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Stable discontinuous mapped bases:
the Gibbs-Runge-Avoiding Stable Polynomial
Approximation (GRASPA) method
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Abstract The mapped bases or Fake Nodes Approach (FNA), introduced in [11],
allows to change the set of nodes without the need of resampling the function. Such
scheme has been successfully applied in preventing the appearance of the Gibbs
phenomenon when interpolating discontinuous functions. However, the originally
proposed S-Gibbs map suffers of a subtle instability when the interpolant is con-
structed at equidistant nodes, due to the Runge’s phenomenon. Here, we propose
a novel approach, termed Gibbs-Runge-Avoiding Stable Polynomial Approximation
(GRASPA), where both Runge’s and Gibbs phenomena are mitigated. After pro-
viding a theoretical analysis of the Lebesgue constant associated to the mapped
nodes, we test the new approach by performing different numerical experiments
which confirm the theoretical findings.

Keywords mapped polynomial basis · Fake Nodes Approach · S-Gibbs map ·
Gibbs phenomenon · Runge’s phenomenon

1 Introduction

Despite being long-investigated in the literature, univariate polynomial interpola-
tion still represents a prolific research topic (for an overview of the most recent
results we refer to [16,22]).

We start by fixing some notations. Let Ω = [a, b] ⊂ R be a bounded interval
and Xn+1 = {xi}i=0,...,n ⊂ Ω, n ∈ N be a set of n + 1 distinct nodes sorted in
increasing order. We denote by Pn the space of polynomials of degree at most n.

S. De Marchi
Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova, Italy
E-mail: demarchi@math.unipd.it

G. Elefante
Département de Mathématiques, Université de Fribourg, Switzerland
E-mail: giacomo.elefante@unifr.ch

F. Marchetti
Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova, Italy
E-mail: francesco.marchetti@math.unipd.it



2 S. De Marchi et al.

The classical recovering problem consists in finding an (unknown) function, say
f : Ω −→ R, by imposing some conditions at Xn+1. If we look for the polynomial
Pn,f ∈ Pn that satisfies the interpolation conditions

Pn,f (xi) = fi, i = 0, . . . , n, (1)

where Fn+1 = {fi = f(xi)}i=0,...,n is the set of function values, the recovering
problem is an interpolation problem.
Using the monomial basis Mn = {1, x, . . . , xn} of Pn, the interpolating polynomial
takes the form

Pn,f (x) =
n∑
i=0

cix
i,

where the vector of coefficients c = (c0, . . . , cn)ᵀ is determined by solving the
linear system

V c = f , (2)
where V = V (x0, . . . , xn) ∈ Rn+1 × Rn+1 is the well-known Vandermonde matrix
and f = (f0, . . . , fn)ᵀ. We remark that the linear system (2) admits a unique
solution as long as the nodes are distinct.
The interpolating polynomial can be also expressed in the Lagrange basis Ln =
{`0, . . . , `n}, so that

Pn,f (x) =
n∑
i=0

fi`i(x), x ∈ Ω,

where

`i(x) :=
n∏
j=0
j 6=i

x− xj
xi − xj

, i = 0, . . . , n, x ∈ Ω

is the i-th elementary Lagrange polynomial which depends only on the set of nodes
Xn+1.
The conditioning of the interpolation process, as well as its stability, can be mea-
sured in terms of the so-called Lebesgue constant

Λ(Xn+1, Ω) = max
x∈Ω

λ(Xn+1;x),

where λ(Xn+1;x) =
∑n
i=0 |`i(x)|, x ∈ Ω, is the Lebesgue function. Indeed, letting

f ∈ C(Ω), we have

max
x∈Ω
|f(x)− Pn,f (x)| ≤ (1 + Λ(Xn+1, Ω))E?n(f),

being E?n(f) the best polynomial approximation error in the space Pn (cf., e.g.,
[19]).
As well-known the Lebesgue constant in the case of equidistant nodes shows an
exponential growth with n which implies the impossibility to use equispaced points
for polynomial interpolation when n becomes larger and larger (cf. [5]).

