
Advances in Computational Mathematics manuscript No.
(will be inserted by the editor)

Stable interpolation with exponential-polynomial splines
and node selection via greedy algorithms

R. Campagna · S. De Marchi · E. Perracchione ·
G. Santin

Received: date / Accepted: date

Abstract In this work we extend some ideas about greedy algorithms, which
are well-established tools for e.g. kernel bases, and exponential-polynomial splines
whose main drawback consists in possible overfitting and consequent oscillations
of the approximant. To partially overcome this issue, we develop some results on
theoretically optimal interpolation points. Moreover, we introduce two algorithms
which perform an adaptive selection of the spline interpolation points based on the
minimization either of the sample residuals (f -greedy), or of an upper bound for
the approximation error based on the spline Lebesgue function (λ-greedy). Both
methods allow us to obtain an adaptive selection of the sampling points, i.e. the
spline nodes. While the f -greedy selection is tailored to one specific target function,
the λ-greedy algorithm enables us to define target-data-independent interpolation
nodes.

Keywords Greedy methods, Lebesgue function, Exponential-polynomial splines,
Node selection.

Mathematics Subject Classification (2000) 65D15 · 41A05

R. Campagna
Department of Mathematics and Physics, University of Campania “L. Vanvitelli”, Italy
E-mail: rosanna.campagna@unicampania.it

S. De Marchi
Department of Mathematics “Tullio Levi-Civita”, University of Padova, Italy
E-mail: demarchi@math.unipd.it

E. Perracchione
Dipartimento di Scienze Matematiche “Giuseppe Luigi Lagrange”, Politecnico di Torino, Corso
Duca degli Abruzzi, 24, 10129, Torino, Italy
E-mail: emma.perracchione@polito.it

G. Santin
Digital Society Center (DIGIS), Bruno Kessler Foundation, Trento, Italy
E-mail: gsantin@fbk.eu

2 Campagna, De Marchi, Perracchione, Santin

1 Introduction

Scattered data interpolation is one of the most investigated topics in the field of nu-
merical analysis, and it is successfully used in many applications. As a consequence,
many methods have been developed, including interpolation with polynomials of
total degree (see e.g. [7]), exponential splines [11], and kernel-based methods (refer
e.g. to [20,34]), with their recent developments in the context of image processing
(e.g. [17]) and machine learning [4,32].

More recently, the so-called Exponential-Polynomial Splines (EPS) have been
introduced with the main purpose of studying approximations in spaces which
generalize classical polynomial splines. The latter find many applications, ranging
from geometric modelling to image analysis, passing through isogeometric analysis
and system theory (see for example [16,31,33]). In other words they are able
to deal with more complex tasks, in that they reproduce functions which are
linear combinations of exponentials, and this is quite a common setting in the
applications. For instance, several papers deal with the approximation of univariate
multi-exponentially decaying functions with a smoothing effect [10,12,13]. Such a
smoothing strategy is implemented by considering a regularization parameter.

To understand the EPS-based process, we study pointwise interpolation error
bounds. We are able to obtain these bounds thanks to the definition of the car-
dinal form of the EPS interpolant that then allows us to introduce the Lebesgue
function and constant [8,9]. The latter are known to be stability indicators for
polynomial bases; see e.g. [2,3,5,6,7,18]. In this paper we are interested in the
design of appropriate sampling strategies for EPS interpolation. Namely, assum-
ing to be given either only an input space discretization, or a dataset of input
points and corresponding function evaluations, we aim at selecting a small subset
of approximation points to be used to construct the EPS interpolant. We first
address the problem from a theoretical point of view, and show that the Lebesgue
constant associated to equally spaced sampling points is uniformly bounded by a
(small) constant. This fact indicates that these points are quasi-optimal, given the
well known relation between interpolation and best approximation. However, since
these uniform sampling locations may not be available in practical applications,
we further consider incremental methods that, given an initial set of samples, con-
struct an EPS interpolant by iteratively selecting a new point at each iteration.
The iterative rule is dictated by greedy methods (see [30]), which have been inves-
tigated e.g. for kernel interpolation (refer e.g. to [21,23,26,37,36,35]) and lead to
sparse models which turn out to be helpful in many applications, see e.g. [19]. This
iterative selection is a convenient proxy for the optimal selection of the sampling
points from a fixed set, which is in turn usually an extremely computationally
demanding procedure.

We first consider the greedy method associated to the iterative minimization
of the Lebesgue constant. Based on this error indicator, we define an algorithm for
selecting data-independent points for EPS. Then, we propose a second extraction
strategy that takes into account also the function values. This kind of approach
is usually more expensive, but it allows to select points that are tailored to one
specific target function, and thus are usually able to better resolve local features
such as steep gradients or oscillations. In both cases, we numerically explore the
behavior of the node distribution for the spline basis, and we test our findings
under different perspectives.

Stable interpolation with EPS and node selection via greedy algorithms 3

The paper is organized as follows. In Section 2 we briefly review the basics of
greedy methods and EPS interpolation, and in Section 3 we recall the definition
of the associated Lebesgue constant. In particular, we use it to show that equally
spaced points are quasi-optimal since the corresponding Lebesgue constant is uni-
formly bounded independently of the number of interpolation points. Motivated
by the fact that this kind of points may not be available in practical applications,
we introduce two greedy selection strategies in Section 4. The numerical exper-
iments are presented and discussed in Section 5, while Section 6 deals with an
application to real data from a Nuclear Magnetic Resonance (NMR) experiment.
Conclusions with an outline of future works are provided in Section 7.

2 Exponential-polynomial splines and greedy schemes

In this section we present the main features of EPS and provide some generalities
on greedy methods.

2.1 Exponential-polynomial splines

The EPS are a particular spline model that has been introduced in [12], and
which are a particular instantiation of a general technique described in [28]. This
exponential natural smoothing L-spline is the solution of the minimization of a cost
functional defined in [12], which comprises a weighted least square loss and a
penalization term depending on a suitable differential operator. It can be proven
that a unique solution of this optimization problem exists, and numerical evidence
suggests that this model is well-suited for the approximation of a certain class of
functions, as outlined in the Introduction (Section 1).

In this paper we focus on the non-regularized and unweighted version of this
model, which can be formulated explicitly via a simple interpolation problem. We
refer to [12,28] for a definition of the most general version of the spline model, and
we directly use this simpler approach in the following.

Namely, we consider a real valued continuous function f ∈ C([a, b]) := C([a, b],R),
[a, b] ⊂ R, and an associated set of function values F := {yi := f(xi)}ni=1 sam-
pled on an input data set X := {xi}ni=1, that constitutes a partition of [a, b], i.e.
a = x1 < x2 < · · · < xn = b. For a given parameter α ∈ R, we define the interpolant
of f as

IX,α(f)(x) =
n∑
i=1

ciϕi(x), (1)

where {ϕj}nj=1 is a basis of exponential B-splines, also referred to as Generalized
B-splines (GB-splines), and the coefficients c := [c1, . . . , cn]ᵀ ∈ Rn are obtained by
imposing the interpolation conditions IX,α(f)(xi) = f(xi), 1 ≤ i ≤ n and C2 regu-
larity at knots. These coefficients exist and are unique because the corresponding
interpolation matrix is invertible, as discussed below.

Since the interpolant of any continous function is now well defined, we denote
here and in the following by IX,α : C([a, b]) → C([a, b]) the linear interpolation
operator, so that IX,αf : R→ R is the function interpolating f ∈ C([a, b]) at X.

