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Abstract

This paper presents a novel geometric framework for analyzing radial basis functions (RBFs) in
two dimensions by interpreting them as surfaces of revolution and applying differential geome-
try tools to establish fundamental connections between curvature properties and interpolation
performance. We derive explicit expressions for Gaussian and mean curvatures using fundamen-
tal forms, leading to a curvature-based classification that distinguishes scalable from unscalable
RBFs. Our theoretical analysis reveals that scalable RBFs converge to congruent surfaces as
shape parameters approach zero, with curvature convergence rates serving as fundamental pre-
dictors of practical performance. RBFs exhibiting slow curvature convergence maintain richer
approximation spaces while avoiding numerical instability from excessive flattening. Through
systematic examination of commonly used scalable RBFs, we establish that Matérn functions
demonstrate the slowest convergence rates among both infinitely smooth RBFs (Gaussian, Mul-
tiquadric, Hyperbolic Secant, RTH) and finitely smooth compactly supported Wendland func-
tions. Numerical experiments on challenging test problems demonstrate that the Matérn RBF
achieves substantially lower errors than competing methods while maintaining stability under
conditions causing catastrophic failure in Gaussian and RTH RBFs, and outperforming Wend-
land functions across various values of N . Additionally, unscalable RBFs such as thin plate
splines and radial powers, when augmented with polynomials, exhibit inherently stable curva-
ture behavior and provide parameter-free exact reproduction for planar surfaces. This geometric
framework establishes curvature convergence analysis as an essential theoretical foundation for
RBF selection and performance optimization in practical interpolation applications.

Keywords: Radial basis functions, Differential geometry, Surface of revolution, Gaussian
curvature, Mean curvature

1. Introduction

Radial basis function (RBF) methods have emerged as one of the most powerful and versatile
tools for scattered data interpolation and approximation, finding extensive applications across
diverse scientific and engineering domains. Given a set of N scattered distinct points {Xj}Nj=1 ⊂
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Rd and corresponding data values {fj}Nj=1, the RBF interpolant is constructed as

s(X) =
N∑
j=1

λjϕ(∥X −Xj∥), (1)

where r = ∥X∥ is the Euclidean norm. ϕ(r) represents a radial function and the expansion
coefficients λj are determined from the interpolation conditions s(Xj) = fj , j = 1, . . . , N . This
leads to the solution of a symmetric linear system Aλ = f , where A = [ϕ(∥Xi −Xj∥)]1≤i,j≤N ,
f = [f(Xj)]1≤j≤N . The existence of a unique solution is guaranteed for positive definite RBFs,
while conditionally positive definite RBFs require the addition of lower-degree polynomials to
ensure well-posedness [8, 36]. The versatility of RBF methods has led to their widespread adop-
tion in numerous applications. Hybrid approaches combining RBFs with other techniques have
proven particularly effective, such as the hybrid Gaussian-cubic RBFs for scattered data interpo-
lation [22] and stabilized RBF finite difference methods with hybrid kernels [2, 21]. Specialized
RBF formulations have been developed to handle challenging scenarios, including rational RBFs
for resolving discontinuities and steep gradients [32], and stabilized interpolation using RBFs
augmented with radial polynomials [27]. Recent advances have also addressed theoretical as-
pects, including unisolvence results for Kansa collocation methods with polyharmonic splines
[23] and Multiquadric kernels for convection-diffusion problems [24]. A critical aspect of positive
definite RBF based methods, is the incorporation of a shape parameter ε through the scaling
ϕ(εr), which fundamentally controls the behavior of the basis function. As ε → 0, the RBF be-
comes increasingly flat, while larger values of ε produce more peaked, localized functions. This
scaling mechanism creates a fundamental trade-off in RBF interpolation, it plays a crucial role
both for the accuracy of the method and its stability. Although small shape parameters have
been found to yield very accurate results when interpolating smooth functions [11], solving ellip-
tic PDEs [18], and approximating data on low-dimensional manifolds within high-dimensional
spaces [28], they lead to severe ill-conditioning of the interpolation matrix, potentially destroy-
ing numerical stability [9, 33]. How to handle the scaling parameter is still an open problem.
A very used strategy is to choose the parameter by some optimal criteria based for instance on
a variant of the cross–validation approach (leave-one-out) [29], and on its extension applied in
the setting of iterated approximate moving least squares [10] or in a more general k-fold cross
validation deterministic and stochastic setting [19, 20]. Further optimization and searching tech-
niques were considered in [6, 5, 34]. The possibility of having the shape parameter vary with
the translation Xj , has also been studied. This means working with functions ϕ(εj∥X −Xj∥),
[4, 12, 17]. A particularly important development in RBF theory has been the introduction of
variably scaled kernels, where the vector case is generalized by introducing a scale function as
additional coordinate. This approach, pioneered in [3], allows accommodation of the varying
data characteristics in different regions of the computational domain. Variably scaled discon-
tinuous kernels have proven especially effective for functions with edges [7], and specialized
formulations have been developed for interpolating functions with gradient discontinuities [30].
Comprehensive overviews of variably scaled kernel methods highlight their growing importance
in modern RBF applications [31].

The purpose of this work is to study radial basis functions in two dimensions from a geomet-
ric perspective, which provides framework to interpret their behavior and performance. While
many analytical studies have compared different RBF types, the underlying geometric principles
that explain their shape properties are, to our knowledge, not well investigated, leaving open
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the question of how such properties can be related to performance and used to guide function
selection and parameter tuning. In our previous work, we introduced a curvature-based frame-
work for one-dimensional RBFs, showing how curvature relates to interpolation performance
[15]. This provided the starting point for the two-dimensional analysis developed in the present
paper. In two dimensions, the idea is to study RBFs by viewing them as surfaces of revolution in
three-dimensional space. This geometric interpretation allows us to compute easily intrinsic and
extrinsic curvature measures that directly characterize the “shape” of the RBFs, and to classify
RBFs as scalable or unscalable according to their curvature behavior at the origin. Scalable
RBFs exhibit non-zero curvatures that can be adjusted through the scale parameter such as
Gaussian, Multiquadrics, Matérn and Wendland kernels, whereas unscalable RBFs, including
thin-plate splines and radial powers, have curvature properties that are unaffected by scaling.

