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Abstract

It is well-known that the univariate Multiquadric quasi-interpolation operator is constructed
based on the piecewise linear interpolation by |x|. In this paper, we first introduce a new
transcendental RBF based on the hyperbolic tangent function as an smooth approximant to
ϕ(r) = r with higher accuracy and better convergence properties than the MQ RBF

√
r2 + c2.

Then the Wu–Schaback’s quasi-interpolation formula is rewritten using the proposed RBF. It
preserves convexity and monotonicity. We prove that the proposed scheme converges with a
rate of O(h2). So it has a higher degree of smoothness. Some numerical experiments are given
in order to demonstrate the efficiency and accuracy of the method.

Keywords: Radial basis functions (RBFs), quasi-interpolation, hyperbolic tangent function

1. Introduction

Given a set of n distinct (scattered) points {xj}nj=0 ∈ Ω ⊆ Rd and corresponding data values
{fj}nj=0 ∈ R, a standard way to interpolate a function f ∈ C1 : Ω → R is by using

Lf(x) =
n∑

j=0

λjX (x− xj), (1)

with the coefficients λj determined by the interpolation conditions Lf(xj) = fj , j = 0, . . . , n,
where X (·) is an interpolation kernel. Many authors use Radial Basis Functions (RBFs) to solve
the interpolating problem (1), that is X (x−xj) = ϕ(∥x−xj∥), (∥·∥ is the Euclidean norm) with
ϕ : [0,∞) → R, is some radial function [41]. Then, the coefficients λj are determined solving
a symmetric linear system Aλ = f , where A = [ϕ(∥xi − xj∥)]0≤i,j≤n . RBF method provides
excellent interpolants for high dimensional scattered data sets. The corresponding theory had
been extensively studied by many researchers (see e.g [2, 25, 26, 27, 30, 31, 39, 41, 44, 46]).
That is why in the last few decades, RBFs have been widely applied in a number of fields such
as multivariate function approximation, neural networks and solution of differential and integral
equations (see e.g [6, 7, 10, 13, 17, 21, 22, 28, 34, 40, 47]). The Multiquadric (MQ) RBF

ϕj(x) =

√
∥x− xj∥2 + c2, (2)
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proposed by Hardy [14], is undoubtedly the most popular RBF that is used in many applications
and is representative of the class of global infinitely differentiable RBFs. Hardy [15] summa-
rized the achievement of study of MQ from 1968 to 1988 and showed that it can be applied in
hydrology, geodesy, photogrammetry, surveying and mapping, geophysics, crustal movement,
geology, mining and so on. In the survey paper [11], Franke pointed out that MQ interpolation
was the best among 29 scattered data interpolation methods in terms of timing, storage, accu-
racy, visual pleasantness of surface reconstruction and ease to implement. The existence of the
solution of the associated interpolation problem was shown later on by Micchelli [27]. Although
the MQ interpolation is always solvable, the resulting matrix quickly becomes ill-conditioned
as the number of points increases. Researchers concentrated on a weaker form of (1), known as
quasi-interpolation, that holds only for polynomials of some low degree m, i.e.,

Lpm(xj) = pm(xj), ∀pm ∈ Πd
m,

for all 0 ≤ j ≤ n, where Πd
m denotes the space of polynomials of degree less and equal to

m in Rd. Beatson and Powell [1, 32] first proposed a univariate quasi-interpolation formula
where X in (1), is a linear combination of MQ RBF and low degree polynomials. Their idea
is based on the fact that the MQ degenerates to |x − xj |, for c = 0 and d = 1, hence quasi-
interpolation (1) is the usual piecewise linear interpolation which reproduces linear polynomials
as c tends to zero. However, their operator requires the approximation of the derivatives of the
function at endpoints, which is not convenient for practical purposes. Thus, Wu and Schaback
[45] constructed another univariate MQ quasi-interpolation operator with without the use of
derivatives at the endpoints. Given data

a = x0 < x2 < · · · < xn = b h := max
2≤j≤n

(xj − xj−1),

Wu–Schaback’s MQ quasi-interpolation formula is

(LMQf)(x) = f0α0(x) + f1α1(x) +
n−2∑
j=2

fjψj(x) + fn−1αn−1(x) + fnαn(x) (3)

where

α0(x) =
1

2
+
ϕ1(x)− (x− x0)

2(x1 − x0)
,

α1(x) =
ϕ2(x)− ϕ1(x)

2(x2 − x1)
− ϕ1(x)− (x− x0)

2(x1 − x0)
,

αn−1(x) =
(xn − x)− ϕn−1(x)

2(xn − xn−1)
− ϕn−1(x)− ϕn−2(x)

2(xn−1 − xn−2)
,

αn(x) =
1

2
+
ϕn−1(x)− (xn − x)

2(xn − xn−1)
,

ψj(x) =
ϕj+1(x)− ϕj(x)

2(xj+1 − xj)
− ϕj(x)− ϕj−1(x)

2(xj − xj−1)
, 2 ≤ j ≤ n− 2.