4 Campagna, De Marchi, Perracchione, Santin

The GS-splines are defined so that ϕj |[xi,xi+1] ∈ E4,α, where |A denotes the
restriction on a set A ⊂ R and

E4,α := span{eαx, xeαx, e−αx, xe−αx},

and they have the following properties (see Figure 1): they are bell-shaped with
compact support, identified by 5 nodes, with the blending segments belonging to
E4,α, and have global C2-smoothness. The generic basis function ϕ can then be
expressed as

ϕ(x)|[xi,xi+1] =
4∑

k=1

bi,kgk(x), gk ∈ E4,α, (2)

where xi, i = 1, . . . , n − 1, denotes the left point of the partition element, and
k = 1, . . . , 4, denotes the index of the local basis element. Indeed, each function ϕ

in the form (2) has 4(n−1) degrees of freedom, given by the coefficients {bi,k} with
1 ≤ i ≤ n − 1, 1 ≤ k ≤ 4. Then, to define such a basis of dimension n, the nodes
vector has to be augmented with two extra nodes before x1 and two others after xn,
i.e. an augmented node set as x−1 ≤ x0 ≤ x1 = a < . . . < xn = b ≤ xn+1 ≤ xn+2

has to be considered. Such extra nodes affect the construction of the so called
boundary basis functions: ϕ1, ϕ2 and ϕn−1, ϕn. The global space of the exponential-

Fig. 1 An example of a GB-spline with segments in the spaces E4,α.

polynomial splines EX,α(E4,α) is then defined by gluing local patches defined over
each interval such that EX,α(E4,α) ⊂ C2([a, b]), and any element in this space can
be expressed using coefficients bi,k as in (2). In particular, this implies via (1) that
IX,α ∈ C2([a, b]).

Remark 1 We remark that in [12] the authors assume that α > 0 (instead of α ∈ R)
in order to enforce a certain exponential behavior outside of the interpolation
interval. Moreover, in the same paper it is additionally assumed that the boundary
pieces in (2) are contained in a different space E2,−α := span{e−αx, x e−αx}.

Following [12], we furthermore use a Bernstein-like basis to represent each seg-
ment of the GB-splines {ϕj}nj=1 (see [12, Appendix] for an explicit construction),
which are defined as

ϕj(x)|[xi,xi+1] =
4∑

k=1

γi,j,kBk(x− xj), (3)

where Bk, k = 1, . . . , 4, are Bernstein-like functions, 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n.
The existence and uniqueness of such a functional space is proved in [12, Theorem

Stable interpolation with EPS and node selection via greedy algorithms 5

2.1]. The advantage of the GB-spline basis is that the computations can be per-
formed locally in the support of each ϕj , where supp(ϕj) ⊂ [xj−2, xj+2], 1 ≤ j ≤ n.
In particular, the global interpolation matrix Φ with entries given by Φij := ϕj(xi)
is tridiagonal, non-singular, and the vector of the coefficients c := [c1, . . . , cn]ᵀ ∈ Rn
in (1) is the solution of

Φc = y, (4)

where y := [y1, . . . , yn]ᵀ ∈ Rn. Observe that we have IX,α(f) = f for all f ∈
EX,α, i.e., every function in EX,α is uniquely determined by its values on X. We
summarize in Algorithm 1 the steps for computing the EPS interpolant.

Algorithm 1 Pseudo-code for EPS

Inputs: X ⊆ Ω, y, α.
Outputs: The interpolant coefficients c := [c1, . . . , cn]ᵀ.

1: Define the function space E4,α.
2: Define the augmented nodes for the boundary basis functions.
3: Compute the GB-spline basis functions {ϕj}nj=1 in Bernstein-like basis.

4: Compute the collocation matrix and solve the linear system as in (4).

2.2 Greedy schemes

We briefly recall the main ideas behind greedy techniques.

Given X and F , the main goal of a greedy algorithm consists in selecting a
suitable subset X̃ ⊂ X so that the greedy interpolant is constructed on a smaller
number of data, hence producing an approximation of the interpolation opera-
tor IX , meaning that IX̃f is close to IXf in some suitable norm. Such iterative
algorithms belong essentially to two classes:

– Target-data-dependent greedy schemes: the set X̃ is constructed taking into
account the function values F .

– Target-data-independent greedy methods: the set X̃ is built independently of
the function values F . Observe that in this case it is reasonable to expect that
IX̃g is close to IXg also for a larger class of functions g 6= f .

The general iterative rules for these two algorithms are summarized in Table 1,
where λ denotes a pointwise error indicator independent of the function values. We
remark that the same notation will be used from the next section also to denote
the Lebesgue function, but this should create no confusion since it is the actual
error indicator that we will use in practice. Both methods will be investigated in
Section 4 for the special case of EPS.

Remark 2 We would like to point out that the notation and terminology used in
this section is taken from the literature on greedy kernel methods (see e.g. [35]),
where a similar distinction has been introduced for the target-data-independent
P -greedy algorithm, and the target-data-dependent f -, f/P -, and f · P -greedy
algorithms.

We will use the same language in the rest of this paper to describe and classify
greedy algorithms.

6 Campagna, De Marchi, Perracchione, Santin

Greedy method Selection rule

Target-data-dependent x∗ = argmaxx∈X\X̃ |f(x)− IX,α(f)(x)|

Target-data-independent x∗ = argmaxx∈X\X̃λ(x)

Table 1 Point selection rules for the target-data-dependent and independent greedy strategies.

3 Quasi-optimal point locations

Interpolatory approximation schemes can be analyzed in terms of their relation
to best approximation. To this end, we review the construction of a cardinal basis
and the associated definition of the Lebesgue constant, and use it to prove the
quasi optimality of equally spaced points in this case.

3.1 Lagrange functions and Lebesgue constant

In this section, for simplicity of notation, we sometimes omit the dependency on
α when no confusion arises.

Given {ϕj}nj=1 as in (2), since the associated matrix Φ is invertible we may

write dj` := (Φ−1)j`. In this way we have that the functions

ψ`(x) :=
n∑
j=1

dj`ϕj(x), 1 ≤ ` ≤ n,

satisfy the cardinal conditions

ψ`(xi) = δi`, 1 ≤ i, ` ≤ n, (5)

i.e., they are a global Lagrange (or cardinal) basis. To see this, just observe that
for 1 ≤ i, ` ≤ n, it holds true that

ψ`(xi) =
n∑
j=1

ϕj(xi)dj` =
n∑
j=1

Φij(Φ
−1)j` =

(
Φ · Φ−1

)
i`

= δi`, 1 ≤ i, ` ≤ n.

Using the cardinal basis, the interpolant (1) may be written as

IX,α(f)(x) =
n∑
j=1

f(xj)ψj(x), x ∈ [a, b]. (6)

Some examples of cardinal bases for the EPS are plotted in Figure 2. In this
illustrative example, the cardinal functions are computed for n = 8 equispaced,
Halton and Chebyshev data locations, and are evaluated on 400 equispaced points.

Once the cardinal basis is computed, the Lebesgue function is defined in the
usual way as

λ(x) := λX,α(x) =
n∑
j=1

|ψj(x)|, x ∈ [a, b],

Stable interpolation with EPS and node selection via greedy algorithms 7

-1 -0.5 0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2 From left to right: cardinal functions computed on n = 8 equispaced, Halton and
Chebyshev points, respectively.

and its maximum value is called the Lebesgue constant, defined by

Λ := ΛX,α = sup
a≤x≤b

λX,α(x).

Both λ and Λ depend on the location of the interpolation points and on their
number n, but not on the function values and, as it is well known, they are stability
indicators.

3.1.1 Lebesgue function and error estimation

The Lebesgue constant allows to simply relate the best approximation and inter-
polation error. For completeness we review the details of this fact in the following
result, which is a simple instance of the classical Lebesgue Lemma (see e.g. [29,
1]).

