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Abstract. In applied sciences it is often required to model and supervise tempaohition of populations via dynamical
systems. In this paper, we focus on the problem of approximating thesbaattraction of such models for each stable
equilibrium point. We propose to reconstruct the basins via an implicit inkempaising stable radial bases, obtaining the
surfaces by partitioning the phase space into disjoint regions. An applidati® competition model presenting jointly three
stable equilibria is considered.
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1. INTRODUCTION

Mathematical modelling is nowadays commonly used in agmigences, such as in biology, to predict the temporal
evolution of populations. This is obtained in general vigyaamical system, where a particular solution is completely
determined by its initial conditions. The possible steatdyes of the system are determined by its parameters, but
more steady states can originate from different initialdibans [1, 11].

Here, focusing on a particular competition model presentiistability, we approximate the basins of attraction of
its stable equilibria. To do that, we propose an efficient stathle kernel-based interpolation method to reconstruct
(unknown) multiple surfaces partitioning the three-diisienal space or the phase space into disjoint regions. 8ince
many situations the standard basis interpolant may suier instability due to ill-conditioning of the kernel mateis,
we consider a change of basis that makes the related inéertpobre stable than the standard one. This computational
approach extends our recent research in this field (see 4253 6]).

Denoting now the three populations kyy andz, we consider the competition model
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where all the parameters characterizing the system aréveosnd defined as follows:

« p, gandr are the growth rates of y andz, respectively;

- a, b, c, e f andg are the competition rates;

- U, vandw are the carrying capacities of the three populations.
The model (1) has eight equilibria. The oridii = (0,0,0) and the points associated with the survival of only one
populationE; = (u,0,0), E; = (0,v,0) andEsz = (0,0,w). Then we have three equilibrim points with two coexisting
populations, i.e.,
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Finally, we have the coexistence equilibrilEn= (x7,y7,z7), which can be assessed only via numerical simulations.



For example, taking as parametggs=1,g=2,r=2,a=5,b=4,c=3,e=7,f=7,g=10,u= 3,
v=2,w=1, the points associated with the survival of only one padputai.e.E; = (3,0,0), E; = (0,2,0) and
Es; = (0,0,1), are stable, the origiiky = (0,0,0) is an unstable equilibrium and the coexistence equilibriesm:
(0.18990.02700.2005 is a saddle point. The remaining equilibBa~ (0.61630.1591 0), Es ~ (0.21950,0.5317)
andEg = (0,0.1714 0.2647) are other saddle points. The manifolds joining these sagmigition the phase space into
the different domains of attraction, but intersect onlyhat toexistence saddle polgi.

2. IMPLICIT PARTITION OF UNITY METHOD VIA STABLE BASES
In this section we present the method used to reconstrudiabias of attraction. Since they are often described by

implicit surfaces, we consider the implicit partition ofitynmethod using locally stable bases. Such surfaces are
defined by point cloud data sets of the forffy = {x € R3,i =1,...,N}, belonging to a surface iR®.

2.1. Stablebases
Our goal is to recover a functioh: Q — R on a bounded domai ¢ R3, samplingf onN pairwise distinct points

2N C Q, namelyf = [fy,..., fn]T, fi = f(%), X € ZN. To do that, we consider a positive definite and symmetric
kernel® : Q x Q — R and construct the interpolant as

=2

R(X) =) c¢j®(x,Xj), XeQ, (2)
=1

where® is a radial kernel depending onshape parameteg > 0, i.e. P(X,y) = @& (||x—V||2) = @(&||x—Y||2) and

®:Rso — R for all x,y € Q. The coefficiente = [cy,...,cn]T in (2) are determined by solving the linear system

Ac = f, where the interpolation matriA = [qb(xi,x,-)]i'\,‘j:l. So the obtained solutioR is a function of thenative

Hilbert space 44 (Q) uniquely associated with the kernel, andf i 44 (Q), itis in particular the /4 (Q)-projection

of f into the subspacels(Zn) spanned by the standard basis of translafes = {®(x,Xj),1 < j <N} (cf. e.g. [7]).
Since in most cases the matxcan be severely ill-conditioned and therefore the intexpb(2) unstable, many

efforts have recently been made to construct stable base®(g. [8, 9, 12]). In particular, here we focus on a change

of basis, known as th&/SVD basisdescribed in [5, 6]. To construct this bagis= {u; }; of 4% (Zn), we can assign

an invertible coefficient matrip,, = [dij]il\_‘j:]_ such that

N
U= di®(-x).
J i; 1)

or, equivalently, an invertible value matik, = [u; (Xi)]i'\,‘j=1 sothatA=Vy, - D;/1 [12]. To define the WSVD basig’
for 4o (2nN), the matrices are given by