The main advantage of this formula is that it does not require the solution of any linear system.
Instead, the formula uses the function values fj at xj as its coefficients. The drawback is that
instead of c = O(h), one needs to use a smaller shape parameter c2| log c| = O(h2) in order to
achieve quadratic convergence, resulting in a lower smoothness. Note that for c = 0, the basis
functions given in quasi-interpolant LMQf are cardinal with respect to {xj}nj=0. For a general
quasi-interpolation operator L we can state the following definitions.
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Definition 1.1. The quasi-interpolation operator L constructed at the data points {(xj , fj)}, is
called to be monotonicity-preserving, if the first order divided difference f [xj , xj+1] is nonnegative
(non-positive) implies that (Lf)′ is also nonnegative (non-positive).

Definition 1.2. The quasi-interpolation operator L constructed at the data points (xj , fj),
is called to be convexity-preserving if the second order divided difference f [xj−1, xj , xj+1] is
nonnegative (non-positive, zero) implies that (Lf)′′ is also nonnegative (non-positive, zero).

Since
√
x2 + c2 tends to |x| as c tends to zero, and radial basis interpolation (as well as

the quasi-interpolation) based on |x| is piecewise linear, Wu and Schaback claimed that the
shape-preserving properties of piecewise linear interpolation can be expected to hold for quasi-
interpolation with multiquadrics, too. Actually, they first showed that the quasi-interpolation
operator of Beatson and Powell is indeed convexity preserving. Then they proved that the quasi-
interpolation operator (3) is monotonicity and convexity preserving. In 2004, Ling [23] proposed
a multilevel quasi-interpolation operator and proved that it converges with a rate of O(h2.5) log h
as c = O(h). In 2009, Feng and Li [9] constructed a shape-preserving quasi-interpolation operator
by shifts of cubic MQ functions proving that it can produce an error of O(h2) as c = O(h). Wang
et al. [38] proposed an improved univariate MQ quasi-interpolation operator, by using Hermite
interpolating polynomials, with convergence rate heavily depending on the shape parameter c.
Jiang et al. [19] proposed two new multilevel univariate MQ quasi-interpolation operators with
higher approximation order.

Ling proposed a multidimensional quasi-interpolation operator using the dimension-splitting
multiquadric basis function approach [24], and Wu et al. modified their idea by using multivari-
ate divided difference and the idea of the superposition [43].

Gao and Wu [12] studied the quasi-interpolation for the linear functional data rather than
the discrete function values. Moreover, MQ quasi-interpolation has been successfully applied in
a wide range of fields. For example, in 2007, Wang and Wu [37] applied the operator (3) to tackle
approximate implicitization of parametric curves. In 2011, Wu [42] presented a new approach to
construct the so-called shape preserving interpolation curves based on MQ quasi-interpolation
(3). Hon and Wu [16], Chen and Wu [3, 4], Jiang and Wang [18], and other researches provided
some successful examples using MQ quasi-interpolation operators to solve different types of
partial differential equations.

In this paper, in the next section we introduce a new quasi-interpolation operator based on
the hyperbolic tangent function, that is the function

g(x) = x tanh
(x
c

)
, c > 0 (4)

which leads to a smooth and shape preserving interpolation operator with O(h2) rate of conver-
gence. In section 3, we discuss its accuracy providing an error estimate. Numerical experiments
are presented in section 4 with the aim of comparing the accuracy of our quasi-interpolation
scheme with that of Wu and Schaback’s, and also verifying the convergence rate of new quasi-
interpolation operator by examples. The last section summarizes the conclusion and some further
works.

2. Quasi-interpolation operator based on a new transcendental RBF

In this section, we first analyse a new approximation of |x| based on the hyperbolic tangent,
with better accuracy than the MQ RBF

√
x2 + c2. The general question is, are there any good

approximations of the absolute value function which are smooth? One simple approximation is
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MQ RBF
√
x2 + c2. Carlos Ramirez et al. [33] proved that

√
x2 + c2 is the most computationally

efficient and smooth approximation of |x|, while S. Voronin et al. [35] proved the following
Lemma.

Lemma 2.1. The approximation of |x| by the multiquadrics g(x) =
√
x2 + c2, c ∈ R+ satisfies∣∣∣|x| −√x2 + c2

∣∣∣ ≤ c ,

|x| ≤
√
x2 + c2 .

As noticed by Gauss in [36], the hyperbolic tangent can be written using the continued
fraction

tanh(x) =
x

1 + x2

3+ x2

5+···

.

This fact shows immediately that the function g(x) = x tanh
(x
c

)
is a nonnegative function that

indeed can be used to approximate |x|.
Since for the hyperbolic tangent

lim
c→0+

tanh
(x
c

)
=


1, x > 0,
0, x = 0
−1, x < 0.

.

we then have the approximation
x tanh

(x
c

)
≈ |x|.