Therefore, lots of efforts have been put in finding good or optimal sets of nodes,
i.e., nodes whose correspondent Lebesgue constant has a controlled growth. Popu-
lar well-behaved nodes are the Chebyshev Tn and Chebyshev-Lobatto points Un+1,
i.e.,

Tn =

{
cos

(
(2j − 1)π

n

)}
j=1,...,n

Un+1 =

{
cos

(
jπ

n

)}
j=0,...,n

,
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which have been extensively studied in the literature (see e.g. [18]) and retain a
logarithmic growth of the corresponding Lebesgue constant [4,17].
Recently in [6], the authors introduced the set of (β, γ)-Chebyshev points of I =
[−1, 1], β + γ < 2, β, γ ∈ R>0, which can be considered as a generalization of
classical Chebyshev nodes and are defined as follows

Uβ,γn+1 :=

{
cos

(
(2− β − γ)jπ

2n
+
γπ

2

)}
j=0,...,n

. (3)

This family of nodes, in fact, includes the sets Tn+1 (β = γ = 1/(n+1)) and Un+1

(β = γ = 0) as particular instances. Furthermore, Λ(Uβ,γn+1, I) = O(logn) for small
values of the parameters β, γ [6]. Moreover, by taking the Kosloff Tal-Ezer (KTE)
map (cf. [1])

Mα(x) =
sin(απx/2)

sin(απ/2)
, x ∈ I, (4)

and the set of equispaced points in Iβ,γ = [−1 + β, 1− γ], say

Eβ,γn+1 =

{
1− γ − (2− β − γ)j

n

}
j=0,...,n

,

then Uβ,γn+1 = M1(Eβ,γn+1).
In applications, very often, one only disposes of a given set of nodes along with

the related function values, and resampling the unknown underlying function at a
different well-behaved set of nodes, as in [3], might be unfeasible.
The mapped bases or Fake Nodes Approach (FNA), first introduced in [11], allows
us to change the set of nodes without the need of resampling the function. Although
here we are interested in the univariate polynomial interpolation case, we point out
that such approach has been also extended to other settings and higher dimensions
[2,7,12,13].
We briefly recall the FNA construction. Let S : Ω −→ R be an injective map and
S(Ω) ⊆ Ω̃. Moreover, let Pn,g : Ω̃ −→ R be the polynomial interpolating the set
of function values Fn+1 at the set of fake nodes S(Xn+1), with g being a function
such that

g
S(Xn+1)

= f
Xn+1

.

Then, we can define the interpolant RSn,f ∈ span{(S(x))i, i = 0, . . . , n} as

RSn,f (x) := Pn,g(S(x)) =

n∑
i=0

cSi S(x)i, x ∈ Ω,

where the vector of coefficients cS = (cS0 , . . . , c
S
n)ᵀ is determined by solving the

linear system V ScS = f , where V S = V (S(x0), . . . , S(xn)) (cf. (2)). Furthermore,
it has been shown the remarkable equivalence

ΛS(Xn, Ω) = Λ(S(Xn), S(Ω)), (5)

where ΛS(Xn, Ω) = maxx∈Ω λ
S(Xn+1;x) is the Lebesgue constant built upon the

mapped Lagrange basis LSn = {`S0 , . . . , `Sn}, where

`Si (x) :=
n∏
j=0
j 6=i

S(x)− S(xj)

S(xi)− S(xj)
, i = 0, . . . , n, x ∈ Ω.
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The FNA has been successfully applied in preventing the Runge phenomenon.
Indeed, as we previously pointed out, the set of equispaced points E0,0n+1 in I can
be mapped into the set of Chebyshev-Lobatto points Un+1 by taking S = M1,
which guarantees a stable interpolation process.
Besides the Runge phenomenon [20,23], the FNA has been effectively applied to
significantly reduce the effects caused by the so-called Gibbs phenomenon, which
arises in many contexts when the function to be recovered presents jump dis-
continuities [8,9,15]. In this case, adopting the S-Gibbs map, the function S is
constructed in such a way that it is discontinuous at the jumps of the under-
lying function. While this strategy is successful in the treatment of the Gibbs
phenomenon, the resulting set of fake nodes is not well-behaved and thus the in-
terpolation process is unstable as n gets larger.

In this work, our aim is to ensure stability in the treatment of the Gibbs
phenomenon in the FNA framework. Indeed, we want to show that, under certain
assumptions, it is possible to construct a mapped polynomial basis that enjoys
these two properties:

1. the basis functions are discontinuous at some chosen points, therefore the basis
is suitable for preventing the appearance of the Gibbs phenomenon according
to the FNA;

2. the interpolation process is stable, i.e., the Lebesgue constant related to the
resulting set of fake nodes has controlled growth.