The remainder of this paper is organized as follows: Section 2 establishes the connection be-
tween RBFs and surfaces of revolution, deriving the fundamental geometric quantities including
first and second fundamental forms, principal curvatures, and Gaussian and mean curvatures
for RBF surfaces. Section 3 presents our main theoretical results, including the curvature-based
characterization of RBFs, and detailed analysis of specific RBF families. Section 4 provides
numerical validation of our theoretical findings through systematic investigation of curvature
convergence rates and two challenging test problems. Finally, Section 5 concludes with a discus-
sion of implications and future research directions. Essential concepts from differential geometry
are summarized in Appendices A and B for reader convenience.

2. RBFs as surfaces of revolution

In this section, we employ concepts from classical differential geometry, assuming the reader’s
familiarity. The relevant basics are summarized in Appendices A and B, and further details can
be found in [13, 25, 35]. Hereafter, we work with bidimensional RBFs of class at least C2. They
can be naturally interpreted as surfaces of revolution by considering their radial symmetry about
the origin. In fact ϕ(∥X∥), X = (x, y) ∈ R2 is the height function

z = ϕ(
√
x2 + y2), (2)

which can be obtained by rotating the regular parametrized planar curve (0, |x|, ϕ(|x|)), x ∈ R,
about the z-axis. Then using cylindrical coordinates, the RBF surface of revolution σ : U ⊆
R2 −→ R3 can be parametrized as

(r, θ)
σ7−→ (r cos θ, r sin θ, ϕ (r)) , (3)

where U = (0,∞) × [0, 2π), r ∈ [0,∞) represents the radial parameter and θ ∈ [0, 2π) rep-
resents the angular parameter. In this way, we can systematically compute first and second
fundamental forms, principal curvatures, Gaussian curvature, and mean curvature for any point
p = (r, θ, σ(r, θ)). These classical geometric quantities, provide a novel lens through which to
interpret RBF surfaces behavior. Since ϕ is a differentiable function, (3) forms a regular surface.
Let σr, σθ, σrr, σrθ, σθθ be the first and second order partial derivatives of σ with respect to r
and θ, that for the considered revolution surface are

σr =
(
cos θ, sin θ, ϕ′(r)

)
, σθ = (−r sin θ, r cos θ, 0) ,
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σrr =
(
0, 0, ϕ′′(r)

)
, σrθ = (− sin θ, cos θ, 0) , σθθ = (−r cos θ,−r sin θ, 0) .

Given a point p on a regular parametric surface, the symmetric matrices corresponding to the
first and second fundamental forms (Ip, and IIp respectively) are given respectively by

[Ip] =

[
E F
F G

]
, [IIp] =

[
L M
M N

]
,

where
E := ⟨σr, σr⟩, F := ⟨σr, σθ⟩, G := ⟨σθ, σθ⟩,

that (3) become

E = 1 + (ϕ′(r))2, F = 0, G = r2. (4)

Here E is the square of the speed of the profile curve and hence all the meridians (r-parameter
curves), while G is the square of the speed of the parallels (θ-parameter curves).

To define L, M, snd N we need the normal vector at p

n⃗ =
σr × σθ

∥σr × σθ∥
=

(−ϕ′(r) cos θ,−ϕ′(r) sin θ, 1)√
(ϕ′(r))2 + 1

.

Now
L := σrr·n⃗, M := σrθ · n⃗, N := σθθ · n⃗,

that in our case are

L =
ϕ′′(r)√

(ϕ′(r))2 + 1
, M = 0, N =

rϕ′(r)√
(ϕ′(r))2 + 1

. (5)

The matrix [Sp] = [Ip]
−1[IIp] represents the linear map Sp, known as the shape operator, whose

eigenvalues k1 and k2 are real and are called the principal curvatures [26]. According to (4)
and (5), we have

[Sp] =

[
L
E 0

0 N
G

]
=

 ϕ′′(r)

((ϕ′(r))2+1)
3
2

0

0 ϕ′(r)

r
√

(ϕ′(r))2+1

 . (6)

Then the principal curvatures at p are given by

k1 =
ϕ′′(r)

((ϕ′(r))2 + 1)3/2
, k2 =

ϕ′(r)

r((ϕ′(r))2 + 1)1/2
,

and the eigenvectors σr and σθ are principal directions at the point p. Since principal curves are
defined as curves whose tangent directions at every point coincide with principal directions of
the surface, we conclude that the meridians and parallels are principal curves, as their tangent
vectors are in the direction of σr, and σθ, respectively. Finally, the Gaussian and mean curvatures
are

Kg = k1k2 =
ϕ′′(r)ϕ′(r)

r((ϕ′(r))2 + 1)2
, Km =

k1 + k2
2

=
(ϕ′(r))3 + rϕ′′(r) + ϕ′(r)

2r((ϕ′(r))2 + 1)3/2
. (7)
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3. Curvature-based characterization of RBFs in two dimensions

In [15], we classified RBFs, in the one-dimensional setting, into scalable and non-scalable
functions, and in particular we also established the relation between the spatially varying shape
parameter and the curvature. In this section, we investigate this framework in two dimensions,
studying geometric behaviors related to curvatures when the scaling parameter ε is introduced.

Theorem 3.1. Let us consider the scaled parametrized RBF revolution surface

(r, θ)
σε7−→ (r cos(θ), r sin(θ), ϕ(εr)) , (8)

and its Gaussian and mean curvatures at a point p = (r, θ, ϕ(εr)). Then we have

lim
r→0

Kg = 4a22ε
4, lim

r→0
Km = 2a2ε

2, (9)

where a2 is the coefficient in (10), (11), or (12).

Proof. By using Taylor series expansion at r = 0, we have two cases. If ϕ is an infinitely smooth
RBF then we have [9, Theorem 10.1]

ϕ(εr) =
∞∑
i=0

a2i(εr)
2i. (10)

If ϕ is a finitely smooth RBF in C2δ[0,∞), 1 ≤ δ < ∞, then we get [9, Theorem 10.2]

ϕ(εr) = a0 + a2(εr)
2 + . . .+ a2δ(εr)

2δ + a2δ+1(εr)
2δ+1 + a2δ+2(εr)

2δ+2 + . . . , (11)

or

ϕ(εr) = a0 + a2(εr)
2 + . . .+ a2δ(εr)

2δ + b2δ(εr)
2δ log(εr)

+a2δ+2(εr)
2δ+2 + b2δ+2r

2δ+2 log(εr) + . . . . (12)

Then by substituting (10), (11), or (12) in (7), and letting r → 0, the proof is complete.

As an immediate consequence of Theorem 3.1, for spatially variable scaled RBFs ϕ(εj∥X −
Xj∥), we have

Kg (σ(r, θ))
∣∣
X−→Xj = 4a22ε

4
j , Km (σ(r, θ))

∣∣
X−→Xj = 2a2ε

2
j ,

where r = ∥X −Xj∥.
Now we are ready to classify RBF surfaces according to the previous Theorem.

