=

[
An×n Pn×q

P T
q×n 0q×q

] [
C̃n×n

D̃q×n

]
.

The moment conditions P T C̃ = 0, reveals that the n × n matrix C has rank
n− q and the evaluation matrix E is necessarily rank n, since the basis must
allow unique interpolation on X. Then the Gramian matrix GNΦ

= C̃TE is
symmetric and positive semi-definite with rank n − q. So it is impossible to
have a full orthonormal bases if q > 0.

The above remark highlights why we prefer to use the reproducing kernel
rather than the standard bases with augmented polynomials. Besides, it must
be noted that we assumed that the space NΦ(X) is fixed, meaning that the
data sites X have been specified once. This clarifies why the new bases U
are data-dependent.

In the following, we address two possible ways to find data-dependent
orthonormal bases corresponding to the CPD kernel Φ on a domain Ω ⊂ Rd.
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3.1 Matrix decomposition approach

According to [1] equation (8) reveals that one can find data-dependent basis
U from the decomposition of the symmetric and positive definite matrix K
corresponding to the CPD kernel Φ since

K = EC−1.

We can characterize NΦ and discretely ℓ2 orthonormal bases based on the
Gramian matrices as follows:

1) For NΦ−orthonormal bases, we have

GNΦ
= I ⇐⇒ CTKC = I ⇐⇒ K = (C−1)TC−1 ⇐⇒ E = (C−1)T .

Then, there are two important cases.

i) The Choleskey decomposition K = LLT with a nonsingular lower
triangular matrix L which leads to the Newton basis with a different
normalization [7]. In this case E = L and C = (LT )−1.

ii) The singular value decomposition (SVD) decomposition of the form
K = QDQT with an orthogonal matrix Q and a diagonal matrix D

having the eigenvalues of K on its diagonal. In this case E = Q
√
D

and C = Q
(√

D
)−1

.

2) For ℓ2−orthonormal bases, we have

Gℓ2 = I ⇐⇒ CTKTKC = I ⇐⇒ KC = Q ⇐⇒ K = QC−1 ⇐⇒ E = Q.

Also here there are two important special cases.

i) The standardQR decompositionK = QR into an orthogonal matrix
Q and an upper triangular matrix R will lead to a basis with E = Q
and C = R−1.

ii) The SVD of K = QDQT which leads to E = Q and C = Q(D)−1.
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3.2 Eigenpairs approximation approach

We discuss another family of orthonormal bases based on the eigenvalues and
eigenfunctions of Hilbert-Schmidt operator [16, Chap.2] associated with the
reproducing kernelK given in (4). Mercer’s theorem expresses the connection
of such a linear operator with the infinite series representation of a positive
definite kernel.

Theorem 2. (Mercer’s theorem) Let K be a continuous positive definite
kernel that satisfies∫

Ω

K(x,y)v(x)v(y)dxdy ≥ 0, ∀v ∈ L2(Ω), x,y ∈ Ω.

Then K can be represented by

K(x,y) =
∞∑
j=1

λjũj(x)ũj(y), (9)

where λj are the eigenvalues and ũj are the L2-orthonormal eigenfunctions
of the operator TK : L2(Ω) → L2(Ω) given by

TK(v)(x) =

∫
Ω

K(x,y)v(y)dy, v ∈ L2(Ω), x ∈ Ω.

Moreover, this representation is absolutely and uniformly convergent.

Theorem 2 can lead to another characterization of the Native space NΦ(Ω)
as

NΦ(Ω) =

{
f : f =

∞∑
j=1

cjũj

}
,

where the kernel K itself is in NΦ(Ω) because of the eigenfunction expansion
(9). The reproducing property of the kernel K should be checked by the
following equation

⟨f(·), K(·,x)⟩NΦ
=

〈 ∞∑
j=1

cjũj(·),
∞∑
j=1

λjuj(·)ũj(x)

〉
NΦ

=
∞∑
j=1

cjũj(x) = f(x),
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which leads to the NΦ(Ω)-orthogonality of the eigenfunctions

⟨ũi, ũj⟩NΦ
=

δij√
λi

√
λj

. (10)

The inner product for NΦ(Ω) is then given by

⟨f, g⟩NΦ
=

〈 ∞∑
j=1

cjũj,
∞∑
i=1

diũi

〉
NΦ

=
∞∑
j=1

cjdj
λj

.