The paper is organized as follows. In Section 2, we analyze the behavior of the
Lebesgue function corresponding to the S-Gibbs mapped basis in the limit case,
i.e., when the magnitude of the shift goes to infinity. The setting of equispaced
points is investigated in Section 3, where we provide the construction of a stable
mapped basis obtained via the Gibbs-Runge-Avoiding Stable Polynomial Approx-
imation (GRASPA) approach, which will be introduced later. In Section 4 we
perform some numerical tests that confirm the theoretical findings. Finally, con-
clusions and future works will be discussed in Section 5.

2 On the conditioning related to the S-Gibbs map in the limit case

2.1 The case of a single discontinuity

Let ξ ∈ Ω̊ be such that the two subsets of Xn+1

X 1 := {xi ∈ Xn+1 | xi ≤ ξ}, X 2 := {xi ∈ Xn+1 | xi > ξ},

satisfy
|X 1| − |X 2| ∈ {−1, 0, 1}. (6)

We also denote Ω1 = [a, ξ] and Ω2 =]ξ, b].
Letting κ ∈ R, κ > 0, we consider then the map Sκ : Ω −→ R as

Sκ(x) =

{
x if x ∈ Ω1,

x+ κ if x ∈ Ω2.
(7)
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which corresponds to a general S-Gibbs map, introduced in [11], in the case of one
discontinuity. Indeed, in view of (7), we refer to ξ as the discontinuity point.

In the following, we adopt the shortened notations
Λκ(Xn+1, Ω) := ΛSκ(Xn+1, Ω), λκ(Xn+1; ·) := λSκ(Xn+1; ·) and `κi := `Sκi , i =
0, . . . , n (cf. Section 1).
We are interested in studying the limit

Λ∞(Xn+1, Ω) = lim
κ→∞

Λκ(Xn+1, Ω).

Without loss of generality, being n the polynomial degree, we can restrict our
analysis to the following two cases:

1. The case where |X 1| = |X 2| (i.e. the odd case).
2. The case where |X 1| = |X 2|+ 1 (i.e. the even case).

2.1.1 The odd case

Let be η =
⌊
n
2

⌋
. It is straightforward to observe that if i ≤ η then xi ∈ Ω1,

otherwise xi ∈ Ω2 if i > η.
Let us suppose i ≤ η. Then,

`κi (x) =

η∏
j=0
j 6=i

Sκ(x)− xj
xi − xj︸ ︷︷ ︸
Ai(x)

n∏
j=η+1

Sκ(x)− xj − κ
xi − xj − κ︸ ︷︷ ︸
Bi(x)

. (8)

Moreover, in view of (7), we have

Ai(x)
Ω1

=

η∏
j=0
j 6=i

x− xj
xi − xj

, Bi(x)
Ω1

=
n∏

j=η+1

x− xj − κ
xi − xj − κ

,

Ai(x)
Ω2

=

η∏
j=0
j 6=i

x+ κ− xj
xi − xj

, Bi(x)
Ω2

=
n∏

j=η+1

x− xj
xi − xj − κ

.

(9)

Thus, we obtain

`∞i (x) := lim
κ→∞

`κi (x) =


η∏
j=0
j 6=i

x− xj
xi − xj

if x ∈ Ω1.

0 if x ∈ Ω2.

Indeed, as κ → ∞, Bi(x)
Ω1
→ 1 and Ai(x)

Ω2
· Bi(x)

Ω2
→ 0 asymptotically as

1/κ.
Taking now the case i > η, analogous considerations lead us to

`∞i (x) =


0 if x ∈ Ω1,
n∏

j=η+1
j 6=i

x− xj
xi − xj

if x ∈ Ω2.
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Therefore, we get

λ∞(Xn+1, x) =

{
λ(X 1, x) if x ∈ Ω1,

λ(X 2, x) if x ∈ Ω2,

and, as a consequence,

Λ∞(Xn+1, Ω) = max
{
Λ(X 1, Ω1), Λ(X 2, Ω2)

}
.