Theorem 1 (Approximation error) Let f ∈ C([a, b]) and let f?X,α ∈ EX,α be its

best approximation in EX,α with respect to the norm ‖ · ‖∞. Then it holds that∣∣(f − IX,α(f)
)

(x)
∣∣ ≤ (1 + λX,α(x)

) ∥∥f − f?X,α∥∥∞ , x ∈ [a, b]. (7)

Proof Since IX,α(g) = g for all g ∈ EX,α, and in particular for g = f?X,α, and using
the arguments provided by e.g. [29], we have that∣∣f(x)− IX,α(f)(x)

∣∣ =
∣∣f(x)− f?X,α(x) + f?X,α(x)− IX,α(f)(x)

∣∣
≤
∥∥f − f?X,α∥∥∞ +

∣∣IX,α (f?X,α − f) (x)
∣∣ . (8)

To bound the second term we use (6) and thus:

∣∣IX,α (f?X,α − f) (x)
∣∣ =

∣∣∣∣∣∣
n∑
j=1

(
f?X,α − f

)
(xj)ψj(x)

∣∣∣∣∣∣
≤ max

1≤j≤n

∣∣(f?X,α − f) (xj)
∣∣ n∑
j=1

|ψj(x)|

≤
∥∥f?X,α − f∥∥∞ λ(x).

Then, the thesis follows from (8).

8 Campagna, De Marchi, Perracchione, Santin

Remark 3 (Related results) Observe that the error bound in (7) is analogous but
not equivalent to similar statements in other methods (e.g., polynomial or kernel-
based interpolation). Indeed, the splitting of the error on the right hand side is
only partially separating the f -dependent and the f -independent terms, since the
best approximant f?X,a is depending on the interpolation points. In other words,
one may try to minimize the first term to find good, i.e., sub-optimal, interpolation
points, but this may spoil the second term.

As an illustrative example in Figure 3, in the same setting as in Figure 2
we plot the Lebesgue functions corresponding to n = 8 equispaced, Halton and
Chebyshev points, and evaluated on a grid of 400 points. Observe that in this
case the Chebyshev points seem to not provide the smallest Lebesgue constant, in
contrast with interpolation with global polynomials. We further explore this fact
in the following section.

-1 -0.5 0 0.5 1

1

1.1

1.2

1.3

1.4

1.5

1.6

-1 -0.5 0 0.5 1

1

1.2

1.4

1.6

1.8

2

2.2

-1 -0.5 0 0.5 1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Fig. 3 From left to right: Lebesgue functions computed on n = 8 equispaced, Halton and
Chebyshev points, respectively.

3.2 Equally spaced points

In the case of equally spaced points, a more explicit characterization of the exponential-
spline basis is known. We use it to derive precise bounds on the Lebesgue constant.

To this end we set

pα(t) := exp(αt) + exp(−αt), mα(t) := exp(αt)− exp(−αt),

and we have from [14] that the generating exponential B-spline B(α) : R → R,
defined on the integer points Z, can be computed as

B(α)(t) =

{
f
(k)
α (t), k − 1 < t ≤ k, 1 ≤ k ≤ 4,

0, t /∈ (0, 4),

Stable interpolation with EPS and node selection via greedy algorithms 9

with

f
(1)
α (t) :=

1

4α2

(
tpα(t)− 1

α
mα(t)

)
,

f
(2)
α (t) :=

1

4α2

(
−2(t− 1)pα(t− 2)− (t− 2)pα(t) +

2

α
mα(t− 2) +

1

α
mα(t)

)
,

f
(3)
α (t) :=

1

4α2

(
(t− 2)pα(t− 4) + 2(t− 3)pα(t− 2)− 1

α
mα(t− 4)− 2

α
mα(t− 2)

)
,

f
(4)
α (t) :=

1

4α2

(
−(t− 4)pα(t− 4) +

1

α
mα(t− 4)

)
.

It is easily verified that B(α) is symmetric around the point 2, where it has a
global maximum, and that B(α) ∈ C2(R). In particular it holds that B(α)(0) =
B(α)(4) = 0. This basic or base? spline can be applied to the regular grid hZ with
h > 0 simply by scaling the input, i.e., defining B(α,h)(t) := B(α)(t/h).

One may now consider an interval [a, b] ⊂ R, a number n ∈ N, a grid size
h := (b − a)/(n − 1), and define a set of n equally spaced interpolation points
xj ∈ [a, b], 1 ≤ j ≤ n. Without loss of generality (i.e., up to a translation), we
assume in this section that a = 0, so that xj = (j − 1) · h ∈ [a, b], 1 ≤ j ≤ n. It has
been proven in [14] that for all α ∈ R a basis for the space EX,α(E4,α) is given by
the exponential B-splines Bj , 1 ≤ j ≤ n defined by

Bj(x) :=
1

h2
B(α,h)(x− xj + 2h) =

1

h2
B(α,h)(x− (j − 1)h+ 2h), (9)

i.e., each Bj is given by the translation of B(α,h) so that it has a maximum in xj ,
and by a scaling by h2. It follows that

Bj(xi) =
1

h2
B(α,h)((i− 1)h− (j − 1)h+ 2h) =

1

h2
B(α,h)(h(i− j + 2)) (10)

=
1

h2

b−1 := B(α,h)(h), i− j + 2 = 1

b0 := B(α,h)(2h), i− j + 2 = 2

b1 := B(α,h)(3h), i− j + 2 = 3

0, otherwise

=
1

h2

b1, i = j − 1

b0, i = j

b1, i = j + 1

0, otherwise,

where we used the fact that B(α,h)(h) = B(α,h)(3h) since B(α,h) is symmetric
around 2h.

We assume that the extended points are also equally spaced, i.e., x−1 := a −
2h, x0 := a − h, xn+1 := b + h, xn+2 := b + 2h. Using (10), it follows that the
interpolation matrix Φh := (Bj(xi))

n
i,j=1 ∈ Rn×n with respect to this basis is

indeed a tridiagonal symmetric Toeplitz matrix, i.e.,

Φh =
1

h2

b0 b1 . . . 0
b1 b0 . . . 0
...

. . .
. . . b1

0 . . . b1 b0

 =:
1

h2
Φ,

where we set Φ := Toep(b1, b0, b1), i.e., the h-independent symmetric Toeplitz
matrix that appears in the last equation.

In the following we will derive some bounds involving various combinations of
the values b0 and b1, for which we will need the following lemma.

10 Campagna, De Marchi, Perracchione, Santin

Lemma 1 For all α ∈ R we have

b0 =
1

α2

(
−1 +

1

2α
sinh(2α)

)
, b1 =

1

2α2

(
cosh(α)− 1

α
sinh(α)

)
. (11)

Moreover

b0 − 2b1 =
2

α3
cosh

(
α

2

)2
(sinh(α)− α) ≥ 1

3

(
1 +

1

20
α2

)
, (12)

and

κ(α) :=
b0 + 2b1
b0 − 2b1

= tanh
(
α

2

)2 sinh(α) + α

sinh(α)− α
, (13)

with 1 ≤ κ(α) ≤ 3, lim
α→±∞

κ(α) = 1, lim
α→0

κ(α) = 3.

Proof See Appendix A.

We can thus use the known expression for the eigenvalues of an n×n tridiagonal
Toeplitz matrix (see [38]), obtaining

λk(Φ) = b0 + 2b1 cos

(
π

k

n+ 1

)
, 1 ≤ k ≤ n,

and thus

λk(Φh) =
1

h2

(
b0 + 2b1 cos

(
π

k

n+ 1

))
, 1 ≤ k ≤ n. (14)

We have in particular that λ1(Φh) ≥ λ2(Φh) ≥ . . . ≥ λn(Φh), since cos (πx) is
decreasing for x := k/(n+ 1) ∈ (0, 1).

Moreover the bound (12) together with (14) implies that

λk(Φh) ≥ λN (Φh) ≥ 1

h2
(b0 − 2b1) ≥ 1

3h2

(
1 +

α2

20

)
> 0, (15)

and in particular this implies that Φh is positive definite for all α ∈ R, since is
symmetric by definition. It is thus also a normal matrix, and in particular the
singular values σk(Φh) of Φh coincide with its eigenvalues.

We combine these facts with the bounds of Lemma 1 to obtain the following
estimates regarding the matrix Φh and its inverse.

Proposition 1 For all α ∈ R, if the interpolation points are equally spaced it holds∥∥∥Φ−1
h

∥∥∥
2
≤ h2

b0 − 2b1
≤ 3h2

1 + α2/20
,∥∥∥Φ−1

h

∥∥∥
∞
≤ h2

b0 − 2b1
≤ 3h2

1 + α2/20
,

cond2(Φh) ≤ b0 + 2b1
b0 − 2b1

≤ tanh
(
α

2

)2 sinh(α) + α

sinh(α)− α
≤ 3.