Now, we show that the approximation of |x| by x tanh
(
x
c

)
is more accurate than that given by

the multiquadric.

Lemma 2.2. The approximation of |x| by g(x) = x tanh
(
x
c

)
, c ∈ R+ satisfies∣∣∣|x| − x tanh

(x
c

)∣∣∣ ≤ 0.28c < c, (5)

x tanh
(x
c

)
≤ |x| . (6)

Proof. The proof of (5) is trivial for x = 0. Letting h(x) = |x| − x tanh
(
x
c

)
that, for x > 0,

becomes h(x) = x− x tanh
(
x
c

)
. The maxima and minima of h are those that annihilate

h′(x) =
(x
c

)(
tanh

(x
c

))2
− tanh

(x
c

)
+
(
1− x

c

)
.

Setting x
c = t, we have

t tanh2(t)− tanh(t) + (1− t) = 0

which reduces to solve s(t) = t(tanh(t)+1)−1 = 0. The function s on t ≥ 0 is strictly increasing,
with s(0) = −1. Hence there exits only one zero. By numerically solving it, we find the value
of t∗ = 0.6392322714 then x∗ = 0.6392322714c. When x < 0, ans so t < 0, s(t) < −1, showing
that the value t∗ is the only extremal value of h. Hence,

h(x∗) = 0.2784645427c ≃ 0.28c.
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To prove 6, we have

x tanh
(x
c

)
≤ |x| ⇐⇒ x2 tanh2

(x
c

)
≤ x2,

⇐⇒ tanh2
(x
c

)
≤ 1.

Theorem 2.1. The approximation of |x| by x tanh(xc ) is more accurate than that with
√
x2 + c2.

Proof. It is clear that
cosh

(x
c

)
>
x

c
.

Since cosh(x) is an even function we have

cosh2
(x
c

)
>
x2

c2
,

then
x2sech2

(x
c

)
< c2,

which in turn gives
x2 − x2 tanh2

(x
c

)
< c2.

Then
x2 − x2 tanh2

(x
c

)
< c2 =

(
x2 + c2

)
− x2.

Moreover, the function x tanh
(
x
c

)
converges to |x| faster than

√
x2 + c2 to |x| by decreasing

c, as stated in the next Theorem.

Theorem 2.2. If c −→ 0+ then x tanh
(
x
c

)
− |x| = o

(√
x2 + c2 − |x|

)
.

In fact,

lim
c−→0+

x tanh
(
x
c

)
− |x|

√
x2 + c2 − |x|

= 0 (7)

In order to illustrate the superiority of the new hyperbolic approximation to |x|, L∞ error
norm

max
1≤i≤n

|g(xi)− |xi||,

and the rate of convergence

rc =
log
(

Eci
Eci−1

)
log
(

ci
ci−1

) ,
for both approximants x tanh

(
x
c

)
and

√
x2 + c2 are reported in Table 1, for n = 100, 200, 400

equally spaced points in [−10, 10]. Table 1 shows that x tanh
(
x
c

)
approximates |x| much better

than
√
x2 + c2 while Table 1 and the logarithmic scale plots 1 show that the approximant
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x tanh
(
x
c

)
has exponential rate of convergence to |x| as c → 0 instead of O(c2) provided by√

x2 + c2.

Table 1: L∞ errors and convergence rates for both approximants of |x| for different values of c.

∣∣∣|x| − √
x2 + c2

∣∣∣ ∣∣|x| − x tanh
(
x
c

)∣∣
n c L∞ error rc L∞ error rc

100

0.1 4.1127e-02 — 2.3656e-02 —
0.05 1.1698e-02 1.813823944 3.4922e-03 2.759998057
0.025 3.0478e-03 1.940421754 6.2490e-05 5.804367034
0.0125 7.7050e-04 1.983901373 1.9342e-08 11.65767264
0.00625 1.9317e-04 1.995923901 1.8457e-15 23.32106557

200

0.1 6.1665e-02 — 2.6930e-02 —
0.05 2.0637e-02 1.579218611 1.1875e-02 1.181286716
0.025 5.8753e-03 1.812498837 1.7723e-03 2.744232777
0.0125 1.5314e-03 1.939811357 3.2376e-05 5.774554268
0.00625 3.8718e-04 1.983774825 1.0436e-08 11.59914019

400

0.1 7.8030e-02 — 2.7348e-02 —
0.05 3.0867e-02 1.337963627 1.3456e-02 1.023185719
0.025 1.0337e-02 1.578247724 5.9488e-03 1.177579030
0.0125 2.9442e-03 1.811869965 8.9273e-04 2.736302862
0.00625 7.6754e-04 1.939561834 1.6476e-05 5.759785971
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Figure 1: log |error| versus log (1/c) for n = 100 (a), n = 200 (b), and n = 400 (c).