Equation (10) reveals two important cases for the basis functions.

i) Basis functions

{uj}∞j=1 =
{√

λjũj

}∞

j=1
, ∥uj∥2NΦ

= 1, ∥uj∥2L2
= λj (11)

which is orthonormal in NΦ(Ω) and orthogonal in L2(Ω).

ii) Basis functions

{vj}∞j=1 = {ũj}∞j=1 , ∥vj∥2NΦ
=

1

λj
, ∥vj∥2L2

= 1 (12)

which is orthogonal in NΦ(Ω) and orthonormal in L2(Ω).

Unfortunately, in most cases, eigenpairs of the operator TK are not known
analytically. The exception is the Gaussian kernel which is a PD kernel
by definition. On the other hand, to our knowledge, no research has been
conducted on investigating the analytical form of the eigenpairs related to
CPD kernels in (4). Thus it will be required to approximate them using
numerical schemes. This leads to the following eigenvalue problem on X∫

Ω

K(xi,y)ũj(y)dy = λjũj(xi), i = 1, . . . , n, ∀j > 0,

which can be discretized by using the symmetric Nyström method [17], giving

n∑
r=1

K(xi,xr)ũj(xr)wr ≈ λjũj(xi), i, j = 1, . . . , n, (13)

12



with a set of positive weights {wr}nr=1. Equation (13) can be re-written in
matrix form

(KW )ẽ(j) = λjẽ
(j), j = 1, . . . , n,

with

W = diag(wr),

ẽ(j) = [ũj(xi))]1 ≤ i ≤ n
. (14)

Then, the continuum eigenvalue problem reduces the solution of an unsym-
metric eigenvalue problem

(KW )ẽ = λẽ, (15)

for the positive definite matrix KW . One possible way to deal with (15)
would be to make some manipulation to convert the unsymmetric problem
of (15) to the following symmetric one

(
√
WK

√
W )(

√
W · ẽ) = λ(

√
W · ẽ).

Now, the SVD decomposition for the symmetric matrices, which is nothing
that a unitary diagonalization, leads to

√
WK

√
W = QDQT , (16)

where D = diag(λj),

Q =
[√

W ẽ(1), . . . ,
√
W ẽ(n)

]
,

is an orthogonal matrix w.r.t the Euclidean norm. Equations (11), (12), and
(14) lead to the evaluation matrices

i) E1 = [uj(xi))]1 ≤ i ≤ n
1 ≤ j ≤ n

=
[√

λjũj(xi))
]
1 ≤ i ≤ n
1 ≤ j ≤ n

=
[√

λ1ẽ
(1), . . . ,

√
λnẽ

(n)
]
=(√

W
)−1

Q
√
D.

ii) E2 = [vj(xi))]1 ≤ i ≤ n
1 ≤ j ≤ n

= [ũj(xi))]1 ≤ i ≤ n
1 ≤ j ≤ n

=
[
ẽ(1), . . . , ẽ(n)

]
=
(√

W
)−1

Q.
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According to (8) and (16), the corresponding construction matrices can be
derived

i) CU = K−1E1 =
√
WQD−1QT

√
W
(√

W
)−1

Q
√
D =

√
WQ

(√
D
)−1

ii) CV = K−1E2 =
√
WQD−1QT

√
W
(√

W
)−1

Q =
√
WQD−1.

By considering the discretized scaled inner product

⟨f, g⟩2ℓ2,w =
n∑

j=1

wjf(xj)g(xj) ≈ ⟨f, g⟩2L2(Ω)
=

∫
Ω

f(x)g(x)dx,

we have NΦ−orthonormal and ℓ2,w−orthogonal basis functions

uj(x) =
n∑

i=1

K(x,xi)cij =
n∑

i=1

K(x,xi)

√
wi√
λj

Q(i, j)

=
n∑

i=1

K(x,xi)

√
wi√
λj

√
wi√
λj

E1(i, j) =
1

λj

n∑
i=1

wiK(x,xi)uj(xi),

with ∥uj∥2ℓ2,w = λj, andNΦ−orthogonal and ℓ2,w−orthonormal basis functions

vj(x) =
n∑

i=1

K(x,xi)cij =
n∑

i=1

K(x,xi)

√
wi

λj
Q(i, j)

=
n∑

i=1

K(x,xi)

√
wi

λj

√
wiE2(i, j) =

1

λj

n∑
i=1

wiK(x,xi)vj(xi),

with ∥vj∥2NΦ
= 1

λj
.