In particular for all h > 0 we have that limα→±∞ cond2(Φh) = 1 and cond2(Φh) =
3− 2

5α
2 +O(α4) for α→ 0.

Stable interpolation with EPS and node selection via greedy algorithms 11

Proof Even if it would be sufficient to use that fact that
∥∥Φ−1

h

∥∥
2
≤
∥∥Φ−1

h

∥∥
∞, we

simply use (15) to obtain∥∥∥Φ−1
h

∥∥∥
2

= σ1(Φ−1
h) =

1

λn(Φh)
≤ h2

b0 − 2b1
≤ 3h2

1 + α2/20
.

For the condition number instead it holds that

cond2(Φ) =
σ1(Φ)

σn(Φ)
=
λ1(Φ)

λn(Φ)
=

b0 + 2b1 cos (π/(n+ 1))

b0 + 2b1 cos (πn/(n+ 1))
≤ b0 + 2b1
b0 − 2b1

,

and we may use Lemma 1 to bound the last term.
For the ∞-norm we have∥∥∥Φ−1

∥∥∥
∞

= max
0 6=v∈Rn

∥∥Φ−1v
∥∥
∞

‖v‖∞
= max

06=w∈Rn

‖w‖∞
‖Φw‖∞

=

(
min

06=w∈Rn

‖Φw‖∞
‖w‖∞

)−1

,

where we used the fact that Φ is invertible and thus we can change variable from
v 6= 0 to w := Φ−1v 6= 0. Moreover, up to rescaling the numerator and denominator
by the same term we may assume ‖w‖∞ = 1, i.e.,

min
0 6=w∈Rn

‖Φw‖∞
‖w‖∞

= min
‖w‖∞≤1

‖Φw‖∞ .

Now, setting w := [w1, . . . , wn]T ∈ Rn, by definition of Φ we have

Φw =

b0w1 + b1w2

b1w1 + b0w2 + b1w3

...
b1wn−2 + b0wn−1 + b1wn
b1wn−1 + b0wn

 ,
and thus

min
‖w‖∞≤1

‖Φw‖∞ =

= min
−1≤wi≤1

{
b0w1 + b1w1, b1wn−1 + b0wn, min

2≤i≤n−1
|b1(wi−1 + wi+1) + b0wi|

}
.

Since in the last term the objective function and the constraints are all linear, the
minimum is necessarily reached when the constraints are met with equality, i.e.,
wi ∈ {−1, 1}. Moreover, all the terms in the minimum are minimized by the same
value independently of i. We thus have

min
‖w‖∞≤1

‖Φw‖∞ =

= min

{
min

w1,w2∈{−1,1}
|b0w1 + b1w2|, min

w1,w2,w3∈{−1,1}
|b1(w1 + w3) + b0w2|

}
.

Checking all the possible values by enumeration, and remembering that b0−2b1 >
0, we have that the argument of the first minimum can take the values b0 − b1
or b0 + b1, while the second the values b0, b0 + 2b1, b0 − 2b1. This last value is the
smallest one, and thus ∥∥∥Φ−1

∥∥∥
∞
≤ 1

b0 − 2b1
,

which gives the desired bound.

12 Campagna, De Marchi, Perracchione, Santin

Observe that the bound on the condition number guarantees that computing
the interpolant with equally spaced points is a stable numerical operation, and
this stability does not deteriorate as the number of points increases. Moreover,
we may use the bound on the ∞-norm of the interpolation matrix to derive the
following.

Theorem 2 The Lebesgue constant for equally spaced points satisfies the bound

ΛX,α ≤
b0 + 2b1
b0 − 2b1

≤ tanh
(
α

2

)2 sinh(α) + α

sinh(α)− α
∈ [1, 3],

with lim
α→±∞

ΛX,α = 1 and lim
α→0

ΛX,α = 3.

Proof For any x ∈ [a, b] we define the set of indices I(x) := {i ∈ {1, . . . , n} : Bi(x) 6=
0}. The definition of the Lebesgue function thus gives

λX,α(x) = sup
0 6=f∈C([a,b])

|IXf(x)|∥∥f|X∥∥∞ = max
0 6=v∈Rn

∣∣∣∑N
i=1(Φ−1

h v)iBi(x)
∣∣∣

‖v‖∞

= max
0 6=v∈Rn

∣∣∣∑i∈I(x)(Φ
−1
h v)iBi(x)

∣∣∣
‖v‖∞

≤ max
0 6=v∈Rn

∥∥Φ−1
h v

∥∥
∞

‖v‖∞

∑
i∈I(x)

|Bi(x)| =
∥∥∥Φ−1

h

∥∥∥
∞

∑
i∈I(x)

|Bi(x)| .

To bound the last term, we assume that x ∈ [xk, xk+1] for some k ∈ {1, . . . , n− 1},
so that I(x) = {k − 1, k, k + 1, k + 2} ∩ {1, . . . , n} (see Figure 4). We set hx :=
x−xk ∈ [0, h], so that x−xk−1 = h+hx, x−xk+1 = −h+hx, x−xk+2 = −2h+hx,
and thus using (9) we have

h2Bk−1(x) = B(α,h)(x− xk−1 + 2h) = B(α,h)(hx + 3h) = B(α)(hx/h+ 3)

= f
(4)
α (3 + hx/h),

h2Bk(x) = B(α,h)(x− xk + 2h) = B(α,h)(hx + 2h) = B(α)(hx/h+ 2)

= f
(3)
α (2 + hx/h),

h2Bk+1(x) = B(α,h)(x− xk+1 + 2h) = B(α,h)(hx + h) = B(α)(hx/h+ 1)

= f
(2)
α (1 + hx/h),

h2Bk+2(x) = B(α,h)(x− xk+2 + 2h) = B(α,h)(hx) = B(α)(hx/h)

= f
(1)
α (hx/h),

and hence ∑
i∈I(x)

|Bi(x)| ≤ 1

h2

4∑
i=1

f
(i)
α ((i− 1) + hx/h),

where the inequality is an equality when I(x) contain the four elements {k −
1, . . . , k+ 2}, and a strict inequality when some of these indices are outside the set

Stable interpolation with EPS and node selection via greedy algorithms 13

Fig. 4 Example of positions of the basis elements Bj . The figure shows as black dots a set of
n = 15 equally spaced points in [0, 4], and in blue an arbitrary point x ∈ [0, 4]. For this setting
and α = 2, the four panels show the basis elements Bj which are non-zero in x.

{1, . . . , N}. Direct computation gives furthermore

Fα(t) :=
4∑
i=1

f
(i)
α ((i− 1) + t)

=
2

α3
sinh

(
α

2

)2
((1− t)α cosh(tα) + tα cosh(α− tα) + sinh(tα) + sinh(α(1− t))).

The function Fα : [0, 1]→ R is continuously differentiable, with

F ′α(t) =
2

α
sinh

(
α

2

)2
((1− t) sinh(tα) + t sinh(α(1− t)),

and thus F ′α vanishes in t = 1/2, with F ′α(t) < 0 for t ∈ [0, 1/2] and F ′α(t) > 0 for
t ∈ [1/2, 1]. Moreover

Fα(0) = Fα(1) =
2

α3
sinh

(
α

2

)2
(sinh(α) + α) = b0 + 2b1

and it follows that Fα(t) ≤ Fα(0) = Fα(1) for all t ∈ [0, 1], and thus∑
i∈I(x)

|Bi(x)| ≤ 1

h2
Fα(hx/h) ≤ 1

h2
Fα(0) =

1

h2
(b0 + 2b1).

Using now the bound on the ∞-norm of Φ−1
h , it follows that

λX,α(x) ≤
∥∥∥Φ−1

h

∥∥∥
∞

∑
i∈I(x)

|Bi(x)| ≤ h2

b0 − 2b1

b0 + 2b1
h2

,

and the result follows by applying Lemma 1.