2.1. New transcendental RBF
Let us introduce the following globally supported and infinitely differentiable transcendental

RBF

ϕ(r) = r tanh
(r
c

)
,
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abbreviated by RTH, where r = ∥x− xj∥ and ∥ · ∥ is the Euclidean norm Rd.
The parameter c > 0 is called shape parameter whose optimal value for getting accurate

numerical solutions and good conditioning of the collocation matrix, can be found usually nu-
merically.

Theorem 2.3. The RTH RBF is conditionally negative definite of order 1 on every Rd.

Proof. We show that ψ(r) = −ϕ(r) is conditionally positive definite of order 1. We have ψ(r) =
f(s) = −

√
s tanh

(√
s
c

)
, where s = r2. Now for

g(s) = −f ′(s) = 1

2
s−

1
2 tanh

(√
s

c

)
+

1

2c

(
1− tanh2

(√
s

c

))
,

we have
(−1)lg(l)(s) ≥ 0, for all l ∈ N0 and all s > 0.

So −f ′(s) is completely monotone on (0,∞). Now, since f ̸∈ Πd
m , the claim is proved according

to Micchelli’s theorem [27].

Remark 2.1. Since ϕ is conditionally negative definite of order 1 and ϕ(0) = 0, then the matrix
A = [ϕ(∥xi − xj∥)]1≤i,j≤n has one positive and n− 1 negative eigenvalues and in particular it is
invertible.

In the sequel, we consider d = 1, since our work is confined to the univariate case. We have
seen before that the RTH RBF is an smooth approximant to τ(r) = r with higher accuracy and
better convergence properties than the MQ RBF

√
r2 + c2, by decreasing shape parameter c. In

Figure 2, we have plotted both RTH basis

ϕj(x) = (x− xj) tanh

(
x− xj
c

)
, (8)

and MQ basis (2) centered at xj = 0. It can be noted from Figure 2 that the RTH RBF
approaches to |x| faster than the MQ RBF, even with larger shape parameters. Moreover, in
RTH RBF ϕj(xj) = 0 independent of the value of c, but MQ requires that c = 0. This property
of the RTH RBF leads to getting more accurate results in corresponding quasi-interpolants.
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Figure 2: Plots of Multiquadric RBF (left), and RTH RBF (right) for different values of shape parameter c.
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The first and second derivatives of the RTH RBF (8) are of the form

ϕ
′
j(x) = tanh

(
x− xj
c

)
+

(x− xj)

c

(
1−

(
tanh

(
x− xj
c

))2
)
,

ϕ
′′
j (x) = 2

1

c

(
1−

(
tanh

(
x− xj
c

))2
)

− 2
(x− xj)

c2
tanh

(
x− xj
c

)(
1−

(
tanh

(
x− xj
c

))2
)
,

and are plotted in Figure 3 for c = 1.
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Figure 3: RTH RBF (a), first derivative (b), and second derivative of RTH RBF (c) with shape parameter c = 1

In Tables 2 and 3, we summarized the properties of both MQ and RTH RBFs, where ξ =
1.199678640, is obtained numerically by calculating the roots of the second derivative.

Table 2: Comparing both RBFs.

Name ϕj(x) lim
x→xj

ϕj(x) lim
c→0

ϕj(x) lim
x→±∞

ϕ
′
j(x) condition

MQ RBF
√

c2 + (x− xj)2 c |x− xj | ±1 x ∈ (−∞,∞)

RTH RBF (x− xj) tanh

(
x− xj

c

)
0 |x− xj | ±1 x ∈ (−∞,∞)

Table 3: Comparing both RBFs.

Name ϕj(x) ϕ
′
j(x) ϕ

′′
j (x) condition

MQ RBF
√

c2 + (x− xj)2 Strictly increasing ≥ 0 x ∈ (−∞,∞)

RTH RBF (x− xj) tanh

(
x− xj

c

)
Strictly increasing ≥ 0 x ∈ [−cξ, cξ]
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2.2. Quasi-interpolation operator
The quasi-interpolation operator of a function f : [a, b] → R with RTH RBF on the scattered

points

a = x0 < x2 < · · · < xn = b h := max
2≤j≤n

(xj − xj−1), (9)

has the form

(LRTHf)(x) = f0α0(x) + f1α1(x) +

n−2∑
j=2

fjψj(x) + fn−1αn−1(x) + fnαn(x) (10)

where

α0(x) =
1

2
+
ϕ1(x)− (x− x0)

2(x1 − x0)
,

α1(x) =
ϕ2(x)− ϕ1(x)

2(x2 − x1)
− ϕ1(x)− (x− x0)

2(x1 − x0)
,

αn−1(x) =
(xn − x)− ϕn−1(x)

2(xn − xn−1)
− ϕn−1(x)− ϕn−2(x)

2(xn−1 − xn−2)
,

αn(x) =
1

2
+
ϕn−1(x)− (xn − x)

2(xn − xn−1)
,

ϕj(x) = (x− xj) tanh

(
x− xj
c

)
, j = 1, . . . , n− 1, c ∈ R+,

ψj(x) =
ϕj+1(x)− ϕj(x)

2(xj+1 − xj)
− ϕj(x)− ϕj−1(x)

2(xj − xj−1)
, 2 ≤ j ≤ n− 2.