2.1.2 The even case

In what follows, our aim is to replicate the analysis carried out in the odd case,
eventually obtaining slightly different results, as we will discuss.
First, let now η = n

2 and let us suppose i ≤ n
2 . The considerations in (8) and (9)

still hold true, thus we proceed taking again the limit κ→∞. While Bi(x)
Ω1
→ 1,

here we have

Ai(x) ·Bi(x)
Ω2

=

η∏
j=0
j 6=i

(x+ κ− xj)
η∏
j=0
j 6=i

1

xi − xj

n∏
j=η+1

1

xi − xj − κ

n∏
j=η+1

(x− xj).

Therefore, by defining

ri(x) :=
n∏

j=η+1

(x− xj)︸ ︷︷ ︸
ωη(x)

η∏
j=0
j 6=i

1

xi − xj︸ ︷︷ ︸
wi

,

as κ→∞ we get Ai(x) ·Bi(x)
Ω2
→ (−1)n/2ri(x) and

`∞i (x) =


η∏
j=0
j 6=i

x− xj
xi − xj

if x ∈ Ω1.

(−1)n/2ri(x) if x ∈ Ω2.

Remark 1 We point out that the function ri consists of the nodal polynomial
ωη built on X 2 times the i-th barycentric Lagrange weight wi related to X 1. As
observed in [14], as n gets larger, the growth of ri is directly linked to the choice of
well-behaved nodes in Ω1 and Ω2. For instance, if the points of X 2 are distributed
according to the Chebyshev-Lobatto nodes, we have (cf. [21])

ωη(x) ≤ 2−
n
2
+2.

The case i > η is similar to the odd case. In fact, letting then i > η, we write

`κi (x) =

η∏
j=0

Sκ(x)− xj
xi − xj︸ ︷︷ ︸
Ci(x)

n∏
j=η+1
j 6=i

Sκ(x)− xj − κ
xi − xj − κ︸ ︷︷ ︸
Di(x)

.
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Thus, we have

Ci(x)
Ω1

=

η∏
j=0

x− xj
xi + κ− xj

, Di(x)
Ω1

=
n∏

j=η+1
j 6=i

x− xj − κ
xi − xj

,

Ci(x)
Ω2

=

η∏
j=0

x+ κ− xj
xi + κ− xj

, Di(x)
Ω2

=
n∏

j=η+1
j 6=i

x− xj
xi − xj

.

Therefore, as κ → ∞, Ci(x)
Ω2
→ 1 and Ci(x) · Di(x)

Ω1
→ 0 asymptotically as

1/κ2, implying

`∞i (x) =


0 if x ∈ Ω1.
n∏

j=η+1
j 6=i

x− xj
xi − xj

if x ∈ Ω2.

Finally, we obtain

λ∞(Xn+1, x) =


λ(X 1, x) if x ∈ Ω1,
η∑
i=0

|ri(x)|+ λ(X 2, x) if x ∈ Ω2

and
Λ∞(Xn+1, Ω) = max

{
Λ(X 1, Ω1), R(X 2, Ω2)

}
,

where

R(X 2, Ω2) := max
x∈Ω2

( η∑
i=0

|ri(x)|+ λ(X 2, x)

)
.

The results obtained in this section are summarized in the following theorem.

Theorem 1 Let Ω = [a, b] ⊂ R be a bounded set and let Xn+1 := {xi}i=0,...,n ⊂
Ω, n ∈ N, be a set of distinct nodes, sorted in increasing order. Let ξ ∈ Ω be such
that the two subsets

X 1 = {xi ∈ Xn | xi ≤ ξ}, X 2 = {xi ∈ Xn | xi > ξ},

satisfy one of the following properties.

1. |X 1| = |X 2| (i.e. the odd case);
2. |X 1| = |X 2|+ 1 (i.e. the even case).

Moreover, let Ω1 = [a, ξ], Ω2 =]ξ, b] and let Sκ : Ω −→ R, κ ∈ R, κ > 0, be
defined as

Sκ(x) :=

{
x if x ∈ Ω1,

x+ κ if x ∈ Ω2.

Furthermore, let Λκ(Xn+1, Ω) be the Lebesgue constant related to the mapped La-
grange basis Lκ := {`κ0 , . . . , `κn}, where

`κi (x) :=
n∏
j=0
j 6=i

Sκ(x)− Sκ(xj)

Sκ(xi)− Sκ(xj)
, i = 0, . . . , n, x ∈ Ω.
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Then, we have

lim
κ→∞

Λκ(Xn+1, Ω) =

{
max

{
Λ(X 1, Ω1), Λ(X 2, Ω2)

}
in the odd case,

max
{
Λ(X 1, Ω1), R(X 2, Ω2)

}
in the even case,

where

R(X 2, Ω2) = max
x∈Ω2

( n/2∑
i=0

|ri(x)|+ λ(X 2, x)

)
,

ri(x) =
n∏

j=n/2+1

(x− xj)
n/2∏
j=0
j 6=i

1

xi − xj
,

and Λ, λ are the classical Lebesgue constant and function.