Dy =vW-Q-2 Y2 and Vv, = VW-1.Q- %2,

whereyW-A- /W =Q-%-QT is a SVD of the weighted kernel matry = vW - A- VW, W = &;w; is a diagonal
matrix of positive weights, anH= diag(0o1, . . ., on) the corresponding singular values. This basis has beetrootes
to mimic in a discrete sense tlgenbasisiefined through Mercer’'s Theorem (see e.g. [7]), where theriproduct
of Lo(Q) is replaced with its discrete versiép(Zn). Moreover, as shown in [5], the WSVD badis; }5-\‘:1 enjoys the
following properties, i.e.,

i) itis A(Q)-orthonormal,
i) itis ¢2(2n)-orthogonal with nornoy,
i) (Uk, F)r,(20) = Ok(Uk: ) sg () VT € A0(Q),
V) on >--- > 01> 0,
V) Tk0k = ¢(0) meagQ).



Since the interpolation is a5 (Q)-projection and thanks to property iii), we can rewrite thefpolant (2) in terms
of the 44 (Q)-orthonormal WSVD basis as
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2.2. Implicit surface reconstruction via partition of unity interpolation

To find the implicit interpolant, we need to use additionaéipolation conditions considering an extra set of off-
surface points. We construct the extra off-surface poiptsking a small step away along the surface normalthus
obtaining for each data poimt two additional off-surface points. One point lies outsile surface and is denoted
by xn+i = X + Onj, whereas the other point lies inside and is denoted-Ry; = X — dn;, whered is the stepsize
[7, Ch. 30]. Now, after creating the data set, we can com@eartition of unity interpolant, whose zero contour or
iso-surface interpolates the point cloud d&@, as well as the set,%”(s+ = {XN+1,---, XN} and 3&”5’ = {XoN+1,- -5
Xan }. Some techniques to estimate the normals can be found in [10]

The idea of the partition of unity method is to decomposegel@roblem or domai C R? into d small problems
or subdomain€; such thatQ C U‘]Lle with some mild overlap among the subdomains. Associateld thitse
subdomains we construct a partition of unity, i.e. a famflgampactly supported, non-negative, continuous funstion
W; with supW;) € Q;j such thatz‘j’:1V\/j (x) = 1,x € Q. The global approximant thus assumes the following form

o

FJ(X) =Y Rj(X)W(x), xe Q. 3
=1

For each subdomai2; we may define &hepard weighfunctionW; : Q; — R as
S

¢; being the compactly supported Wendla®, k > 1 functions [13], and a local WSVD interpolaRf : Q; — R of
the form

|

Nj . :
Rj = kz O'jT(l(f,Uf(]))gz(%'j)Uf(J)
=1

whereN;j indicates the number of data points(®j, i.e. the pointsq“) € Zj=2AnNQj.

The partition of unity approach is therefore a simple anéaife computational technique because it allows us
to decompose a large problem into many small subproblenssiriaig that the accuracy obtained for the local fits is
carried over to the global one (for further details see [2,33).

3. DETERMINING THE BASINSOF ATTRACTION VIA STABLE BASES

In this section we show how the method previously introducza be used to approximate the basins of attraction of
systems presenting three stable equilibria.

In this situation we can use the routine outlined in [4] torappmate the basins of attraction of the system (1). More
precisely, we start considerimgequispaced points on each edge of the dobg?, wherey € R*, and we define a set
of initial conditions as follows

Pil!izz(xilayizao) and Piz7i2:(xilayi2ay>7 il7i2:17"'7na

Pié’izz(xilaouziz) and Pié,izz(xilay7ziz)7 ?13?2:17"%”7
Ry, =0VYi,z,) and Rl =(V,i,2,), ini2=1...,n
Then, by taking points in pairs and by performing a bisectilgorithm, a certain number of separatrix points lying on
the basins of attraction is found. As an example, the poyiig lon the separatrix manifolds shown in Figure 1 have
been found considering= 15 andy = 6.



In Figure 1 we report the plot of the three surfaces desdailiie domains of attraction. They have been recon-
structed with the stable method (3) presented in Sectioméh Spproximate surfaces have been obtained by taking a
numberd = 4 of partition of unity subdomains and the Wendla&fdfunction

@(r) = (1—er)§ (32633 + 25672 + 8er + 1),

with shape parameter= 0.001.

FIGURE 1. Set of points lying on the surfaces determining the domains of attractighdled the reconstruction of the basins
of attraction ofEy, E; andEj3 (right) with parameterp=1,q=2,r=2,a=5,b=4,c=3,e=7,f=7,g=10,u=3,v=2,
w = 1. The stable equilibria are marked with the blue dot, while the unstable saaldis pre represented with the black dot.
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