Remark 2. According to this theory, we can deduce that all data-dependent
bases, which are both discretely and Nϕ-orthogonal, are scaled SVD bases
derived from the eigenpairs approximation approach. It is also clear that the
SVD bases given in 3.1 are special cases of the general bases given in this
section.

Remark 3. The reader should note that the expansion series in (9) is valid
only for the PD kernels. So, working with the associated reproducing kernel of
a CPD kernel rather than the standard basis itself, enables us to use Mercer’s
theorem and find two additional classes of bases.
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3.3 Low-rank approximation

As stated before, one of the defining features of a reproducing kernel (invert-
ibility of the kernel matrix) was lost in the translation between theory and
implementation since the numerical rank of K is often much lower than n
and so the matrix K is ill-conditioned. In other words, for many kernels,
the eigenvalues in (9) decrease very rapidly toward zero, and this implies
that there is a very good low-rank approximation to the kernel. Notice that
vectors involved in kernel representation in (9), are of infinite size and so
need to be truncated at some finite length M possibly mush smaller than n.
Accordingly, we have the following theorem from [18].

Theorem 3. Let K : Ω × Ω → R be a PD kernel with Mercer series (9).
Then, M-term truncation

KM(x,y) =
M∑
n=1

λnũj(x)ũj(y), (17)

for a fixed x provides the best M-term least squares approximation of K(x,y)
from L2(Ω).

The summation (17) yields the bestM−term approximation of each kernel
matrix in L2(Ω) norm, but this in not necessarily the best low-rank approxi-
mation in the 2-norm sense. Therefore we consider SVD low-rank representa-
tion (truncated SVD) of the kernel matrix K which is obtained by discarding
all but the k largest eigenvalues and the corresponding eigenvectors and is
represented as

Kk = QkDkQ
T
k , (18)

where Qk ∈ Rn×k and Dk ∈ Rk×k. It means that Kk is the projection of the
K onto the space spanned by the top k eigenvectors of K. The followings
state that the above approximation is the best rank-k approximation in both
Frobenius and spectral norm.

Theorem 4. (Eckart-Young [19]) Let Ak be the rank-k approximation of
A achieved by truncated SVD. Then Ak is the closest rank-k matrix to A, i.e.

min
rank(G)=k

∥A−G∥F = ∥A− Ak∥F =
√

σ2
k+1 + · · ·+ σ2

r ,
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where σi’s denote singular values of A and G is an arbitrary rank-k matrix.

Remark 4. SVD also gives the best low rank approximation in spectral norm
i.e.

min
rank(G)=k

∥E −G∥2 = ∥E − Ek∥2 = σk+1.

So the rank-reduced system will be very close to the exact system but with
a more well-behaved linear system with better-conditioned value matrix [20].
Accordingly, the evaluation matrix of the new bases can be represented as

E1k = Qk

√
Dk,

E2k = Qk, (19)

such that E1k, E2k ∈ Rn×k.

Remark 5. One should notice that in order to consider the truncated SVD,
it requires that there exists well-defined gap in the singular values, i.e., σk+1

σk

must be large enough. Otherwise determination of the optimal rank k would
be complicated and low rank approximation of matrix K is meaningless. A
detailed discussion is available in [20, Chap 12.2].

4 Application to interpolation

4.1 General interpolant

Having derived different types of data-dependent bases U , the interpolant
sf ∈ NΦ to vector values f of some function f , can be represented as

sf(x) =
n∑

j=1

αjuj(x),

where the coefficients αj are determined by solving the linear system

Eα = f , (20)

where α = [αj]1 ≤ j ≤ n
and E = [uj(xi))]1 ≤ i ≤ n

1 ≤ j ≤ n

can be one of the evaluation

matrices obtained in Subsections 3.1 or 3.2. Once the coefficient vector α

16



is calculated through (20), one can obtain the approximate function values
FY ≈ fY = [f(yi)]1 ≤ i ≤ s at the set of test points Y = {y1, . . . ,ys} by

FY = EY · α, (21)

where EY = [uj(yi)]1 ≤ i ≤ s
1 ≤ j ≤ n

is obtained by (8) as

EY = KYC,

where C is the corresponding construction matrices andKY = [K(yi,xj)]1 ≤ i ≤ s
1 ≤ j ≤ n

can be computed via the same procedure explained at the end of Section 2.