The formula (10) can be rewritten as

(LRTHf) (x) =
1

2

n−1∑
j=1

f [xj−1, xj , xj+1](xj+1 − xj−1)ϕj(x) + (11)

f0 + fn
2

+
1

2
f [x0, x1](x− x0)−

1

2
f [xn−1, xn](xn − x).

Let ϕ−1(x) = |x− x−1|, ϕ0(x) = |x− x0|, ϕn(x) = |x− xn| and ϕn+1(x) = |x− xn+1|, then for
x ∈ [x0, xn], the operator LRTH can be rearranged as

(LRTHf)(x) =
n∑

j=0

fjψj(x), (12)

where

ψj(x) =
ϕj+1(x)− ϕj(x)

2(xj+1 − xj)
− ϕj(x)− ϕj−1(x)

2(xj − xj−1)
, j = 0, . . . , n,

and x−1 < x0, xn+1 > xn.

Remark 2.2. From relation (11), it is clear that the quasi-interpolation operator LRTH repro-
duces the linear polynomials on [x0, xn], that is

n∑
j=0

(axj + b)ψj(x) = ax+ b, a, b ∈ R , (13)
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from which we also get
n∑

j=0

ψj(x) = 1 at any point x ∈ [x0, xn].

In order to prove the shape-preserving property of the quasi-interpolation operator (10), we
give some important definitions and theorems from differential geometry (cf. e.g. [29]).

Definition 2.1. A differentiable plane curve α : (a, b) → R2 is said to be regular if its derivative
never vanishes. That is

∀t ∈ (a, b), α′(t) =

(
dα1

dt
,
dα2

dt

)
̸= (0, 0).

Theorem 2.4. Let C be a regular plane curve given by α(t). Then the curvature κ of C at t is
given by

κ[α](t) =
∥∥α′(t)× α′′(t)

∥∥ /∥∥α′(t)
∥∥3 .

Definition 2.2. Let f ∈ C2[a, b]. The curvature of the plane curve y = f(x) is given by

κ(x) =
|f ′′(x)|

(1 + (f ′(x))2)
3
2

.

Theorem 2.5 (Fundamental theorem of plane curves). Let α, γ : (a, b) → R2 be regular plane
curves such that κ[α](t) = κ[γ](t) for all t ∈ (a, b). Then there is an orientation-preserving
Euclidean motion F : R2 → R2 such that γ = F o α.

Corollary 2.5.1. Two unit-speed plane curves which have the same curvature differ only by a
Euclidean motion.

Theorem 2.6. The quasi-interpolation operator LRTH constructed by data points {(xj , fj)}, is
monotonicity and convexity-preserving for c small enough.

Proof. According to the Corollary 2.5.1, it suffices to show that

lim
c→0

|κLMQ
(x)− κLRTH

(x)| = 0.

Let x ̸= xj , otherwise both quasi-interpolants (3) and (10) do not have first and second deriva-
tives as c approaches 0. Now, according to definition 2.2, we have

κLMQ
(x) =

|(LMQf)
′′(x)|(

1 + ((LMQf)′(x))
2
) 3

2

.

Since for MQ RBF,

ϕ′′j (x) =
c2

(c2 + (x− xj)2)
3/2

,

then

lim
c−→0

ϕ′′j (x) = 0.

10



Moreover

(LMQf)
′′(x) =

1

2

n−1∑
j=1

[
fj+1 − fj
xj+1 − xj

− fj − fj−1

xj − xj−1

]
ϕ′′j (x),

then

lim
c−→0

κLMQ
(x) = 0,

which leads to

∀ϵ > 0 ∃δ1 > 0; | c | < δ1 ⇒ |κLMQ
(x)| < ϵ.

Similarly, for RTH RBF, we have

lim
c−→0

ϕ′′j (x) = 0,

then

lim
c−→0

κLRTH
(x) = 0,

which leads to

∀ϵ > 0 ∃δ2 > 0; | c | < δ2 ⇒ |κLRTH
(x)| < ϵ.

The proof completes by considering δ = min{δ1, δ2}.

3. Accuracy of the quasi-interpolation operator LRTH

In this section, we give an approximation order for the quasi-interpolation operator LRTH .

Theorem 3.1. Assume f ′′ is Lipschitz continuous. The quasi-interpolation operator LRTHf ,
at the point set (9) as h→ 0, converges as follows

∥f − LRTHf∥∞ ≤ kh2, (14)

where k is independent of h and c.

Proof. Let t(y) be the local Taylor approximation of f at y, that is

t(y) = f(x) + f ′(x)(y − x) , x ∈ [a, b]

According to Remark 2.2, we get
n∑

j=0

(x− xj)ψj(x) = 0,
n∑

j=0

ψj(x) = 1.