Definition 3.2. A radial basis surface is called scalable if it has nonzero Gaussian and mean
curvatures at the origin. Otherwise, we call it unscalable.

This definition shows us, from a different perspective, the concept of flat function for RBFs
depending on the scale parameter. Thus, scalability means that the mean and Gaussian curva-
tures at the origin are governed not only by the scale parameter, as indeed happens, but also
by the coefficient a2, which characterizes the considered RBF. Non-scalability, instead, refers to
the case where the curvature measures vanish at the origin and remain unaffected by any possi-
ble re-scaling of the radial function, i.e., they correspond to the so called shape-parameter-free
functions.
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Remark 3.3. From equation (9), we have Kg ≥ 0, at the origin, for all RBFs which are at
least in C2[0,∞). This means that RBFs are never a hyperboloid surface.

Now we can state the main result of this Section related to the congruence of scalable RBFs
as ε goes to zero. By the fundamental Theorem of surface theory [35], two parametrized surfaces
σ, σ∗ : U −→ R3 are congruent, that is differ by the composition of a translation and a rotation
if and only if their first and second fundamental forms are the same, i.e. [Ip] = [Ip

∗] and
[IIp] = ±[IIp

∗].

Theorem 3.4. All scalable RBFs are congruent to one another as the shape parameter ap-
proaches to zero.

Proof. By parameterizing any RBF surface of revolution as (8) and substituting (10), (11), or
(12) in (4) and (5), and letting ε → 0, we have

lim
ε→0

[Ip] =

[
1 0
0 r2

]
,

and

lim
ε→0

[IIp] =

[
0 0
0 0

]
.

Then according to fundamental Theorem of surface theory, the proof is complete.

It is worth emphasizing that, for scalable RBFs, the matrix [Sp] tends to the zero matrix as
ε → 0. This behavior indicates that such functions converge to planar surfaces in the flat limit,
independently of the chosen RBF. Consequently, this suggests that scalable RBFs with small
shape parameters should be effective for approximating flat surfaces. However, very small shape
parameters also introduce numerical instabilities, since the condition number of the interpolation
matrix grows as ε decreases, which may degrade approximation accuracy in practice.

Remark 3.5. Although Theorem 3.4 establishes that all scalable RBFs are congruent as ε → 0,
this asymptotic result does not imply that different scalable RBFs yield similar numerical results
for small finite values of ε. The congruence holds only in the mathematical limit, whereas
practical computations are performed at small but non-zero shape parameters, where the functions
have not yet reached their limiting behavior. The key distinction lies in the rate of convergence
to the flat limit: scalable RBFs whose Gaussian and mean curvatures converge slowly to zero as
ε → 0 are expected to be the most effective for practical applications. The slow convergence of
curvatures indicates that these functions do not become excessively flat as the shape parameter
decreases. Consequently, their series expansions retain more polynomial terms compared to
rapidly flattening RBFs, which helps preserve the richness of the approximation space.

3.1. Analysis of some RBF

The preceding geometric analysis provides a foundation for understanding the intrinsic cur-
vature properties of different RBFs. To bridge the gap between our theoretical framework
and practical implementation, we now specialize our curvature analysis to specific RBF fami-
lies of class at least C2. Each RBF exhibits characteristic geometric behavior that governs its
suitability for approximating surfaces with particular curvature profiles. Table 1 presents this
categorization. According to Theorem Appendix A.3, all RBFs listed in Table 1 define regular
surfaces, with the exception of radial powers rβ at the origin when 0 < β ≤ 1.
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• Powers: ϕ(r) = rβ, 0 < β ̸∈ 2N. Radial powers are C2 at the origin for β > 2. According
to (7), we have

Kg =
(β − 1)β2r2β

(r2 + r2ββ2)2
, Km =

β2(r3β+1β + rβ+3)

2r2(r2 + r2ββ2)3/2
,

that take zero values at r = 0 even in presence of a scale parameter ε. Hence they are
unscalable. We also study what happens to Gaussian and mean curvatures for increasing
β values. We have that for any r ≥ 0, lim

β→∞
Kg = 0 while

lim
β→∞

Km =

{
0, 0 < r < 1,
1
2r , r ≥ 1.

(13)

This limits reveal that when r ≥ 1, the mean curvature approaches 1
2r as β increases,

(a) (b)

Figure 1: Gaussian (a) and mean (b) curvatures changes in radial powers with r ∈ [0,
√
2] and β ∈ [3, 1024].

while in other cases, both the Gaussian and mean curvatures converge to zero (See also
Figure 1.) It is well known that, as β increases, radial power RBFs develop a flat central
region. The limits we derived, however, provide additional insight: the region around
r = 0 that becomes flatter is effectively bounded by r < 1, since the mean curvature at
r = 1 equals 1/2. This geometric property suggest that, when interpolation points are
uniformly distributed within the domain, the resulting interpolant may attain improved
accuracy in approximating planar surfaces, as each shifted RBF contributes a nearly flat
region in the vicinity of its center, with an effective radius close to unity.

• Thin-plate splines (TPS): ϕ(r) = r2n log(r), n ∈ N. TPS are C2 at the origin for n ≥ 2.
According to (7), we have

Kg =
r4n
(
(4n2 − 2n) ln(r) + 4n− 1

)
(2n ln(r) + 1)

16
((

n ln(r) + 1
2

)2
r4n + 1

4r
2
)2 ,

Km =
1

2

(4n2 ln(r) + 4n)r3+2n + 8(n ln(r) + 1
2)

3r6n+1

(4(n ln(r) + 1
2)

2r4n + r2)3/2r2
.
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Thus, they vanish at r = 0, even in the presence of a scale parameter ε, and are therefore
not scalable. Moreover, as n → ∞, for any r, we obtain the following limiting behavior
for the Gaussian and mean curvatures.

lim
n→∞

Kg =


0, 0 < r < 1,
∞, r = 1,
0, r > 1.

lim
n→∞

Km =


0, 0 < r < 1,
∞, r = 1,
1
2r , r > 1.

(14)

It is not difficult to observe that, at r = 1, the growth towards infinity is linear in n.
Moreover, the same considerations as for the radial powers can be applied here.