Theorem 5. The evaluation matrices of the NΦ and ℓ2,w−orthonormal basis
functions are better conditioned than the kernel matrix K.

Proof. If E is the evaluation matrix corresponding to a ℓ2,w−orthonormal
basis then it is an orthogonal matrix and so cond2,w(E) = 1. Now let E

be the evaluation matrix corresponding to a NΦ−orthonormal basis derived
from the general scaled SVD bases, then

E =
(√

W
)−1

Q
√
D.

Moreover according to (16), we have

K = (
√
W )

−1
Q
√
D
√
DQT (

√
W )

−1
= EET ,

and

(
√
D)

−1
QT

√
WEET

√
WQ(

√
D)

−1
= I.

Therefore
Q̂ = (

√
D)

−1
QT

√
WE,

is an orthogonal matrix w.r.t the norm ∥ · ∥ℓ2,w , which in turn gives

E =
(√

W
)−1

Q
√
DQ̂,

that is nothing with the SVD of the matrix E. Therefore the spectral condi-
tion number of E is the square root of the spectral condition number of K.
The same theory can be used for the Newton basis functions given in 3.1.
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Remark 6. If linear maps L like derivatives have to be evaluated, we use the
system

LEY = LKYC,

where LEY = [Luj(yi)]1 ≤ i ≤ s
1 ≤ j ≤ n

and LKY = [LK(yi,xj)]1 ≤ i ≤ s
1 ≤ j ≤ n

is given by

applying the operator L to the reproducing kernel (6) and doing the same
procedure explained at the end of Section 2.

4.2 Error bound

In this section we provide the error estimate for the approximation given in
(21). First the following stability issue is proved.

Theorem 6. For a fixed CPD kernel Φ, fixed set of center points X =
{x1, ...,xn}, general data-dependent bases U , and f ∈ NΦ, the following sta-
bility estimate holds for the approximate function values FY at the set of test
points Y = {y1, . . . ,ys},

∥FY ∥22 ≤ s · ρ(K̃) · cond2(GNΦ
) · ∥f∥2NΦ

,

where cond2(GNΦ
) is the spectral condition number of the NΦ−Gramian, ρ

is the spectral radius, and K̃ = [K(yi,yi)]1 ≤ i ≤ s
1 ≤ i ≤ s

for the corresponding repro-

ducing kernel K.

Proof. Since Frobenius norm is compatible with the euclidean norm, accord-
ing to (21), we have

∥FY ∥22 = ∥EY · α∥22 ≤ ∥EY ∥2F ∥α∥22 . (22)

Now according to (20), we get

αTGNΦ
α ≤ ∥f∥2NΦ

.

Since

αTGNΦ
α = ⟨α,GNΦ

α⟩ ≤ ∥α∥2∥GNΦ
α∥2 ≤ ∥α∥22∥GNΦ

∥2 = ρ(GNΦ
)∥α∥22,

then

ρ(GNΦ
)∥α∥22 ≤ ∥f∥2NΦ

.

18



Therefore

∥α∥22 ≤ ∥f∥2NΦ
ρ(G−1

NΦ
). (23)

Moreover, we have

K
(i)
Y K−1

(
K

(i)
Y

)T
= K(yi,yi)− P 2

Φ,X(yi), i = 1, . . . , s

where K
(i)
Y is the i−th row of the matrix KY and PΦ,X is the so-called power

function. Now according to (8), we get

E
(i)
Y C−1K−1

(
C−1

)T (
E

(i)
Y

)T
= K(yi,yi)− P 2

Φ,X(yi), i = 1, . . . , s

where E
(i)
Y is the i-th row of the matrix EY . Therefore

E
(i)
Y (GNΦ

)−1
(
E

(i)
Y

)T
= K(yi,yi)− P 2

Φ,Xyi) ≤ K(yi,yi), i = 1, . . . , s

which leads to

∥E(i)
Y ∥22 ≤ K(yi,yi)ρ(GNΦ

), i = 1, . . . , s

Now since

∥EY ∥2F =
s∑

i=1

∥E(i)
Y ∥22,

we have

∥EY ∥2F ≤ tr(K̃)ρ(GNΦ
) ≤ s · ρ(K̃) · ρ(GNΦ

). (24)

So by substituting (23) and (24) in (22), the proof is completed.