Proof See the discussion in Section 2.1.1 and 2.1.2. ut

Remark 2 The assumption in (6) is crucial in order to provide a bounded Lebesgue
constant Λ∞(Xn+1, Ω). Moreover, the role played by X1 and X2 may be switched
in the even case, yielding to analogous results.

2.2 Dealing with multiple discontinuities

In what follows, we extend the analysis carried out in the previous subsection to the
case where multiple discontinuities occur on Ω. While presenting strong similarities
when compared to the single discontinuity setting, here some limitations arise and
some adjustments are needed.

Theorem 2 Let Ω = [a, b] ⊂ R be a bounded set and let Xn+1 := {xi}i=0,...,n ⊂
Ω, n ∈ N, be a set of distinct nodes, sorted in increasing order. Let ξ1 < · · · <
ξd ∈ Ω \ {a, b}, d ∈ N, d ≥ 2 and let

D := {Ω1, . . . , Ωd+1}

be a collection of subsets of Ω such that Ω1 = [a, ξ1], Ωd+1 =]ξd, b] and Ωi =
]ξi−1, ξi] for i = 2, . . . , d.
Assume that

|X ν | − |X τ | ∈ {−1, 0, 1},

where X ν = Xn+1
Ων

, ν, τ = 1, . . . , d+ 1.
In view of (7), consider the map defined as

Sκ(x)
Ωτ

:= x+ (τ − 1)κ,

where τ = 1, . . . , d + 1. Introducing then the notation `κi,µ to denote the i-th La-
grange polynomial where xi ∈ Xµ, we have that

|`∞i,µ(x)|
Ωµ

=
∏

xj∈Xµ
j 6=i

∣∣∣∣ x− xjxi − xj

∣∣∣∣.



GRASPA method 9

On the other hand, if τ 6= µ we obtain

|`∞i,µ(x)|
Ωτ

=


0 as κ−1 if |X τ | = |Xµ|,

0 as κ−2 if |X τ | = |Xµ|+ 1,

|ri,µ,τ (x)|Cµ,τ if |X τ | = |Xµ| − 1,

where

Cµ,τ =

d+1∏
ν=1
ν 6=µ,τ

∣∣∣∣ τ − νµ− ν

∣∣∣∣|Xν | (10)

and

ri,µ,τ (x) :=
∏

xj∈X τ
(x− xj)

∏
xj∈Xµ
j 6=i

1

xi − xj
.

Proof We can write
`κi,µ(x)

Ωτ
= p1(x) p2(x)

where

p1(x) :=

d+1∏
ν=1
ν 6=µ,τ

∏
xj∈Xν

x− xj + (τ − ν)κ

xi − xj + (µ− ν)κ
,

p2(x) :=
∏

xj∈Xµ
j 6=i

x− xj + (τ − ν)κ

xi − xj

∏
xj∈X τ

x− xj
xi − xj + (µ− ν)κ

.

Then, we take the limit as κ→∞. If τ = µ, then

lim
κ→∞

|p1(x)| = 1, lim
κ→∞

|p2(x)| =
∏

xj∈Xµ
j 6=i

∣∣∣∣ x− xjxi − xj

∣∣∣∣,
which implies

|`∞i,µ(x)|
Ωµ

=
∏

xj∈Xµ
j 6=i

∣∣∣∣ x− xjxi − xj

∣∣∣∣.
If τ 6= µ, we get immediately

lim
κ→∞

|p1(x)| =
d+1∏
ν=1
ν 6=µ,τ

∣∣∣∣ τ − νµ− ν

∣∣∣∣|Xν | := Cµ,τ .

Moreover, by defining

ri,µ,τ (x) :=
∏

xj∈X τ
(x− xj)

∏
xj∈Xµ
j 6=i

1

xi − xj
,
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we have

lim
κ→∞

|p2(x)| =


0 as κ−1 if |X τ | = |Xµ|,

0 as κ−2 if |X τ | = |Xµ|+ 1,

|ri,µ,τ (x)| if |X τ | = |Xµ| − 1.