We now analyze some infinitely smooth RBFs as Gaussian, genereralized multiquadics, hyper-
bolic secant, RTH RBF, and some finitely smooth as Matérn and Wendland functions. The
expressions of their the Gaussian and mean curvatures can be easily computed by substituting
ϕ(εr) into (7) and by Theorem 3.1

lim
r→0

Kg = 4a22ε
4, lim

r→0
Km = 2a2ε

2,

where a2 represents the coefficient of r2 in the series expansion of ϕ(r). In what follows, we
compute the coefficient a2, which comes into play in the value of the curvature for r = 0.

• Gaussian: ϕ(r) = e−r2 . Since

e−r2 =
∞∑
n=0

(−1)nr2n

n!
,

we have a2 = −1.

• Generalized Multiquadrics: ϕ(r) =
(
1 + r2

)β
, β ∈ R\N0 (when β < 0 are called

inverse Multiquadrics). By (
1 + r2

)β
=

∞∑
k=0

(
β

k

)
r2k,

we get a2 = β. Moreover, according to (7), we have

Kg =

(
2βε2

)2 (
1 + (εr)2 (1 + 2 (β − 1))

)(
1 + (εr)2

)2β−3

(
1 +

(
2ε2βr ((εr)2 + 1)β−1

)2)2 ,

Km =

r2
(
2βε2

(
1 + (εr)2

)β−1
)3

+ 4βε2
(
(εr)2 (β − 1)

(
1 + (εr)2

)β−2
+
(
1 + (εr)2

)β−1
)

2

(
1 +

(
2ε2βr ((εr)2 + 1)β−1

)2)3/2
.

Then

lim
β→0+

Kg = lim
β→0+

Km = 0,

lim
β→0−

Kg = lim
β→0−

Km = 0.
(15)
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• Hyperbolic Secant: ϕ(r) = sech (r) . We have

sech(r) =
∞∑
n=0

E2n

(2n)!
r2n,

where E2n are the Euler numbers (also called secant numbers). Then

sech(r) = 1− r2

2!
+

5r4

4!
− 61r6

6!
+

1385r8

8!
− · · ·

Therefore a2 = −1
2 .

• RTH: RTH is a new transcendental RBF of the form ϕ(r) = r tanh(r) introduced for the
first time by Heidari et al. [14, 15]. Now

r tanh(r) =
∞∑
n=1

22n(22n − 1)B2n

(2n)!
r2n,

where B2n are the Bernoulli numbers. The first few terms are

r tanh(r) = r2 − r4

3
+

2r6

15
− 17r8

315
+

62r10

2835
− · · ·

Then a2 = 1.

• Matérn: ϕ(r) = rνKν(r), ν > 0 (Matérn are C2 at the origin for ν ≥ 1.5 [8]), where
Kν is the modified Bessel function of the second kind of order ν, that can be defined as a
function of the Bessel function of the first kind as follow

Kν(r) =
π

2

J−ν(r)− Jν(r)

sin(πν)
, Jν(r) =

(r
2

)ν ∞∑
k=0

(
r2

4

)k
k!Γ(ν + k + 1)

.

Therefore

ϕ(r) = rνKν(r) =
π

2 sin(πν)

(
1

2−ν

∞∑
k=0

r2k

4k k! Γ(−ν + k + 1)
− 1

2ν

∞∑
k=0

r2k+2ν

4k k! Γ(ν + k + 1)

)
.

Then

a2 =
π

2 sin(πν)
· 2ν

4 · Γ(2− ν)
.

Now the relations

Γ(2− ν) = (1− ν)Γ(1− ν), Γ(ν)Γ(1− ν) =
π

sin(πν)
,

lead to

a2 =
2ν−3Γ(ν)

1− ν
.
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• Wendland Functions: Wendland functions are a family of compactly supported RBFs
that are defined via

ϕs,k = Ikϕ⌊s/2⌋+k+1, ϕℓ(r) = (1− r)ℓ+

where I is the integral operator (If)(r) =
∫∞
r tf(t) dt, and ϕs,k ∈ C2k [8]. These functions

are all supported on [0, 1] and have a polynomial representation, there, with the degree
⌊ s2⌋+ 3k + 1. The most commonly used Wenland functions are given for s = 3 which are
positive definite and radial on Rd for d ≤ 3.

In Table 1 the reader can find the a2 values for the Wendland, Gaussian-Laguerre, Bump,
and Poisson RBFs.

Name
Parametric Equations a2

σ(r, θ) = (r cos θ, r sin θ, ϕ(r))

Gaussian ϕ(r) = e−r2 −1

Gen. Multiquadrics ϕ(r) =
(
1 + r2

)β
, β ∈ R\N0 β

Hyperbolic Secant ϕ(r) = sech (r) − 1
2

RTH ϕ(r) = r tanh(r) 1

Bump function ϕ(r) =

 exp
(
− 1

1−r2

)
, r < 1

0, o.w
−e−1

Gaussian-Laguerre ϕ(r) = e−r2L1/2
n (r2) − 4

3

(n+ 3
2
)!

√
πn!

Poisson function ϕ(r) =
Jν(r)

rν
, ν = d

2
− 1, d ≥ 2 − 1

2ν+2Γ(ν + 2)

Matérn/Sobolev ϕ(r) = rνKν(r), ν ≥ 1.5
2ν−3Γ(ν)

1− ν

Wendland functions ϕ3,1(r) = (1− r)4+(4r + 1) -10

ϕ3,2(r) = (1− r)6+(35r
2 + 18r + 3) -28

ϕ3,3(r) = (1− r)8+(32r
3 + 25r2 + 8r + 1) -11

Powers ϕ(r) = rβ , 2 < β ̸∈ 2N unscalable

Thin-plate splines ϕ(r) = r2n ln(r), 2 ≤ n ∈ N unscalable

Table 1: Curvature-based characterization of RBFs in 3D space, with the geometric characteristic lim
r→0

Kg = 4a2
2ε

4,

and lim
r→0

Km = 2a2ε
2, where n, β, and ν are RBF parameters.

4. Numerical results

We now provide some examples that validate the key theoretical insights established in the
previous sections. We show the significant role of the geometric characteristics of RBFs in
accuracy and conditioning of the interpolation. We justify that the choice of RBFs and their
parameters strongly depends on the function being approximated. We discuss how the choice
of RBFs and tuning their shape parameters as well as the number of interpolation points can
increase the accuracy while avoiding ill-conditioning. We take N uniformly distributed scattered
center points in the region Ω and 51 grid points along each axis to plot the figures. We use
the maximum absolute error norm L∞ = max

1≤i≤m
|fi − f̄i|, where f and f̄ represent the exact
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and approximate solutions, respectively. The 2-norm condition number is also used in all test
problems.