Theorem 7. For a fixed CPD kernel Φ, general data-dependent bases U , and
f ∈ NΦ, the following error bound holds

∥fY −FY ∥22 ≤
(
s · ρ(K̃)− ρ(G−1

NΦ
) ∥EY ∥2F

)
∥f∥2NΦ
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Proof.

∥fY −FY ∥22 =
s∑

i=1

|f(yi)− sf(yi)|2 ≤
s∑

i=1

P 2
Φ,X(yi)∥f∥2NΦ

=
s∑

i=1

(
K(yi,yi)− E

(i)
Y (GNΦ

)−1
(
E

(i)
Y

)T)
∥f∥2NΦ

≤

(
tr(K̃)−

s∑
i=1

(
ρ(G−1

NΦ
)∥E(i)

Y ∥22
))

∥f∥2NΦ

≤
(
s · ρ(K̃)− ρ(G−1

NΦ
) ∥EY ∥2F

)
∥f∥2NΦ

.

Remark 7. For the pointwise behaviour of the NΦ−orthonormal basis U , the
bounds obtained above become

|sf(y)| ≤
√

K(y,y) · ∥f∥NΦ
,

|f(y)− sf(y)| ≤
√
K(y,y)− ∥U(y)∥22 · ∥f∥NΦ

,

for fixed y ∈ Ω.

5 Duality

The goal of this section is to construct new class of bases that are dual to
the general data-dependent bases U = [u1, . . . , un] , proposed for the finite-
dimensional inner product subspace NΦ of the native space NΦ(Ω) associated
to the CPD kernel Φ. The dual space NΦ

∗ consists of all linear functionals
on NΦ. Consider the dual functionals ηi such that

ηi(α1u1 + · · ·+ αnun) = αi, αi ∈ R, i = 1, . . . , n,

which in turn leads to

ηi(uj) = δij.

Then any linear functional η ∈ NΦ
∗ can be written as

η = η(u1)η1 + η(u2)η2 + · · ·+ η(un)ηn.
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Now by the Riesz Representation Theorem, every linear functional on NΦ
∗

has a representer in NΦ. That is, for each ηi, there exists di ∈ NΦ such that

ηi(uj) = ⟨uj, di⟩ = δij. (25)

Therefore, we associate Λ = [η1, . . . , ηn] with the representersD = [d1, . . . , dn].
Since Λ is linearly independent in NΦ

∗ and dual to U , then the so-called dual
basis D is linearly independent in NΦ and also dual to U . Now let (NΦ, U,D)
with basis U = [u1, . . . , un] and dual basis D = [d1, . . . , dn], then we can view
the basis U as the map

U : Rn → NΦ

α → U(α) =
n∑

j=1

αjUj,

and likewise, the dual basis D as

D : Rn → NΦ

α → D(α) =
n∑

j=1

αjdj.

Also the following dual map for identifying the dual space NΦ
∗ with NΦ

D∗ : NΦ → Rn

f → D∗(f) = [⟨f, d1⟩, . . . , ⟨f, dn⟩]T .

Then according to (25), D is dual to U exactly when

D∗(U) = [⟨uj, di⟩NΦ
]1 ≤ i ≤ n
1 ≤ i ≤ n

= I.

Theorem 8. Let U be a general data-dependent basis, then for (NΦ, U,D),
the dual basis D can be expressed in terms of the basis U as

D = UC,

where

C = (U ∗(U))−1,

is a symmetric, positive definite and full-rank n× n matrix.
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Proof. Let D = UC, then by applying U ∗ to both sides, we get

U ∗(D) = U ∗(U)C,

which leads to
C = (U ∗(U))−1U ∗(D).