Then we get
n∑

j=0

t(xj)ψj(x) =
n∑

j=0

[
f(x) + f ′(x)(xj − x)

]
ψj(x)

= f(x)
n∑

j=0

ψj(x) + f ′(x)
n∑

j=0

(x− xj)ψj(x)

= f(x).

11



Since f ′′(x) is Lipschitz continuous, then for every x1, x2 ∈ [a, b], |f ′′(x1)−f ′′(x2)| ≤ c0|x1−x2|,
where 0 < c0 = ess supa≤x≤b|f ′′′(x)|. Now according to (11), we have

|LRTHf(x)− f(x)| =

∣∣∣∣∣∣
n∑

j=0

(f(xj)− t(xj))ψj(x)

∣∣∣∣∣∣
≤ 1

2

∣∣∣∣∣∣
n−1∑
j=1

(f [xj−1, xj , xj+1]− t[xj−1, xj , xj+1]) (xj+1 − xj−1)ϕj(x)

∣∣∣∣∣∣
+c1(x− x0)

2 + c2(xn − x)2

≤ 1

4

n−1∑
j=1

|f ′′(ξ)− f ′′(η)||ϕj(x) (xj+1 − xj−1)|, (ξ, η ∈ (xj−1, xj+1))

+c1(x− x0)
2 + c2(xn − x)2

≤ 1

2
c0h

n−1∑
j=1

|x− xj |(xj+1 − xj−1) + c1(x− x0)
2 + c2(xn − x)2

≤ 1

2
c0h

n−1∑
j = 1

|x−xj |≤h

|x− xj |(xj+1 − xj−1) +
1

2
c0h

n−1∑
j = 1

|x−xj |>h

|x− xj |(xj+1 − xj−1)

+c1(x− x0)
2 + c2(xn − x)2

≤ 4c0h
3 + c0h

(∫
|x−t|>h

|x− t| dt+O(h)

)
+ c1(x− x0)

2 + c2(xn − x)2

≤ k1h
3 + k2h

2 + k3(b− a)2

≤ kh2

4. Numerical results

In this section, we compare the accuracy of the quasi-interpolation operator LRTH with that
of Wu and Schaback, LMQ (defined in (3)) for the approximation of five functions. We take
equidistant center points and choose different shape parameters c and also different step sizes
h. The maximum absolute error norm is then computed for comparing approximation accuracy.
The rate of convergence is also computed by

rh =
ln
(

Ehi
Ehi−1

)
ln
(

hi
hi−1

) ,
where Ehi

indicates the error of the quasi-interpolant LRTHf corresponding to the parameter
hi. In all tests, we chose m = 200 equidistant evaluation points.

4.1. Test problem 1
In the first test problem, we apply the RTH quasi-interpolation to approximate the function

(cf. [8])

f1(x) =
sinh(x)

1 + cosh(x)
, x ∈ [−3, 3].

12



The results are shown in Tables 4-6. In Tables 4, 5, and 6, we set h = 0.1, 0.01, 0.001, respectively,
and c = 2h, h, 0.5h, 0.2h, 0.1h, then we compute the ∥LRTHf−f∥∞ and ∥LMQf−f∥∞. In Table
7, we set c = 0.01, h = 0.2, 0.1, 0.05, 0.025, 0.0125, to observe the convergence rate rh of LRTHf
with the variation of h.

Table 4: Comparison of approximation accuracy of RTH and MQ quasi-interpolation for the test problem 1.

c 0.2 0.1 0.05 0.02 0.01
h 0.1 0.1 0.1 0.1 0.1
∥LMQf − f∥∞ 9.3× 10−3 3.1× 10−3 1.1× 10−3 3.8× 10−4 2.8× 10−4

∥LRTHf − f∥∞ 2.9× 10−3 6.2× 10−4 7.1× 10−5 2.3× 10−4 2.4× 10−4

Table 5: Comparison of approximation accuracy of RTH and MQ quasi-interpolation for the test problem 1.

c 0.02 0.01 0.005 0.002 0.001
h 0.01 0.01 0.01 0.01 0.01
∥LMQf − f∥∞ 1.8× 10−4 5.3× 10−5 1.6× 10−5 3.7× 10−6 1.4× 10−6

∥LRTHf − f∥∞ 3.0× 10−5 6.3× 10−6 7.2× 10−7 1.7× 10−9 7.9× 10−14

Table 6: Comparison of approximation accuracy of RTH and MQ quasi-interpolation for the test problem 1.

c 0.002 0.001 0.0005 0.0002 0.0001
h 0.001 0.001 0.001 0.001 0.001
∥LMQf − f∥∞ 2.7× 10−6 7.5× 10−7 2.1× 10−7 4.6× 10−8 1.6× 10−8