4.1. Convergence Rates of Curvatures for Common Scalable RBFs

To investigate the curvature behavior of different scalable RBFs as the shape parameter
approaches zero, we computed the convergence rates αg and αm for both Gaussian and mean
curvatures according to power law relationships:

max
(x,y)∈Ω

|Kg(x, y, ε)| ∼ Cgε
αg ,

max
(x,y)∈Ω

|Km(x, y, ε)| ∼ Cmεαm ,

transformed to linear form by taking logarithms

log(Kmax
g (ε)) = log(Cg) + αg log(ε),

log(Kmax
m (ε)) = log(Cm) + αm log(ε).

The analysis is conducted over a sequence of decreasing shape parameters εk, evaluating the
maximum absolute curvature values on the unit square with a uniform grid, and applying linear
regression to the log-transformed data to extract the convergence rates αg and αm. Figure 2
presents the convergence behavior and computed rates of curvatures for commonly used scal-
able RBFs: Gaussian (G), Multiquadric (MQ) with β = 1

2 , Hyperbolic Secant (HS), RTH, and
Matérn (MT) with ν = 2. The upper panels show the logarithmic scale plots of maximum
absolute curvature values as functions of ε. The lower panels provide a direct comparison of the
convergence rates. For Gaussian curvature, the first four RBFs exhibit remarkably similar con-
vergence rates of approximately 5, indicating rapid convergence to zero as ε decreases. In stark
contrast, the Matérn RBF demonstrates substantially slower convergence with αg ≈ 1, meaning
its Gaussian curvature decreases at a much more gradual rate. For mean curvature, the first four
RBFs show nearly identical convergence rates around 2.1, while the Matérn RBF exhibits sig-
nificantly slower convergence at approximately 0.62. These results have important implications
for the practical application of scalable RBFs. The Matérn RBF’s slower convergence rates for
both curvatures suggest that Matérn functions preserve more polynomial terms in their series
expansions, thereby maintaining a richer approximation space. This characteristic makes the
Matérn RBF particularly advantageous for applications requiring both numerical stability and
approximation accuracy when working with small shape parameters. In Figure 3, we compare
the curvature convergence rates for Matérn RBFs with ν = 1.5, 2, 2.5. The results indicate that
the Matérn RBF with ν = 2 exhibits the slowest convergence rates, suggesting it is less suscep-
tible to flattening in the small ε regime. Figure 4 presents the curvature convergence rates for
Wendland RBFs with k = 1, 2, 3. The figure demonstrates that the Wendland RBF ϕ3,3 main-
tains a richer approximation space compared to the others. The curvature analysis presented in
Figures 2–4 provides geometric insight into the relative performance of different RBF families
in interpolation tasks. The slower curvature convergence rates observed for Matérn RBFs, par-
ticularly with ν = 2, suggest superior stability properties in the flat limit, which is consistent
with their well-documented practical performance advantages in numerical applications.
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Figure 2: Convergence behavior and computed rates for common scalable RBFs.

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
-7

-6

-5

-4

-3

-2

-1

0

1

lo
g
(m

a
x
|K

g
|)

Gaussian Curvature Convergence

MT: 
g
=1.00)

MT: 
g
=1.00)

MT: 
g
=1.00)

-5 -4 -3 -2 -1 0
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

lo
g
(m

a
x
|K

m
|)

Mean Curvature Convergence

MT: 
m

=0.98)

MT: 
m

=0.62)

MT: 
m

=0.94)

Figure 3: Convergence behavior and computed rates for Matérn RBFs.
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Figure 4: Convergence behavior and computed rates for Wendland RBFs.

4.2. Test problem 1: (Planar surface)

We first examine approximation of the inclined plane

f1 = (x+ y)/2, (x, y) ∈ [0, 1]× [0, 1].

As a planar surface, this function has zero Gaussian and mean curvatures everywhere. In our
first investigation, we examine scalable RBFs for approximating f1. Table 2 presents the L∞
error norms and condition numbers of the interpolation matrices for five scalable RBFs: Gaus-
sian (GA), Multiquadric (MQ) with β = 1

2 , Hyperbolic Secant (HS), RTH, and Matérn (MT)
with ν = 2 across various values of N . The theoretical framework established in Section 3
predicted that scalable RBF interpolants asymptotically approach planar behavior as the shape
parameter approaches zero, making them theoretically well-suited for approximating flat sur-
faces like f1. However, excessively small values of ε lead to severe numerical instability due
to the growth of the interpolation matrix condition number, creating a fundamental trade-off
between approximation quality and numerical stability. To navigate this challenge, we employ a
practical parameter selection strategy: choosing the minimum feasible ε value that avoids trig-
gering MATLAB’s rank-condition warning (RCOND), thereby ensuring computational stability
while preserving optimal approximation accuracy. This approach allows us to operate at the
boundary between numerical feasibility and geometric optimality. For small values of N , the
numerical results demonstrate remarkable alignment with our theoretical predictions. All RBFs
can accommodate relatively small shape parameters while maintaining numerical stability, en-
abling them to closely approach the flat limit behavior predicted by theory. The Matérn RBF
exhibits exceptional performance in this regime, achieving the smallest approximation errors.
This superior accuracy stems directly from the slow convergence properties identified in our cur-
vature analysis. The Matérn slow convergence rates allow it to operate with much smaller shape
parameters than other RBFs while avoiding excessive flattening. Consequently, even at these
small ε values, the Matérn interpolant maintains sufficient geometric richness to provide highly
accurate approximations. As N increases, numerical stability becomes the dominant constraint.
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The Matérn RBF continues to outperform other kernels. The key advantage here is that while
other RBFs are forced to use much larger shape parameters, resulting in more “spiky” behavior
that deviates from the ideal flat limit, the Matérn RBF can still operate with relatively small
parameters due to its inherent numerical stability characteristics. The numerical results provide
compelling validation of our theoretical framework. Figures 5 and 6 present the L∞ error norms
and condition numbers of interpolation matrices for the Matérn and Wendland interpolants with
different RBF parameters when approximating f1 across varying point densities, respectively.
The results reveal the superiority of the Matérn RBF which is in agreement with the convergence
rates reported in Figures 3 and 4, respectively. Finally, Figure 7 illustrates the L∞ error norms
and condition numbers of interpolation matrices for the augmented polynomial-RBF interpolant
using radial powers (β = 3) and TPS (n = 2) when approximating f1 across different point den-
sities. As demonstrated in the figure, these interpolants clearly achieve exact reproduction of
f1.