Since D is dual to U , this reduces to C = (U ∗(U))−1, which is nothing with
the inverse of the NΦ-Gramian matrix as

C =

(
[⟨ui, uj⟩NΦ

]1 ≤ i ≤ n
1 ≤ j ≤ n

)−1

= (GNΦ
)−1 ,

that is symmetric and positive definite with rank n.

Remark 8. For (NΦ, T,D), with the basis of translates

T = [K(·,x1), . . . , K(·,xn))] ,

we have
C = (T ∗(T ))−1 = K−1,

then
D = TK−1.

So the Lagrange basis and the basis T of translates are a dual pair.

Remark 9. Among all data-dependent bases, the NΦ-orthonormal bases are
exactly those which are self-dual, since C = I.

Theorem 9. Let U be a general data-dependent basis, then for (NΦ, U,D),
the dual basis D can be expressed in terms of the basis T of translates as

D = T (ET )−1,

where E is the evaluation matrix.

Proof. According to Theorem 8 and equation (7), we have

D = UC = TC(CTKC)−1 = TK−1(CT )−1 = T (ET )−1.
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Theorem 10. Let V be the ℓ2,w−orthonormal basis functions proposed in
Section 3.2, then for (NΦ, V,D), the dual basis D can be expressed in terms
of the basis T of translates as

D = T
√
WQ.

Proof. According to the above theorem, we get

D = T (ET
2 )

−1 = T (QT (
√
W )−1)−1 = T

√
WQ.

6 Numerical Experiments

For the numerical experiments, we consider three different underlying func-
tions and three different types of CPD kernels all of order 2, namely

• Generalized MQ RBF with β = 3
2 .

• Cubic RBF φc(r) = r3 which is shape parameter free;

• Thin plate spline RBF φtps(r) = r2 log(r) which is shape parameter free
too,

where r = ∥x − y∥2 with x,y ∈ Ω ⊂ Rd. In the following subsection,
standard basis refers to any of the above RBFs appended by polynomial
space of the required degree (1), and Reproducing kernel refers to the
corresponding PD kernel in (4). Besides, by truncated SVD basis we mean
the basis explained in subsection 3.3 such that the evaluation is selected to
be E1k in (19).

Moreover, working with generalized MQ RBF, one always needs to find
the optimal value of shape parameter ε, which depends on the number and
constellation of the data sites. In particular, ε values have significant effects
both on the accuracy and stability of the interpolation process. However, we
skip this task and we always let ε = 1, since our numerical experiments show
that with the suggested alternate bases we obtain good accuracy even without
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n standard gMQ Reproducing Kernel SVD Bases
20 1.9687e +17 1.5468e+17 3.9330e+08
50 9.3105e+17 2.3023e+18 1.0946e+08
80 1.2990e+19 5.5690e+18 1.0174e+08
110 1.2637e+19 3.0754e+18 1.2553e+08
150 5.0118e+19 1.911e+19 1.3472e+08

Table 2: 2-norm condition number of the interpolation matrix for different bases; Test
problem 1.

optimizing the shape parameter. Moreover, in order to compute the accuracy
of the interpolation, the root mean square error (RMSE) is computed as

RMSE =

√√√√1

s

s∑
i=1

(f(zi)− sf(zi))2 (26)

where {zi}si=1 is the set of evaluation points.

6.1 Test problem 1

Let us consider the Runge function

f(x) =
1

1 + 25x2
, x ∈ [−1, 1].

We reconstruct f using uniformly distributed center points with different sizes
n = {20, 50, 80, 110, 150}. Regarding the size of data sites, our interpolant is
evaluated over an equispaced point set on Ω with size s = 5n. To evaluate
the reproducing kernel (4) we let Ξ = {0, 1} to form the Lagrange linear
bases for the polynomial space. Table 2 shows the ℓ2 condition number of the
interpolation matrix using different bases. It is observable that SVD bases
lead to better conditioning. Figure 1(a) shows how more stable bases lead
to better accuracy, particularly for an underlying function that is prone to
inaccurate interpolation due to its intrinsic oscillatory behavior.
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(a) (b)

Figure 1: RMSE of Runge’s (a) and Franke’s functions (b) approximants using different
bases; Test problems 1 and 2.

n standard gMQ Reproducing Kernel Truncated SVD
9 2.5275e+05 7.5530e+04 274.8278
25 9.9028e+08 4.5283e+08 2.1280e+04
81 2.7716e+15 1.4380e+15 2.4357e+05
289 2.8478e+19 8.9075e+18 5.1423e+05
1089 5.6001e+20 6.1388+19 9.5946e+05
4225 3.9644e+21 1.1233e+22 1.9277e+06
10000 5.5799e+22 3.2801e+21 2.8522e+06

Table 3: 2-norm condition number of interpolation matrix for different bases; Test problem
2.