∥LRTHf − f∥∞ 3.0× 10−7 6.3× 10−8 7.2× 10−9 1.7× 10−11 1.1× 10−15

Table 7: Convergence rates of LRTHf by using c = 0.01, h = 0.2, 0.1, 0.05, 0.025, 0.0125 for the test problem 1.

c 0.01 0.01 0.01 0.01 0.01
h 0.2 0.1 0.05 0.025 0.0125
∥LRTHf − f∥∞ 9.5× 10−4 2.4× 10−4 5.4× 10−5 5.1× 10−6 1.0× 10−6

rh - 1.9855 2.1657 3.4056 2.3028

4.2. Test problem 2
In this experiment we apply the RTH quasi-interpolation to approximate the function (again

considered in [8])

f2(x) = sin
(x
2

)
− 2 cos(x) + 4 sin(πx), x ∈ [−4, 4]. (15)

The comparison results are shown in Tables 8-10. In Tables 8, 9, and 10, we set h = 0.1, 0.01, 0.001,
respectively, and c = 2h, h, 0.5h, 0.2h, 0.1h, then we compute the ∥LRTHf − f∥∞ and ∥LMQf −
f∥∞. In Table 11, we set c = 0.01, h = 0.2, 0.1, 0.05, 0.025, 0.0125, to observe the convergence
rate rh of LRTHf with the variation of h.

Table 8: Comparison of approximation accuracy of RTH and MQ quasi-interpolation for the test problem 2.

c 0.2 0.1 0.05 0.02 0.01
h 0.1 0.1 0.1 0.1 0.1
∥LMQf − f∥∞ 1.2 4.5× 10−1 1.7× 10−1 7.1× 10−2 5.4× 10−2

∥LRTHf − f∥∞ 4.5× 10−1 1.2× 10−1 1.4× 10−2 4.5× 10−2 4.9× 10−2
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Table 9: Comparison of approximation accuracy of RTH and MQ quasi-interpolation for the test problem 2.

c 0.02 0.01 0.005 0.002 0.001
h 0.01 0.01 0.01 0.01 0.01
∥LMQf − f∥∞ 3.0× 10−2 9.2× 10−3 2.9× 10−3 7.1× 10−4 2.8× 10−4

∥LRTHf − f∥∞ 6.4× 10−3 1.4× 10−3 1.5× 10−4 3.7× 10−7 1.7× 10−11

Table 10: Comparison of approximation accuracy of RTH and MQ quasi-interpolation for the test problem 2.

c 0.002 0.001 0.0005 0.0002 0.0001
h 0.001 0.001 0.001 0.001 0.001
∥LMQf − f∥∞ 4.9× 10−4 1.4× 10−4 4.1× 10−5 9.0× 10−6 3.3× 10−6

∥LRTHf − f∥∞ 6.4× 10−5 1.4× 10−5 1.5× 10−6 3.7× 10−9 1.7× 10−13

Table 11: Convergence rates of LRTHf by using c = 0.01, h = 0.2, 0.1, 0.05, 0.025, 0.0125 for the test problem 2.

c 0.01 0.01 0.01 0.01 0.01
h 0.2 0.1 0.05 0.025 0.0125
∥LRTHf − f∥∞ 2.0× 10−1 4.9× 10−2 1.1× 10−2 1.1× 10−3 2.7× 10−4

rh - 2.0101 2.0899 3.4262 2.0034

4.3. Test problem 3
Consider the function (see again [8])

f3(x) = 10e−x2
+ x2, x ∈ [−3, 3], (16)

for approximating by the RTH quasi-interpolation operator. The comparison results are shown
in Tables 12-14. In Tables 12, 13, and 14, we set h = 0.1, 0.01, 0.001, respectively, and c =
2h, h, 0.5h, 0.2h, 0.1h, then we compute the ∥LRTHf − f∥∞ and ∥LMQf − f∥∞. In Table 15, we
set c = 0.01, h = 0.2, 0.1, 0.05, 0.025, 0.0125, to observe the convergence rate rh of LRTHf on
varying h.

Table 12: Comparison of approximation accuracy of RTH and MQ quasi-interpolation for the test problem 3.

c 0.2 0.1 0.05 0.02 0.01
h 0.1 0.1 0.1 0.1 0.1
∥LMQf − f∥∞ 4.9× 10−1 2.0× 10−1 7.4× 10−2 3.1× 10−2 2.4× 10−2

∥LRTHf − f∥∞ 2.2× 10−1 5.5× 10−2 6.4× 10−3 2.0× 10−2 2.1× 10−2

Table 13: Comparison of approximation accuracy of RTH and MQ quasi-interpolation for the test problem 3.

c 0.02 0.01 0.005 0.002 0.001
h 0.01 0.01 0.01 0.01 0.01
∥LMQf − f∥∞ 1.3× 10−2 4.0× 10−3 1.3× 10−3 3.1× 10−4 1.2× 10−4