ϕ(r) N ε L∞ cond

GA

9 3.0e− 02 4.3e− 05 1.9e+ 15

25 4.4e− 01 6.7e− 05 1.7e+ 15

81 2.0e+ 00 2.9e− 04 1.4e+ 15

289 5.3e+ 00 1.3e− 03 1.6e+ 15

1089 1.2e+ 01 2.1e− 03 9.8e+ 13

MQ

9 2.8e− 02 1.4e− 05 2.2e+ 15

25 2.8e− 01 7.7e− 06 2.1e+ 15

81 9.8e− 01 8.0e− 06 1.9e+ 15

289 2.4e+ 00 1.1e− 05 1.1e+ 15

1089 5.1e+ 00 4.3e− 06 2.6e+ 15

HS

9 2.9e− 02 2.9e− 05 2.4e+ 15

25 3.4e− 01 2.6e− 05 1.5e+ 15

81 1.3e+ 00 5.1e− 05 4.8e+ 14

289 3.0e+ 00 7.2e− 05 9.4e+ 14

1089 6.2e+ 00 4.5e− 05 1.5e+ 15

RTH

9 7.4e− 03 1.4e− 06 2.2e+ 15

25 2.7e− 01 6.6e− 06 1.3e+ 15

81 1.2e+ 00 1.5e− 05 1.6e+ 15

289 3.1e+ 00 2.8e− 05 7.8e+ 14

1089 6.6e+ 00 1.2e− 05 2.3e+ 15

MT

9 1.1e− 03 1.9e− 07 2.3e+ 15

25 3.2e− 03 1.6e− 07 3.0 + 15

81 8.8e− 03 1.7e− 07 3.7e+ 15

289 2.5e− 02 1.8e− 07 3.4e+ 15

1089 7.0e− 02 9.1e− 08 3.5e+ 15

Table 2: L∞ error norms, condition numbers of interpolation matrices and the minimum ε value that avoids
triggering MATLAB’s RCOND warning of scalable RBF interpolants for approximation of f1 with different
values of N ; Test problem 1.
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Figure 5: L∞ error norms and condition numbers of interpolation matrices for the Matérn interpolant when
approximating f1 with different values of N , ε = 0.01.
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Figure 6: L∞ error norms and condition numbers of interpolation matrices for the Wendland interpolant when
approximating f1 with different values of N , ε = 0.01.
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Figure 7: L∞ error norms and condition numbers of interpolation matrices for the augmented polynomial-RBF
interpolant using radial powers (β = 3) and TPS (n = 2) when approximating f1 with different values of N .

4.3. Test problem 2 (Steep-to-flat transition surface)

We examine the challenging test function

f2 = tanh(30(x+ y)), (x, y) ∈ [0, 1]× [0, 1],

which is a sigmoid-like transition surface that the factor 30 creates very rapid transitions from
approximately −1 to +1. But since the domain is [0, 1] × [0, 1], this transition occurs near
the corner (0, 0). Figure 8 shows the surface plot of f2, clearly illustrating the rapid sigmoid
transition from the steep region near x+ y ≈ 0 to the flat plateau where x+ y ≫ 0. This type
of surface is commonly used as a benchmark test function for interpolation methods because
it combines smooth mathematical properties with challenging numerical characteristics, the
“steep” and “flat” scenario. To quantify the geometric complexity, we compute its Gaussian
and mean curvatures, respectively by [16]

Kg =
fxx · fyy − f2

xy

(1 + f2
x + f2

y )
2
= 0,

Km =
fxx(1 + f2

y ) + fyy(1 + f2
x)− 2fxyfxfy

2(1 + f2
x + f2

y )
3/2

=
−1800 tanh(30(x+ y)) sech2(30(x+ y))

(1 + 1800 sech4(30(x+ y)))3/2
.

The Gaussian and mean curvatures are plotted in Figure 9. The Gaussian curvature is zero
everywhere, because f2 depends only on the single variable (x + y). Such surfaces are called
developable surfaces; they can be “unrolled” onto a plane without distortion. Actually, it is like
a “bent cylinder”. Unlike Gaussian curvature, Km ̸= 0, capturing the surface’s actual bending
behavior. Maximum absolute values occur where x+ y ≈0, in the steep sigmoid transition. Km

approaches zero exponentially as we move away from the transition (x + y ≫ 0). Km changes
sign across the transition, indicating the surface curves in opposite directions on either side.
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Figure 8: Plot of f2; Test problem 2.
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Figure 9: Gaussian (a) and mean (b) curvatures of f2; Test problem 2.