14 Campagna, De Marchi, Perracchione, Santin

This theorem, in conjunction with Theorem 1, proves that interpolation on
equally spaced points is quasi-optimal. Indeed, for all f ∈ C([a, b]) we have in this
case ∣∣(f − IX,α(f)

)
(x)
∣∣ ≤ 4

∥∥f − f?X,α∥∥∞ , x ∈ [a, b],

which indeed proves that interpolation with equally spaced points provides the
same asymptotic error of best-approximation, even if with a different constant,
which is however rather small. In addition, this constant converges for α → ±∞
to the optimal value that can be attained with the estimate of Theorem 1, i.e.
1 + ΛX,α = 2 , as proven again by Theorem 2.

It should be furthermore noted that the estimate of Theorem 2 seems to be
not sharp for small α, since numerical evidence suggests that ΛX,α ≈ 1.6 as α→ 0.
To give a glance at this fact, we show in Figure 5 the behavior of the computed
Lebesgue constant and of the upper bound of Theorem 2 for n = 100 equally
spaced points in [0, 2], and α ∈ [0, 10]. Observe that, due to the symmetry of the
basis functions, the same values are observed for negative α.

Fig. 5 Example of the behavior of the Lebesgue constant as a function of α. The figure shows
for n = 100 and α ∈ [0, 10] the value of the Lebesgue constant (blue solid line) and the bound
of Theorem 2 (orange dashed line).

Despite these desirable quasi-optimality properties, equally spaced interpola-
tion points may not be available in practice, either because of some obstructions
to the sampling of certain values, or because the data points are provided as a
given, pre-recorded dataset. In these cases, it is thus of interest to have methods
that are able to select a small susbset of the data so that the resulting interpolant
is fast and stable, while providing a sufficient accuracy. To address this aspect, we
investigate in the next section greedy point-selection strategies.

Stable interpolation with EPS and node selection via greedy algorithms 15

4 Greedy schemes for EPS

In this section we first recall a simple target-data-dependent greedy scheme, that
is known as f -greedy in literature (see [27]), and that can be easily used with any
interpolation basis. On the other hand, target-data-independent greedy schemes
need to be tailored for the considered basis, and we will discuss their implemen-
tation for EPS.

4.1 Target-data-dependent greedy selection

As already mentioned, f -greedy schemes are quite straightforward to extend to
any kind of basis. Precisely, we consider an initial (training) set of sorted points
X̃ ⊂ X, with a, b ∈ X̃ and we also keep the augmented nodes fixed. Then, given F

and a fixed tolerance τ , the target-data-dependent greedy scheme for exponential-
polynomial splines is summarized in Algorithm 2.

Algorithm 2 Pseudo-code for the f-greedy algorithm

Inputs: X ⊆ Ω, the augmented nodes, F , τ , α.
Outputs: X̃ ⊂ X, IX̃,α(f).

1: Take an initial set of sorted points X̃ ⊂ X, with a, b ∈ X̃.
2: Compute an initial interpolant IX̃,α(f) as in (1).

3: While maxxi∈X\X̃ |f(xi)− IX̃,α(f)(xi)| > τ :

i. Define x∗ = argmaxxi∈X\X̃ |f(xi)− IX̃,α(f)(xi)|.
ii. Set X̃ = X̃ ∪ {x∗} and sort X̃.

iii. Compute IX̃,α(f) as in (1).

The result of the f -greedy scheme is thus a set of data locations X̃ and the
corresponding interpolant IX̃,α(f). Let ñ be the cardinality of X̃. Since we usually

have that ñ � n, the greedy interpolant IX̃,α(f) can be understood as a sparse

approximation of IX,α(f).

This scheme is very easy to implement, and additionally the interpolation
points are selected adaptively in order to be suited for the particular target function
f , and they are thus expected to provide an accurate approximation.

Moreover, the algorithm can be used to approximate vector-valued functions
(i.e., with values in Rp for some p ∈ N, see [37]), or equivalently to simultaneously
approximate p ∈ N different scalar-valued functions. In this case, the cost of the
search for the next point to be selected scales linearly with p.

Despite the effectiveness of this method, there are cases where a set of target
data values may be missing, or may be expensive to collect, such as in Uncertainty
Quantification (see e.g. [22]). In this case, it is of interest to develop target-data-
independent greedy schemes, to which we drive our attention in the next section.

16 Campagna, De Marchi, Perracchione, Santin

4.2 Target-data-independent greedy selection

Given the error bounds of Section 3, we introduce a new greedy selection scheme
that we call λ-greedy. Given X, F and τ , a fixed tolerance, the λ-greedy algorithm
for exponential-polynomial splines can be summarized as in Algorithm 3.

Algorithm 3 Pseudo-code for the λ-greedy algorithm

Inputs: X ⊆ Ω, the augmented nodes, F , τ , α.
Outputs: X̃ ⊂ X, IX̃,α(f).

1: Take an initial set of sorted points X̃ ⊂ X, with a, b ∈ X̃.
2: Compute λ(x) with the initial set X̃.
3: While argmaxxi∈X\X̃λ(x) > τ :

i. Define x∗ = argmaxxi∈X\X̃λ(x).

ii. Set X̃ = X̃ ∪ {x∗} and sort X̃.

iii. Compute λ(x) with the set X̃.

Remark 4 (Computational aspects) Observe that the efficient execution of the λ-
greedy algorithm depends on the efficient computation of λ and of IX̃,α(f). Both
of them can be be computed rather efficiently by means of the local basis. Indeed,
in this case for all x ∈ X one needs to locate the index i such that x ∈ [xi, xi+1],
and then only perform local computations inside this interval.

Remark 5 In the λ-greedy selection, we fix a tolerance for the Lebesgue function.
However, we are able to prove the efficacy, i.e. the convergence of the λ-greedy
scheme, only numerically. As an illustrative example, in Figure 6, we take n =
300 equispaced nodes and we apply the λ-greedy scheme without any stopping
rule, i.e. we extract ñ = 300 nodes. This didactic example aims at understanding
the behaviour of the Lebesgue constant when the number of nodes grows and
how it relates with the conditioning of the problem. Precisely, from the first and
second panel, we observe that the Lebesgue constant initially decreases and then
it saturates coherently with the condition number of the interpolation matrix. In
the last panel we further show the sparsity (the percentage of zero elements) of the
collocation matrix that increases as the number of nodes increases. This empirically
explains the behaviour of the condition number and of Lebesgue functions. In other
words, our λ-greedy is effective until both the condition number and the Lebesgue
constant do not saturate. Then, as an alternative stopping rule, one may look
at the difference between the Lebesgue constant or the condition number at two
consecutive iterations of the λ-greedy scheme. We remark that this behaviour is
due to the fact that the interpolation matrix is sparse and it has a band structure,
since each basis function ϕi is supported on up to four subintervals of the partition
(see (1) and the subsequent discussion).

Remark 6 As already outlined in Remark 2, in kernel interpolation the P -greedy
algorithm is a well-established greedy interpolation algorithm, and it is target-
data-independent similarly to the new λ-greedy method introduced in this section.

The two algorithms are similar since they rely on the greedy minimization of
a worst-case error indicator, but they are different because of the indicator that

Stable interpolation with EPS and node selection via greedy algorithms 17

they minimize. In more details, in kernel based interpolation one may carry out
an error analysis for the interpolation of functions f ∈ H, where (H, 〈·, ·〉) is a
certain Hilbert space associated with the kernel (the native space of the kernel
or the reproducing kernel Hilbert space). Formulating the problem in a single
real variable, as the case considered in the paper, we can prove that there is a
continuous function PX : [a, b]→ R, named power function, such that for all f ∈ H
the kernel interpolant IXf provides an error bounded as follows:

|(f − IX(f)) (x)| ≤ PX(x) ‖f − IXf‖H , ∀x ∈ [a, b]. (16)

The structure of this equation recalls (7), where the term 1 + λ(x) plays the role
of PX(x). A similar error bound could possibly be investigated in the case of EPS,
provided we can define a RKHS structure on EX,α. However, in our context the
λ-greedy algorithm and the bound (7) used to derive it, have the advantage to be
applicable to general continuous functions.