As a consequence,

|`∞i,µ(x)|
Ωτ

=


0 as κ−1 if |X τ | = |Xµ|,

0 as κ−2 if |X τ | = |Xµ|+ 1,

|ri,µ,τ (x)|Cµ,τ if |X τ | = |Xµ| − 1.

ut

Therefore, in the multiple discontinuities framework with d ≥ 2, we observe that
the factor Cµ,τ in (10) might be exponentially increasing (or decreasing) as n
gets larger, and thus it might determine a possible fast asymptotic growth of the
Lebesgue constant Λ∞(Xn+1, Ω) (cf. Theorem 1). For example, in the case d = 2
we have

C1,2 = 2−|X
3|, C3,2 = 2−|X

1|, C2,1 = 2|X
3|, C2,3 = 2|X

1|, C1,3 = C3,1 = 1. (11)

In the following, we highlight the case where the nodes are equally distributed
among the sets in D.

Corollary 1 In the hypotheses of Theorem 2, if we restrict to the case

|X ν | = |X τ |

for every ν, τ = 1, . . . , d+ 1, then

lim
κ→∞

Λκ(Xn, Ω) = max
{
Λ(X 1, Ω1), . . . , Λ(X d+1, Ωd+1)

}
.

Proof The thesis directly follows from the results of Theorem 2. ut

3 Working with equispaced nodes

From now, we assume to sample our underlying function at the set of equispaced
points

Xn+1 =

{
− a+

(b− a)j

n

}
j=0,...,n

. (12)

Let d ≥ 1 and let ξ1 < · · · < ξd, D = {Ω1, . . . , Ωd+1}, X 1, . . . ,X d+1 be defined as
in Theorem 2. Recalling what introduced in Section 1, it is easy to observe that
for every i = 1, . . . , d + 1, by setting ξ0 = a and ξd+1 = b, there exists the affine
map onto the interval I = [−1, 1], F i : Ωi −→ I,

F i(x) :=
2(x− ξi−1)

ξi − ξi−1
− 1, i = 1, . . . , d+ 1, (13)

and parameters βi, γi ∈ R>0, βi + γi < 2, such that

F i
(
X i
)

= Eβi,γi|X i| , i = 1, . . . , d+ 1,
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which, composed with the KTE map (4) with α = 1, gives

(M1 ◦ F i)
(
X i
)

= Uβi,γi|X i| , i = 1, . . . , d+ 1. (14)

Then, by denoting the inverse of F i as Gi, i.e.,

Gi(x) :=
(ξi − ξi−1)(x+ 1)

2
+ ξi−1, i = 1, . . . , d+ 1,

we can define the Multiple KTE (MKTE) map on Ω with respect to the set D as

MΩ,D
α (x) :=

d+1∑
i=1

χi(x) ·
(
Gi ◦Mα ◦ F i

)
(x), x ∈ Ω, (15)

where χi(x) is the characteristic function related to the set Ωi. MΩ,D
α maps Ω

into itself and it is a continuous and monotonically increasing function.
Therefore, when α = 1,

Λ(MΩ,D
1 (Xn+1) ∩Ωi, Ωi) = Λ(Uβi,γi|X i| , I), i = 1, . . . , d+ 1. (16)

In other words, if we apply the mappingMΩ,D
1 to the set of equispaced nodes Xn+1,

then on every subset Ωi the Lebesgue constant corresponding to the mapped nodes
that belong to Ωi can be fully understood in the framework of (β, γ)-Chebyshev
nodes, i = 1, . . . , d+ 1.

Then, considering the map

QΩ,Dκ :=
(
Sκ ◦MΩ,D

1

)
, (17)

the resulting mapped basis

QΩ,D
κ,n = {1, QΩ,Dκ , . . . ,

(
QΩ,Dκ

)n}, (18)

represents an effective choice for the interpolation at Xn+1 of a function having
jump discontinuities at ξ1, . . . , ξd in Ω, as long as βi, γi are small enough and
κ→∞. Indeed, QΩ,D∞ provides the reduction of the Gibbs effect by virtue of S∞,
and mitigates possible local Runge’s effects thanks to the composition withMΩ,D

1 ,
by constructing local well-behaved distributed nodes. We refer to this limit case
as Gibbs-Runge-Avoiding Stable Polynomial Approximation (GRASPA) approach,
to QΩ,D∞ and QΩ,D

∞,n as the GRASPA map and basis, respectively.
Thanks to Corollary 1 and [6, Th. 3], the following holds.