For functions that exhibit both steep and flat regions, achieving a smooth global approx-
imation requires careful consideration of the interpolation method. Two approaches are par-
ticularly effective: (1) conditionally positive definite polyharmonic functions such as TPS and
radial powers, which offer scale invariance while allowing the polynomial component to capture
flat regions; or (2) scalable RBFs with slowly converging curvature measures as ε → 0, such
as Matérn functions. The latter approach is especially advantageous because can effectively
approximate both steep and gentle gradient surfaces using moderate shape parameter values
and reasonable numbers of data points, without requiring excessively small values of ε. Fig-
ures 10 and 11 present the L∞ error norms and condition numbers of interpolation matrices for
augmented polynomial-radial powers and polynomial-TPS interpolants when approximating f2,
respectively. The numerical results demonstrate improved accuracy as both the power parameter
β (or n) and the number of data points N increase simultaneously, providing empirical support
for the theoretical framework outlined in Section 3.1. Furthermore, these figures confirm the
expected trade-off: for a fixed number of points N , increasing β (or n) yields flatter RBFs, which
consequently leads to higher condition numbers for the interpolation matrix. Figure 12 examines
the interpolation error behavior of Gaussian, RTH, Matérn (ν = 2), and Wendland (k = 3) in-
terpolants when approximating f2 using 1089 uniformly distributed points across a wide range of
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shape parameter values ε. The results reveal strikingly different stability characteristics among
the RBF types. While all methods achieve comparable accuracy for large ε values, both Gaus-
sian and RTH interpolants exhibit catastrophic performance degradation as ε decreases below
critical thresholds. This observation provides compelling empirical validation of the theoretical
framework established in Section 3 and the curvature convergence analysis presented earlier.
The catastrophic failure of Gaussian and RTH interpolants for small ε values demonstrates the
practical consequences of rapid curvature convergence, wherein the interpolation matrices be-
come severely ill-conditioned and the approximation space degenerates to inadequate polynomial
subspaces. Notably, the superior performance of the Matérn RBF directly stems from its slower
curvature convergence rate compared to the Wendland RBF, as predicted by our theoretical
analysis. Figures 13–14 investigate the convergence behavior with respect to the number of in-
terpolation points N for fixed shape parameters ε = 10 and ε = 0.1, respectively. For the large
shape parameter case (ε = 10, Figure 13), all four interpolants demonstrate stable and consis-
tent convergence behavior as N increases, with error decreasing monotonically for each method.
The small shape parameter case (ε = 0.1, Figure 14) reveals the critical importance of curvature
convergence rates in practical applications. In this regime, the fundamental differences in curva-
ture convergence behavior manifest as dramatically different performance characteristics. The
Matérn and Wendland interpolants continue to exhibit stable, monotonic error reduction with
increasing N , maintaining their reliability even in this challenging parameter range. In stark
contrast, both Gaussian and RTH interpolants fail catastrophically in this regime, exhibiting
unstable and erratic behavior with errors that neither converge nor remain within acceptable
bounds as N increases. These failures directly validate our theoretical predictions that RBFs
with rapid curvature convergence become impractical for small shape parameters due to exces-
sive flattening and severe matrix ill-conditioning. Importantly, the Matérn RBF achieves higher
accuracy than the Wendland RBF across various values of N , further demonstrating the prac-
tical advantages conferred by its slower curvature convergence rate. These results establish the
Matérn RBF as the preferred choice for complex surface approximation tasks, particularly when
working with small shape parameters or large point sets where competing methods fail due to
fundamental limitations in their curvature convergence behavior.
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Figure 10: L∞ error norms and condition numbers of interpolation matrices for the augmented polynomial-radial
powers interpolant, when approximating f2 with different values of N .
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Figure 11: L∞ error norms and condition numbers of interpolation matrices for the augmented polynomial-TPS
interpolant, when approximating f2 with different values of N .
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Figure 12: Error distribution of Gaussian (a), RTH (B), Wendland (k = 3), and Matérn (ν = 2) (d) interpolants
for approximating f2 with 1089 uniform points and different values of ε; Test problem 2.
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Figure 13: Error distribution of Gaussian (a), RTH (b), Wendland (k = 3) (c), and Matérn (ν = 2) (d) interpolants
for approximating f2 with ε = 10 and different values of N ; Test problem 2.
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Figure 14: Error distribution of Gaussian (a), RTH (b), Wendland (k = 3) (c), and Matérn (ν = 2) (d) interpolants
for approximating f2 with ε = 0.1 and different values of N ; Test problem 2.
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5. Conclusion

We have developed a differential geometric framework for analyzing RBFs by interpreting
them as surfaces of revolution, enabling the derivation of curvature-based metrics that effectively
predict interpolation accuracy and numerical stability. The fundamental distinction between
scalable and unscalable RBFs emerges naturally from their curvature characteristics at the ori-
gin. Our investigation reveals that curvature convergence rates as shape parameters approach
zero serve as reliable indicators of practical performance. The systematic analysis demonstrates
a clear hierarchy among scalable RBFs: Matérn functions exhibit the slowest convergence rates,
followed by Wendland functions, while Gaussian, Multiquadric, Hyperbolic Secant, and RTH
RBFs converge rapidly with nearly identical rates. Among Matérn functions, ν = 2 demonstrates
the slowest convergence, and among Wendland functions, ϕ3,3 maintains a richer approximation
space. The numerical experiments validate these theoretical predictions across two distinct test
problems. For planar surface approximation, numerical results demonstrate that the Matérn
RBF achieves errors several orders of magnitude lower than competing scalable RBFs, while un-
scalable functions augmented with polynomials provide exact reproduction. For the challenging
steep-to-flat transition surface, numerical experiments reveal dramatically different behaviors:
Matérn and Wendland interpolants maintain stable, monotonic error reduction across all param-
eter regimes, while Gaussian and RTH interpolants suffer catastrophic failure for small shape
parameters due to excessive flattening and severe matrix ill-conditioning. Also, the Matérn RBF
achieves noticeably higher accuracy than Wendland functions across various values of N , directly
confirming the practical advantages conferred by its slower curvature convergence rate. The ge-
ometric perspective also clarifies the behavior of unscalable functions. Thin plate splines and
radial powers, when properly augmented with polynomial components, demonstrate inherent
stability independent of any scaling parameter. This differential geometric framework provides
practitioners with rigorous theoretical guidance for RBF selection, replacing ad-hoc parameter
tuning with principled design choices based on intrinsic surface properties. The slow curvature
convergence criterion emerges as a fundamental principle for identifying superior RBF kernels.
Future research directions include extending this geometric analysis to higher dimensions, es-
tablishing quantitative relationships between curvature convergence rates and approximation
error bounds, developing adaptive shape parameter selection strategies based on local curvature
measures, and exploring the design of new RBF families with tailored curvature convergence
properties optimized for specific application domains.

Appendix A. Differential geometric basics

Here, we give an account of the differential geometry basics that are in our focus [13, 25, 35].

Definition Appendix A.1. A patch or local surface is a differentiable mapping

σ : U −→ Rn,

where U is an open subset of R2.

It can be written as an n-tuple of functions

σ(u, v) = (σ1(u, v), . . . , σn(u, v)) .

The first order partial derivative of σ with respect to u is given by σu =
(
∂σ1
∂u , . . . , ∂σn

∂u

)
. The

other partial derivatives are defined similarly.
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Definition Appendix A.2. A regular parametrization of a subset M ⊂ R3 is a C1 one-to-one
patch σ : U → M ⊂ R3 with the continuous inverse σ−1 : σ(U) → U such that

σu × σv ̸= 0.

A connected subset M ⊂ R3 is called a regular surface if each point has a neighborhood that is
regularly parametrized.

Theorem Appendix A.3. ([1]). Let U ⊂ R2 be open. Then if a function g : U → R is
differentiable, the subset M := {(x, y, z)T ∈ R3|z = g(x, y)} is a regular surface.

Proof. The graph of the function g, is parametrized by σ(u, v) = (u, v, g(u, v)). Then σu × σv =
(−gu,−gv, 1) ̸= 0.

Definition Appendix A.4. A regular surface is called of class Cr if all the systems of coor-
dinates σ are of class Cr.

Definition Appendix A.5. The tangent plane of the regular surface M at the point p =
σ(u0, v0) is the set of all possible tangent vectors to curves in M at p. That is

TpM = span{σu(u0, v0), σv(u0, v0)} ⊂ R3.