∥LRTHf − f∥∞ 2.8× 10−3 5.9× 10−4 6.7× 10−5 1.6× 10−7 7.4× 10−12

Table 14: Comparison of approximation accuracy of RTH and MQ quasi-interpolation for the test problem 3.

c 0.002 0.001 0.0005 0.0002 0.0001
h 0.001 0.001 0.001 0.001 0.001
∥LMQf − f∥∞ 2.1× 10−4 6.0× 10−5 1.8× 10−5 3.9× 10−6 1.4× 10−6

∥LRTHf − f∥∞ 2.8× 10−5 5.9× 10−6 6.7× 10−7 1.6× 10−9 7.5× 10−14
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Table 15: Convergence rates of LRTHf by using c = 0.01, h = 0.2, 0.1, 0.05, 0.025, 0.0125; Test Problem 3.

c 0.01 0.01 0.01 0.01 0.01
h 0.2 0.1 0.05 0.025 0.0125
∥LRTHf − f∥∞ 8.6× 10−2 2.1× 10−2 5.0× 10−3 4.7× 10−4 2.6× 10−4

rh - 2.0085 2.0943 3.4210 2.0419

Remark 4.1. By analyzing the results in Tables 4-6, 8-10, and 12-14, we see that the accuracy
of the RTH quasi-interpolation scheme is dependent on the shape parameter c and on step size
h. Furthermore, the accuracy of the RTH quasi-interpolation operator is better than that of MQ
for the same values of c and h. From Tables 7, 11, 15, we see that the convergence rate of
LRTH reaches up to 2 which justifies our theoretical findings of Section 3. By these numerical
experiments, we can say that the quasi-interpolation LRTH is a very attractive alternative, in
terms of accuracy and convergence, to LMQ.

4.4. Test problem 4 (Runge function)

Let us consider the Runge function on [−1, 1], that is f4(x) =
1

1 + 25x2
. Figure 4 shows

the exact and approximate values of f4 for c = 0.01, h = 0.1, 0.02. In Figure 4, we see that
the Runge phenomenon has disappeared by decreasing h. Relative errors are shown in Figure 5
using the RTH quasi-interpolation operator.
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Figure 4: RTH quasi-interpolation of f4(x) = 1
1+25x2 ; h = 0.1 (a), h = 0.02 (b), and c = 0.01.
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Figure 5: Relative errors: c = 0.1 (a), c = 0.01 (b), c = 0.001 (c), and h = 0.02; for the test problem 4.
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4.5. Test problem 5 (Gibbs Phenomenon)
It is well-known that any global or high order approximation method suffers from the Gibbs

phenomenon if the function has a jump discontinuity in the given domain. In this test prob-
lem, we show that the RTH quasi-interpolation operator substantially mitigates the Gibbs phe-
nomenon (cf. [5]).

f5(x) =


10
3 x, 0 ≤ x ≤ 0.3,
1, 0.3 ≤ x ≤ 0.6,
0, 0.6 < x ≤ 1.

Figure 6 shows the exact and approximate values of f5. In Figure 6, we see that the Gibbs
oscillations are considerably attenuated by decreasing c. Relative errors are reported in Figure
7.
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Figure 6: Approximations of f5 with RTH quasi-interpolation; c = 0.1 (a), c = 0.01 (b), c = 0.001 (c), and
h = 0.01.
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Figure 7: Relative errors: c = 0.1 (a), c = 0.01 (b), c = 0.001 (c), and h = 0.01; Test problem 5.

4.6. Test problem 6 (A piecewise analytic function)
As a final example, we consider the piecewise analytic function (cf. [20])

f6(x) =

{
sin(x), x < 0,
cos(x), x > 0,

with x ∈ [−1, 1]. Figure 8 shows the exact and approximate values of f6, where Gibbs oscillations
are considerably attenuated by decreasing c. Relative errors are shown in Figure 9.
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Figure 8: RTH quasi-interpolation of the piecewise analytic function f6; c = 0.1 (a), c = 0.01 (b), c = 0.001 (c),
and h = 0.02.
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Figure 9: Relative errors: c = 0.1 (a), c = 0.01 (b), c = 0.001 (c), and h = 0.02; Test problem 6.

5. Conclusion

In this paper, an efficient shape preserving quasi-interpolation operator with high degree
of smoothness and very accurate results is proposed. It is based on the reformulation of
Wu–Schaback’s quasi-interpolation operator by a new transcendental RBF of the form ϕ(r) =
r tanh

(
r
c

)
. The quasi-interpolation operator, called LRTH has nice convergence properties, be-

ing ∥LRTH − f∥∞ ≤ k h2, with h being the step size and k a positive constant independent on
the shape parameter c and the step size h (cf. Theorem 3.1). Numerical experiments reveal that
the proposed quasi-interpolation operator not only gives very accurate results but also it does
not suffer of the Runge and Gibbs phenomena (see Test problems 4-6).
As a future work we are working in the application of the operator to real worlds problems, in
particular to irregular surfaces approximation and image segmentation.
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