Proposition 1 Let Ω = [a, b] ⊂ R be a bounded set and let Xn+1 be as in (12).
Let ξ1 < · · · < ξd ∈ Ω \ {a, b}, d ∈ N, d ≥ 2 be the discontinuity points and let

D := {Ω1, . . . , Ωd+1}

be a collection of subsets of Ω such that Ω1 = [a, ξ1], Ωd+1 =]ξd, b] and Ωi =
]ξi−1, ξi] for i = 2, . . . , d. Moreover,

|X ν | = |X τ |
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for every ν, τ = 1, . . . , d+ 1. Then, if the mapped points (14) Uβi,γi|X i| , are such that
δ := maxi,j{βi, γj} is bounded as

δ <
4

πN2(2 + π log(N + 1))
,

with N = maxτ |X τ |, then

lim
κ→∞

Λκ(Xn, Ω) = O (logN) .

Remark 3 In this section, we focused on the case where the nodes are equispaced
in Ω. However, we point out that the above approach may be applied to a general
interpolation nodes set by mapping it to a set of equispaced nodes beforehand.

4 Numerics

Throughout this section, we consider Ω = [−1, 1], the corresponding set of equis-
paced nodes Xn+1 and, as an approximation of the limit case, κ = 10000. The tests
make a comparison between our GRASPA approach, classical interpolation and
S-Gibbs algorithm. A Python implementation for the mapped bases approach is
available at [10].

4.1 Test with one discontinuity

Let us consider the function

f1(x) =


1

25(2x+ 1)2 + 1
− 1

2
if x ≤ 0,

sin(2x) cos(3x) +
1

2
if x > 0,

x ∈ Ω,

which is discontinuous at ξ = 0. Therefore, D = {Ω1, Ω2} with Ω1 = [−1, ξ], Ω2 =
]ξ, 1].

4.1.1 Case n odd

In this case, |X 1| = |X 2| = (n+1)/2,MΩ,D
1 (X 1) andMΩ,D

1 (X 2) are distributed in
Ω1 and Ω2 according to U0,γ1

(n+1)/2 and Uβ2,0
(n+1)/2, with γ1 = β2 = 2/(n+1), with the

Lebesgue constants Λ(U0,γ1

(n+1)/2, Ω) and Λ(Uβ2,0
(n+1)/2, Ω) growing logarithmically

(cf. [6]). Therefore, we expect a logarithmic growth also of the Lebesgue constant
ΛQ

Ω,D
κ (Xn+1, Ω) constructed upon the mapped basis QΩ,D

κ,n .
The results are shown in Figure 1 and Figure 2. In particular, letting Ξ =

{x̃i = −1 + 2 i
99 : i = 0, . . . , 99} and ti := |`Q

Ω,D
κ

i |, in Figure 2 (right) we display
the matrix L, with Li,j = ti(x̃j).

In Figure 3 we show some interpolation results concerning f1 with the above
discussed approaches, whereas in Figure 4 we display the Relative Maximum Ab-
solute Error (RMAE) computed on a grid of 332 equispaced evaluation points.
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Fig. 1 The Lebesgue functions with n = 23. From left to right: classical approach, S-Gibbs
interpolant and the GRASPA interpolant.
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Fig. 2 Left: the Lebesgue constant. Classical approach in dots, S-Gibbs in dashed, GRASPA
in solid line. Right: the matrix L for n = 51.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3 The function f1 in dashed red and the interpolant with n = 23 in black. From left to
right: classical, S-Gibbs and GRASPA approach, respectively.
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Fig. 4 The RMAE: Classical approach in dots, S-Gibbs in dashed, GRASPA in solid line.



14 S. De Marchi et al.

As we can notice, the S-Gibbs map resolves the Gibbs phenomenon by split-
ting the interpolation problem in the two subintervals. However, if the Runge’s
phenomenon takes place, the interpolating function diverges, but by means of the
GRASPA map we could prevent the appearance of both.