Definition Appendix A.6. The unit normal n⃗(u, v) to a regular surface is defined by

n⃗(u, v) =
σu × σv
∥σu × σv∥

∣∣∣∣
(u,v)

,

at those points (u, v) ∈ U at which σu × σv does not vanish.

A visual representation of the above notions is given in Figure A.15. In order to measure

Figure A.15: Surface M with the regular parametrization σ, normal vector n⃗(u, v), and tangent plane Tp(M).

how a regular surface M bends in R3, we need to estimate how its normal n⃗ changes from point
to point. So the following linear operator called the shape operator is used to calculate the
bending of M.

Definition Appendix A.7. The shape operator Sp at the tangent vector ω is the negative of
the derivative of n⃗ in the direction ω:

Sp : Tp(M) −→ Tp(M)

Sp(ω) = −Dωn⃗.
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Lemma Appendix A.8. ([13]). For a regular surface patch σ about point p, we have

Sp(σu) = −n⃗u and Sp(σv) = −n⃗v,

where n⃗u and n⃗v are the partial derivatives of the unit normal vector n⃗ with respect to the surface
parameters u and v.

Definition Appendix A.9. The symmetric bilinear function

Ip : Tp(M)× Tp(M) → R,

defined by
Ip(v, w) = v · w,

is called the first fundamental form.

The first fundamental form encodes the “intrinsic data” about the surface i.e., the infor-
mation that one could discover by wandering around on the surface and making measurements
within the surface.

Lemma Appendix A.10. ([35]). Let σ : U −→ R3 be a regular surface patch about point p.
Then

Ip(a1σu + a2σv, b1σu + b2σv) =
(
a1 a2

)(E F
F G

)(
b1
b2

)
;

where E = σu·σu, F = σu·σv, and G = σv·σv .

Definition Appendix A.11. Let M be a regular surface of class C2 in R3. The symmetric
bilinear function

IIp : Tp(M)× Tp(M) → R,

defined by
IIp(v, w) = Sp(v)·w,

is called the second fundamental form.

The second fundamental form, on the other hand, encodes the information about how the
surface is embedded into the surrounding three-dimensional space explicitly, it tells how the
normal vector to the surface varies as one moves in different directions on the surface.

Lemma Appendix A.12. ( [35]). Let σ : U −→ R3 be a regular surface patch about p. Then

IIp(a1σu + a2σv, b1σu + b2σv) =
(
a1 a2

)(L M
M N

)(
b1
b2

)
;

where L = σuu·n⃗, M = σuv·n⃗, and N = σvv·n⃗.

Theorem Appendix A.13. ([35]). The matrix of the linear map Sp with respect to the basis
{σu, σv} is given by

[Sp] = [Ip]
−1[IIp] =

[
E F
F G

]−1 [
L M
M N

]
.
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Then the symmetric matrices corresponding to the first and second fundamental forms, and
the shape operator, are given respectively by

[Ip] =

[
E F
F G

]
, [IIp] =

[
L M
M N

]
, and [Sp] = [Ip]

−1[IIp].

By the Spectral Theorem [26], [Sp] has two real eigenvalues, which are called principal curvatures
and are denoted by k1 and k2.

Definition Appendix A.14. Let M be a regular surface of class C2 in R3. The Gaussian
curvature Kg and mean curvature Km of M are the functions Kg,Km : M −→ R defined by

Kg = det ([Sp]) = k1k2, and Km =
1

2
tr ([Sp]) =

1

2
(k1 + k2).

Now, Theorem Appendix A.13 results

Kg =
det([IIp])

det([Ip])
=

LN −M2

EG− F 2
,

Km =
1

2

LG− 2MF +NE

EG− F 2
.

Gaussian curvature captures the intrinsic “bendiness” of a surface. It tells whether a surface
curves away from being flat in a fundamental way. A sphere has positive Gaussian curvature ev-
erywhere because it curves outward in all directions, while a saddle shape has negative Gaussian
curvature because it curves up in one direction and down in the perpendicular direction.

Mean curvature, on the other hand, measures how much a surface deviates from being flat
on average across different directions at each point. It’s more about the surface’s tendency to
curve toward one side or another. Surface shapes can be identified by the sign of the Gaussian
and mean curvatures (see [35] for more details).

Definition Appendix A.15. A regular surface is is said to be flat if its Gaussian curvature
vanishes identically.

Proposition Appendix A.16. ([35]). If the shape operator Sp is 0 for all p ∈ M or equiv-
alently, if both Kg and Km vanish identically on the surface, then the surface is a part of a
plane.

Theorem Appendix A.17 (Gauss’s Theorema Egregium [35]). The Gaussian curvature is
determined only by the first fundamental form Ip.

According to Theorem Appendix A.17, if we change the surface while preserving lengths and
angles in the surface, the Gaussian curvature does not change. More generally, if two surfaces
are locally isometric, their Gaussian curvatures at corresponding points are equal. For example,
the plane and cylinder are locally isometric, and hence the cylinder is flat. Since the Gaussian
curvature of a sphere is nonzero, a sphere cannot be locally isometric to a plane.

The following theorem plays a crucial role in the framework of our investigation.

Theorem Appendix A.18 (Fundamental Theorem of Surface Theory [35]). Two parametrized
surfaces σ, σ∗ : U −→ R3 are congruent (i.e., differ by the composition of a translation and a
rotation) if and only if Ip = I∗p and IIp = ±II∗p.
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Appendix B. Surfaces of Revolution

Surfaces of revolution, generated by rotating a curve around a fixed axis, are a fundamental
class of surfaces in differential geometry with broad applications across engineering, architecture,
art, and design. Their main advantage lies in the simplicity of their parametrization, often
described by straightforward equations that facilitate calculations of surface area, volume, and
curvature. The inherent symmetry reduces complex problems to one-dimensional integrals,
streamlining analysis. Studying these surfaces deepens our understanding of curved geometries
and their intrinsic properties, making them a valuable and versatile tool in both theoretical and
practical contexts.

Definition Appendix B.1. Let I ⊂ R be an interval, and let α(u) = (0, g(u), h(u)), u ∈ I,
be a regular parametrized plane curve with g > 0. Then the surface of revolution obtained by
rotating α about the z-axis is parametrized by

σ(u, v) = (g(u) cos v, g(u) sin v, h(u)) , u ∈ I, 0 ≤ v < 2π.

Theorem Appendix B.2. ([25]). A flat surface of revolution is part of a plane, cone, or
cylinder.
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