10
0

10
1

10
2

10
2

10
0

10
1

10
2

10
0

10
1

10
2

10
0

10
1

10
2

55

60

65

70

75

80

85

90

95

100

Fig. 6 Illustrative example of the λ-greedy extraction of 300 nodes. At each step of the
algorithm we compute the condition of the collocation matrix (left), the Lebesgue constant
(middle) and the sparsity of the collocation matrix (right). Plots are in logarithmic scale and
the horizontal axes denote the iteration number.

5 Numerical experiments

In the following experiments, we test both the target-data-dependent and indepen-
dent schemes with different node distributions. Precisely, we consider equispaced,
Halton and Chebyshev points. Moreover, for all data sets, without loss of gener-
ality, we take as initial set for the greedy strategy the first and last two nodes.
Tests have been carried out on a Intel(R) Core(TM) i7 CPU 4712MQ 2.13 GHz
processor.

5.1 Testing the f -greedy

Throughout this subsection, we consider the following test function

f1(x) = atan(55x), x ∈ [−1, 1],

and we further fix α = 2.

18 Campagna, De Marchi, Perracchione, Santin

As far as the f -greedy method which makes use of exponential-polynomial
splines is concerned, we fix the tolerance τ = 10−3. In Figure 7, we plot the re-
sults obtained by selecting the points from 300 equispaced, Halton and Chebyshev
points. The number of extracted greedy points are respectively ñ = 36, 36 and
30 that, as expected, cluster where the test function f1 has steep gradients. To
stress the importance of using the f -greedy strategy when approximating func-
tions characterized by steep gradients or singularities, we report in Table 2 the
maximum absolute error obtained by taking ñ (non-greedy) equispaced, Halton
and Chebyshev points.

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Greedy data

Approximant

True

-1 -0.5 0 0.5 1

0

1

2

3

4

5

6

7
10

-4

5 10 15 20 25 30

10
-3

10
-2

10
-1

10
0

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Greedy data

Approximant

True

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2
10

-3

5 10 15 20 25 30

10
-3

10
-2

10
-1

10
0

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Greedy data

Approximant

True

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4
10

-3

5 10 15 20 25

10
-3

10
-2

10
-1

10
0

10
1

Fig. 7 Results for the f -greedy algorithm. First column: the extracted greedy points (black
dots), the true function f1 (blue dotted line) and the reconstructed function taking the greedy
points (magenta solid line). Second column: the absolute error evaluated on 400 equispaced
points. Third column: the maximum of the residuals at each iteration of the greedy scheme.
The experiment is carried out for equispaced, Halton and Chebyshev nodes, first, second and
third row, respectively.

Stable interpolation with EPS and node selection via greedy algorithms 19

Table 2 The three columns contain respectively the maximum absolute errors for f1 obtained
via ñ = 36, 36 and 30 greedy and non-greedy equispaced, Halton and Chebyshev points.

Greedy 6.68e− 04 1.08e− 03 1.31e− 03
Non-Greedy 1.11e− 01 3.33e− 01 2.13e− 01

5.2 Testing the λ-greedy

One interesting feature of the λ-greedy scheme is that it is able to construct node
sets without specifying interpolation values, and could thus be expected to be
good for any possible target function. If the initial search set is large enough, and
since the Lebesgue function is optimized iteratively, it is reasonable to expect that
the final set of points may be close to the optimal distribution that one would
obtain by a global minimization of the Lebesgue function. This claim should of
course be proven, but since these globally optimal points are not known in the
case of the exponential splines considered in this work, it is of interest to study
the geometrical distribution of these λ-greedy points to have at least a first insight.

To this end, we take an initial set of 300 equispaced points and we apply the
λ-greedy scheme with τ = 2. The result is depicted in Figure 8. It is interesting
to notice that for the exponential-polynomial splines, the greedy points tend to
cluster close to the boundary, showing some similarities with Chebyshev nodes.

Fig. 8 Node distributions obtained via the target-data-independent greedy approach for EPS.

As second experiment, in Figure 9, we plot the results of the λ-greedy scheme
starting with 300 equispaced, Halton and Chebyshev points. In this case, we fix the
tolerance as τ = 3. The algorithm selects ñ = 18, 19 and 36 equispaced, Halton and
Chebyshev points, respectively. In all cases they cluster on the boundary. We point
out that, consistently with what observed in Figure 6, for small tolerances τ the
algorithm may not terminate. To get a feedback on the accuracy, with the selected
points, we reconstruct the function f2(x) = x2. The associated absolute error is
depicted in the second column of Figure 9. Furthermore, in the last column of
Figure 9, we report the Lebesgue constant at each iteration of the greedy scheme.
To better analyze its asymptotic behavior, we extended the experiment to τ =
2 (i.e., selecting more points) and we obtained terminating values ΛX = 1.94
(for search over equally spaced points), ΛX = 1.97 (Halton points), ΛX = 1.98
(Chebyshev points). These values are very close to the numerical observed value
for equally spaced interpolation points, and smaller than the corresponding upper
bound proven in Section 3. Moreover, in all cases the values are bounded as a
function of the number of points. This observation suggests that the points selected
by the λ-greedy algorithm, although not being uniform, are still quasi-optimal.

Finally, to underline the importance of the λ-greedy strategy, we show in Table
3 the maximum absolute error obtained by taking ñ (non-greedy) equispaced,
Halton points and Chebyshev points. We observe that, even if the function is

20 Campagna, De Marchi, Perracchione, Santin

smooth, a greedy selection of the points allows us to achieve a good accuracy with
a relatively low number of data.

-1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

Greedy data

Approximant

True

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2
10

-3

2 4 6 8 10 12 14

10
1

-1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

Greedy data

Approximant

True

-1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
10

-3

2 4 6 8 10 12 14

10
1

10
2

-1 -0.5 0 0.5 1
-0.2

0

0.2

0.4

0.6

0.8

1

Greedy data

Approximant

True

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

2.5

3

3.5
10

-4

5 10 15 20 25 30

10
1

10
2

10
3

10
4

Fig. 9 Results for the λ-greedy algorithm. First column: the extracted greedy points (black
dots), the true function f2 (blue dotted line) and the reconstructed function taking the greedy
points (magenta solid line). Second column: the absolute error evaluated on 400 equispaced
points. Third column: the Lebesgue constant at each iteration of the greedy scheme. The
experiment is carried out for equispaced, Halton and Chebyshev nodes, first, second and third
row, respectively.

Table 3 The three columns contain respectively the maximum absolute errors for f2 obtained
via ñ = 18, 19 and 36 greedy and non-greedy equispaced, Halton and Chebyshev points.

Greedy 1.03e− 03 1.90e− 03 3.46e− 04
Non-Greedy 1.21e− 01 1.35e− 01 7.70e− 04

Stable interpolation with EPS and node selection via greedy algorithms 21

5.3 f -greedy VS λ-greedy

In this subsection we focus on comparing the two proposed greedy schemes. In
doing so, we take a function with singularities and one belonging to the Runge
family, precisely:

f3(x) =

{
sinx, if x ≤ 0.6,
x log x if x > 0.6,

and

f4(x) =
1

1 + 6x2
, x ∈ [−1, 1].