6.2 Test problem 2

For the second test problem, we take the Franke function, [14, Chap 2] de-
fined on Ω = [0, 1]2 ⊂ R2 as the target function. The interpolation this
time is done at the sequence of Halton center points with different sizes n =
{9, 25, 81, 289, 1089, 4225, 10000}. Moreover, let Ξ = {(0, 0), (0, 1), (1, 0)}
representing the Lagrange linear polynomials. Similarly, for each n, the in-
terpolant is evaluated over a uniform grid with size s = 2n on the domain
of interest. We consider truncated SVD bases, with threshold δ = 10−9,
obtained by trial and error. It means zeroing all the eigenvalues of the inter-
polation matrix K which are smaller than δ. Table 3 shows the ℓ2 condition
number of the interpolation matrix for different bases. In Figure (1)(b), we
show the RMSE of the interpolation using these 3 different bases. Once more,
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we recall that we avoided any shape parameter value optimization algorithm
and we just let ε = 1.

6.3 Test problem 3

Here, we reconstruct the oscillatory function f(x,y) = cos(20(x+y)) defined
on the unit disk with center (0, 0). In order to do so, consider the data set X
consisting of 3000 Halton points on the unit disk (see Figure 2(a)), Ξ as in the
previous example, and the truncation sequence k = {20, 100, 500, 1100, 1800, 2400}
meaning that, in the first experiment, we take 20 singular values resulted from
the SVD decomposition of the kernel matrix K in (6). We use φc and φtps

RBFs to approximate f(x,y). To measure the accuracy of the reproduction
process, we computed the RMSE on an equally spaced grid of evaluation
points with size s = 6000 on the domain. Figure 2(b) shows that indeed
there is a very good low-rank approximation to the problem.

(a) (b)

Figure 2: Data sites X and the RMSE resulted from Truncated SVD approximation for two
different bases; Test problem 3.

Remark 10. We have to highlight that according to our discussion in 2.1,
one always needs to make sure that the set Ξ ⊂ X, meaning that the subset
used to build the Lagrange polynomials must belong to the set of data sites.

Remark 11. In all three experiments, one can see that the RMSE resulting
from SVD bases are stuck after some step. In other words, the increase of the
number of data sites do not lead to an increase of accuracy. This behavior

26



stems from the fact after some steps the singular values of the kernel matrix
are too small and so they have only subtle effects on the interpolation.

7 Conclusion

Two different approaches have been presented to construct new stable bases
for CPD kernels. Both of these approaches are based on working with repro-
ducing kernel of the corresponding Native Space of CPD kernels. Inspired
by [1], we investigated different factorizations of the kernel matrix to obtain
other bases with different features. Besides, working with reproducing kernel
that is always a PD kernel by definition, we relate CPD kernels to the Mercer
theorem to find ”natural” class of basis. We also investigated the dual bases
of the general data-dependent bases.

Regarding the stability, the experiments confirm the good behavior of the
new bases expected from the analysis conducted in the previous sections.
More precisely, employing a low-rank approximation of the kernel matrix
enables the handling of approximations involving a relatively large number
of points also for not optimized shape parameters, and on quite general sets.
From a numerical point of view, this procedure can be accomplished without
thinning the data sites X ⊂ Ω, but simply checking if the singular values of
the kernel matrix decay under a certain tolerance.

Last but not least, as future work one may consider Remark 6, in order to
employ all these new stable bases to solve PDE problems.
Another facet of the newly established foundation through SVD factorization
is its inability to employ an adaptive algorithm for singular value computa-
tion, instead necessitating a complete matrix factorization for every fixed
point distribution. In this case, we can refer to optimized eigenvalue algo-
rithms for finding only a subset of the full spectrum of the kernel matrix such
those presented for example in [21, 9].
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