4.1.2 Case n even

Here, MΩ,D
1 (X 1) and MΩ,D

1 (X 2) are distributed in Ω1 and Ω2 according to
U0,0
n/2+1 and Uβ2,0

n/2 respectively, with β2 = 4/n. In this case, we have a loga-

rithmic growth of Λ(U0,0
n/2+1, Ω) and a linear growth of Λ(Uβ2,0

n/2 , Ω). Therefore,

ΛQ
Ω,D
κ (Xn+1, Ω) is linearly growing.

-1.0 -0.5 0.0 0.5 1.0

t0

t12

t25

t38

t51
-1.0 -0.5 0.0 0.5 1.0

t0

t12

t25

t38

t51

Fig. 5 The matrix L for n = 51. Left: without the usage of the map Vn. Right: taking the
mapping QΩ,Dκ ◦ Vn.

In order to recover the logarithmic growth of the Lebesgue constant, we con-
sider a further continuous map Vn on Ω

Vn(x) =


x if −1 ≤ x ≤ ξ,

nx

2(n− 1)
if ξ < x ≤ 2/n,

nx

n− 1
− 1

n− 1
if 2/n ≤ x ≤ 1,

with the purpose of moving the equispaced nodes X 2 closer to ξ. Indeed, by ap-
plying Vn the spacing between ξ and the first point is half the spacing between
the others. Furthermore, we remark that (MΩ,D

1 ◦ Vn)(X 2) is distributed in Ω2

according to Uβ2,0
n/2 , with β2 = 2/n. Therefore, the map QΩ,Dκ ◦ Vn yields to a

logarithmic growth of the corresponding Lebesgue constant (see Figure 5). As in
the odd case, we achieve stability in interpolation of f1 as shown in Figure 6.
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Fig. 6 The Lebesgue constant (left) and the RMAE (right). Classical approach in dots, S-
Gibbs in dashed, GRASPA in solid line (with the additional mapping Vn).

4.2 Test with three discontinuities

Let us consider the function

f2(x) =



1

25(4x+ 3)2 + 1
− 1

2
if x ≤ −1

2
,

|4x− 1| if 0 < x ≤ 1

2
,

sin(2x) cos(3x) +
1

2
otherwise,

, x ∈ Ω,

which is discontinuous at ξ1 = −1/2, ξ2 = 0 and ξ3 = 1/2.

As analyzed in Section 4.1.2, the usage of the GRASPA approach might lead to
(β, γ)-Chebyshev points that do not present a logarithmic growth of the Lebesgue
constant, being β or γ too large. In this test, we choose n = 4j + 1, j = 0, 1, . . . ,
so that there is no need of additional mappings for achieving a logarithmic growth
of the Lebesgue constant (cf. Section 4.1.2).
In Figures 7, 8, 9 and 10, we display the obtained results.
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Fig. 7 The Lebesgue functions with n = 29. From left to right: classical approach, S-Gibbs
interpolant and the GRASPA interpolant.
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Fig. 8 The function f2 in dashed red and the interpolant with n = 29 in black. From left to
right: classical, S-Gibbs and GRASPA approach, respectively.
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Fig. 9 Left: the Lebesgue constant, classical approach in dots, S-Gibbs in dashed, GRASPA
in solid line. Right: the matrix L for n = 50.
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Fig. 10 The RMAE concerning the interpolation of f2. Classical approach is in dots, the
dashed line is S-Gibbs interpolant and the solid line is the GRASPA approach.

In Figure 11, we show the diverging behavior of the Lebesgue constant related
to the GRASPA approach for very high values of n. This is due to the fact that,
being κ fixed, at a certain point the growth with n of Cµ,τ overtakes the decreasing
to zero of the term p2 when κ gets larger and larger (see Theorem 2).
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Fig. 11 Left: The Lebesgue constant of the interpolant related the GRASPA approach. Right:
the matrix L for n = 89.

5 Conclusions

In this paper, we presented a new mapped polynomial basis approach that substan-
tially mitigates both Runge’s and Gibbs phenomena. This technique, named the
Gibbs-Runge-Avoiding Stable Polynomial Approximation (GRASPA) approach, is
built combining the limit case of the S-Gibbs Fake Nodes Approach (cf. Section 2)
and the Kosloff Tal-Ezer map (4). As a result, the so-constructed mapped polyno-
mial basis turns out to be a stable and an effective choice for the interpolation of
functions presenting jump discontinuities. Motivated by the promising results of
the new approach, we are working on the extension to higher dimensions.
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