In the following, particular attention is devoted to empirically observe how the
non-physical oscillations known as Runge and Gibbs phenomena are mitigated via
the greedy selection and how the absolute error depends on the parameter α. In
Figures 10 and 11 (first and second columns), we display the results obtained by
taking the parameter α = 2 for both the f -greedy (τ = 1e− 02 for f3 and 5e− 04
for f4) and λ-greedy (τ = 3.5 for f3 and 4 for f4) approaches. In the last columns
of Figures 10 and 11 we show how the maximum absolute error varies according
to α. Precisely, the maximum absolute error associated with 30 equispaced values
of α ∈ (0, 2] are reported. In all cases, we take an initial set of 300 equispaced
data. We observe that for f4 both the λ and f -greedy schemes return suitable
approximants. On the opposite, as expected, only the f -greedy algorithm is able
to capture the singularity of the function f3. As far as as the selection of α is
concerned, we note that the greedy algorithms are not so sensitive with respect
to its selection (except the case of the λ-greedy algorithm for f3, which however
provides quite poor approximations). Indeed, a greedy algorithm optimally selects
the nodes for the given basis (defined by α) and hence it naturally adapts to such
parameter. For further details on safe ways to select α, we refer the reader to [14].

6 λ-greedy for nuclear magnetic resonance

The aim of this section is to investigate potential applications of our analysis. The
dataset used in this experiment comes from a concrete problem where the effects
of the NMR on the changes in water molecule mobility during the mixing phase
of the bread making process are studied (for further details see e.g. [25,15]). The
data rapidly decay and the signal consists of n = 200 values of three different
acquisitions of transverse relaxation times for water protons in flour doughs, at
mixing time of 3 minutes long. The tree sets of data are plotted in Figure 12 (first
panel). Being real and noisy data, we introduce a regression Tikhonov parameter
µ = 1e−06; refer to [20, §15, p. 276]. In the same setting of the previous experiments
(α = 2), we run both the f and λ-greedy algorithms (we fix τ as 1e− 02 and 3.5,
respectively). For a visual feedback on the results, refer to Figure 12 (second and
third panel). The function to reconstruct is smooth and hence the results of the
two algorithms are similar.

7 Conclusions and work in progress

We have investigated the use of greedy strategies for Exponential-Polynomial
Spline (EPS) interpolation. To this end we have studied the cardinal form of the

22 Campagna, De Marchi, Perracchione, Santin

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Greedy data

Approximant

True

-1 -0.5 0 0.5 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.5 1 1.5 2

0.093795

0.0938

0.093805

0.09381

0.093815

0.09382

0.093825

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Greedy data

Approximant

True

-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 10 Results obtained via the f -greedy (first row) and λ-greedy (second row) algorithms
for f3. First column: the ñ = 26 (first row) and 20 (second row) extracted f and λ-greedy
points (black dots), the true function f3 (blue dotted line) and the reconstructed function
taking the greedy points (magenta solid line). Second column: the absolute error evaluated on
400 equispaced points. Third column: the maximum absolute error by varying α for the f and
λ-greedy strategies.

EPS interpolant and then we have provided error bounds based on the Lebesgue
function. The results show that the target-data-independent greedy points for EPS
tend to cluster at the boundary of the approximation interval, despite the fact that
Chebyshev points are not necessarily optimal in this case.

Work in progress consists in investigating the proposed tool in applications, as
in the context of Laplace transform inversion based on smoothing splines [13], as
well as for interpolation/extrapolation algorithms for the inversion of the Fourier
transform [24].

Moreover, an interesting extension would be the maximization of the deter-
minant of the interpolation matrix, instead of the Lebesgue function, to selected
target-data independent interpolation points.

Acknowledgments

We thank the support of the GNCS-INdAM project “Interpolazione e smoothing:
aspetti teorici, computazionali e applicativi”. This research has been carried out
within the Italian Network on Approximation (RITA) and the thematic group
on “Approximation Theory and Applications” of the Italian Mathematical Union
(UMI). We sincerely thank the reviewers for helping us to significantly improve
the paper.

Stable interpolation with EPS and node selection via greedy algorithms 23

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Greedy data

Approximant

True

-1 -0.5 0 0.5 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
10

-4

0 0.5 1 1.5 2

3

3.5

4

4.5

10
-4

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Greedy data

Approximant

True

-1 -0.5 0 0.5 1

0

0.002

0.004

0.006

0.008

0.01

0.012

0 0.5 1 1.5 2

0.0085

0.009

0.0095

0.01

0.0105

0.011

0.0115

0.012

Fig. 11 Results obtained via the f -greedy (first row) and λ-greedy (second row) algorithms
for f4. First column: the ñ = 23 (first row) and 19 (second row) extracted f and λ-greedy
points (black dots), the true function f4 (blue dotted line) and the reconstructed function
taking the greedy points (magenta solid line). Second column: the absolute error evaluated on
400 equispaced points. Third column: the maximum absolute error by varying α for the f and
λ-greedy strategies.

50 100 150 200 250 300 350 400

10 0

10 1

Acquisition 1

Acquisition 2

Acquisition 3

50 100 150 200 250 300 350 400

10 0

10 1

Greedy data

Acquisition 1

50 100 150 200 250 300 350 400

10 0

10 1

Greedy data

Acquisition 1

Acquisition 2

Acquisition 3

Fig. 12 First panel: the NMR data at three acquisition times. Second panel: the result of
the f -greedy algorithm for the first acquisition time. Third panel: the result of the λ-greedy
scheme for the three acquisition times. Plots are in logarithmic scale.

Conflict of Interest

The authors have no affiliation with any organization with a direct or indirect
financial interest in the subject matter discussed in the manuscript.

References

1. K. E. Atkinson. An introduction to numerical analysis. John Wiley & Sons, 2008.
2. A. Bayliss and E. Turkel. Mappings and accuracy for Chebyshev pseudo-spectral approx-

imations. J. Comput. Phys., 101:349–359, 1992.

24 Campagna, De Marchi, Perracchione, Santin

3. J. Berrut and H. Mittelmann. Lebesgue constant minimizing linear rational interpolation
of continuous functions over the interval. Comput. Math. Appl., 33(6):77–86, 1997.

4. P. Bohra, J. Campos, H. Gupta, S. Aziznejad, and M. Unser. Learning activation functions
in deep (spline) neural networks. IEEE Open Journal of Signal Processing, 1:295–309,
2020.

5. L. Bos, M. Caliari, S. De Marchi, M. Vianello, and Y. Xu. Bivariate Lagrange interpolation
at the Padua points: The generating curve approach. J. Approx. Theory, 143(1):15–25,
2006.

6. L. Bos, S. De Marchi, and K. Hormann. On the Lebesgue constant of Berrut’s rational
interpolant at equidistant nodes. J. Comput. Appl. Math., 236(4):504–510, 2011.

7. L. Bos, S. De Marchi, and M. Vianello. Polynomial approximation on Lissajous curves in
the d−cube. Appl. Num. Math., 116:47–56, 2017.

8. L. Brutman. On the Lebesgue function for polynomial interpolation. SIAM J. Numer.
Anal., 15:694–704, 1978.

9. L. Brutman. Lebesgue functions for polynomial interpolation – a survey. Ann. Numer.
Math., 4:111–127, 1997.

10. R. Campagna, V. Bayona, and S. Cuomo. Using local PHS+poly approximations for
Laplace transform inversion by Gaver-Stehfest algorithm. Dolomites Res. Notes Approx.,
13:55–64, 2020.

11. R. Campagna and C. Conti. Penalized hyperbolic-polynomial splines. Applied Mathemat-
ics Letters, 118, 2021.

12. R. Campagna, C. Conti, and S. Cuomo. Smoothing exponential-polynomial splines for
multiexponential decay data. Dolomites Res. Notes Approx., 12(1):86–100, 2019.

13. R. Campagna, C. Conti, and S. Cuomo. Computational error bounds for Laplace transform
inversion based on smoothing splines. Appl. Math. Comput., 383:125376, 2020.

14. R. Campagna, C. Conti, and S. Cuomo. Data-driven selection of HP-splines frequency
parameter. Manuscript, 2022.

15. R. Campagna and E. Perracchione. Feature augmentation for numerical inversion of multi-
exponential decay curves. AIP Conference Proceedings, 2425(1):050004, 2022.

16. E. Cohen, R. Riesenfeld, and G. Elber. Geometric Modeling with Splines. CRC Press,
New York, 2001.

17. C. Conti, L. Romani, and D. Schenone. Semi-automatic spline fitting of planar curvilinear
profiles in digital images using the Hough transform. Pattern Recognition, 74:64 – 76,
2018.

18. S. De Marchi, F. Marchetti, E. Perracchione, and D. Poggiali. Multivariate approximation
at fake nodes. Appl. Math. Comput., 391:125628, 2021.

19. S. Dutta, M. W. Farthing, E. Perracchione, G. Savant, and M. Putti. A greedy non-
intrusive reduced order model for shallow water equations. J. Comput. Phys., 439:110378,
2021.

20. G. E. Fasshauer and M. McCourt. Kernel-based Approximation Methods using MATLAB.
World scientific, Singapore, 2015.

21. B. Haasdonk and G. Santin. Greedy kernel approximation for sparse surrogate model-
ing. In W. Keiper, A. Milde, and S. Volkwein, editors, Reduced-Order Modeling (ROM)
for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific
Computing, pages 21–45, Cham, 2018. Springer International Publishing.

22. M. Köppel, F. Franzelin, I. Kröker, S. Oladyshkin, G. Santin, D. Wittwar, A. Barth,
B. Haasdonk, W. Nowak, D. Pflüger, and C. Rohde. Comparison of data-driven uncertainty
quantification methods for a carbon dioxide storage benchmark scenario. Computational
Geosciences, 23(2):339–354, Apr 2019.

23. S. D. Marchi, R. Schaback, and H. Wendland. Near-optimal data-independent point loca-
tions for radial basis function interpolation. Adv Comput Math, 23:317–330, 2005.

24. E. Perracchione, A. M. Massone, and M. Piana. Feature augmentation for the inversion
of the Fourier transform with limited data. Inverse Problems, aug 2021.

25. A. Romano, R. Campagna, P. Masi, and G. Toraldo. NMR data analysis of water mobility
in wheat flour dough: A computational approach. In Y. D. Sergeyev and D. E. Kvasov,
editors, Numerical Computations: Theory and Algorithms, pages 146–157, Cham, 2020.
Springer International Publishing.

26. G. Santin and B. Haasdonk. Convergence rate of the data-independent P -greedy algorithm
in kernel-based approximation. Dolomites Res. Notes Approx., 10(2):68–78, 2017.

27. R. Schaback and H. Wendland. Adaptive greedy techniques for approximate solution of
large RBF systems. Numer. Algorithms, 24(3):239–254, 2000.

Stable interpolation with EPS and node selection via greedy algorithms 25

28. S. Seatzu. Un metodo per la costruzione di smoothing splines naturali mono e bidimen-
sionali. Calcolo, 12:259–273, 1975.

29. J. Stoer and R. Bulirsch. Introduction to numerical analysis, volume 3. Springer, 2002.
30. V. N. Temlyakov. Greedy approximation. Acta Numer., 17:235–409, 2008.
31. V. Uhlmann, R. Delgado-Gonzalo, C. Conti, L. Romani, and M. Unser. Exponential

Hermite splines for the analysis of biomedical images. In IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP 2014, Florence, Italy, May 4-9,
2014, pages 1631–1634. IEEE, 2014.

32. M. Unser. A representer theorem for deep neural networks. J. Machine Learning Res.,
20:1–30, 2019.

33. M. Unser and T. Blu. Cardinal exponential splines: part I - theory and filtering algorithms.
IEEE Trans. Signal Process., 53(4):1425–1438, 2005.

34. H. Wendland. Scattered Data Approximation, volume 17 of Cambridge Monographs on
Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2005.

35. T. Wenzel, G. Santin, and B. Haasdonk. Analysis of target data-dependent
greedy kernel algorithms: Convergence rates for f-, f·P- and f/P-greedy.
https://arxiv.org/abs/2105.07411, Accepted for publication in Constructive Approxima-
tion, 2021.

36. T. Wenzel, G. Santin, and B. Haasdonk. A novel class of stabilized greedy kernel ap-
proximation algorithms: Convergence, stability and uniform point distribution. Journal
of Approximation Theory, 262:105508, 2021.

37. D. Wirtz and B. Haasdonk. A Vectorial Kernel Orthogonal Greedy Algorithm. Dolomites
Res. Notes Approx., 6:83–100, 2013.

38. W.-C. Yueh. Eigenvalues of several tridiagonal matrices. Applied Mathematics E-Notes
[electronic only], 5:66–74, 2005.

A Proof of Lemma 1

Proof We use the values

mα(0) := 0, pα(0) := 2,

mα(1) := exp(α)− exp(−α), pα(1) := exp(α) + exp(−α),

mα(2) := exp(2α)− exp(−2α),

which give

b0 = B(α)(2) = f
(2)
α (2) =

1

4α2

(
−2pα(0) +

2

α
mα(0) +

1

α
mα(2)

)
=

1

4α2

(
−4 +

1

α
(exp(2α)− exp(−2α))

)
=

1

α2

(
−1 +

1

2α
sinh(2α)

)
,

b1 = B(α)(1) = f
(1)
α (1) =

1

4α2

(
pα(1)−

1

α
mα(1)

)
=

1

4α2

(
exp(α) + exp(−α)−

1

α
(exp(α)− exp(−α))

)
=

1

2α2

(
cosh(α)−

1

α
sinh(α)

)
.

It follows that

b0 − 2b1 =
1

α2

(
−1 +

1

2α
sinh(2α)− cosh(α) +

1

α
sinh(α)

)
=

2

α3
cosh

(α
2

)2
(sinh(α)− α),

b0 + 2b1 =
1

α2

(
−1 +

1

2α
sinh(2α) + cosh(α)−

1

α
sinh(α)

)
=

2

α3
sinh

(α
2

)2
(sinh(α) + α).

Now using the fact that cosh(x) ≥ 1 for all x ∈ R, and the Taylor expansion sinh(α) =∑∞
n=0

α2n+1

(2n+1)!
, we have

b0 − 2b1 ≥
2

α2

(
sinh(α)

α
− 1

)
=

2

α2

(∞∑
n=0

α2n

(2n+ 1)!
− 1

)
= 2

∞∑
n=1

α2(n−1)

(2n+ 1)!

≥ 2

(
1

3!
+
α2

5!

)
=

1

3

(
1 +

1

20
α2

)
,

26 Campagna, De Marchi, Perracchione, Santin

where we used the fact that only even powers occur in the sum.
Moreover,

κ(α) =
b0 + 2b1

b0 − 2b1
=

sinh(α/2)2(sinh(α) + α)

cosh(α/2)2(sinh(α)− α)
= tanh(α/2)2

sinh(α) + α

sinh(α)− α
,

and in particular κ(−α) = κ(α) since tanh(α/2)2 is even and sinh is odd. To study the behavior
of κ(α) we can thus restrict to non-negative values of α. It clearly holds that κ(α) ≥ 1 by

definition. Moreover limα→∞ tanh(α) = 1, and limα→∞
sinh(α)+α
sinh(α)−α = 1 since sinh has a super-

linear growth, and thus limα→∞ κ(α) = 1. The Taylor expansion of κ(α) around zero gives
κ(α) = 3− 2

5
α5 +O(α4) for small α, which in turn gives the desired asymptotic in zero.

Finally, we have

κ′(α) = −
tanh(α/2)

cosh(α/2)2

(
2 + 2α2 − 2 cosh(2α) + α sinh(2α)

)
2(α− sinh(α))2

.

The denominator of κ′(α) is non negative. Moreover

2 + 2α2 − 2 cosh(2α) + α sinh(2α) ≥ 0,

and thus κ′(α) has the same sign of − tanh(α/2), i.e., κ′(α) ≤ 0 if α ≥ 0. Since limα→∞ κ(α) =
1, and limα→0 κ(α) = 3, we have 1 ≤ κ(α) ≤ 3.

	Introduction
	Exponential-polynomial splines and greedy schemes
	Quasi-optimal point locations
	Greedy schemes for EPS
	Numerical experiments
	-greedy for nuclear magnetic resonance
	Conclusions and work in progress
	Proof of Lemma 1

