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Abstract. In applied sciences it is often required to model and supervise temporalevolution of populations via dynamical
systems. In this paper, we focus on the problem of approximating the basins of attraction of such models for each stable
equilibrium point. We propose to reconstruct the basins via an implicit interpolant using stable radial bases, obtaining the
surfaces by partitioning the phase space into disjoint regions. An application to a competition model presenting jointly three
stable equilibria is considered.
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1. INTRODUCTION

Mathematical modelling is nowadays commonly used in applied sciences, such as in biology, to predict the temporal
evolution of populations. This is obtained in general via a dynamical system, where a particular solution is completely
determined by its initial conditions. The possible steady states of the system are determined by its parameters, but
more steady states can originate from different initial conditions [1, 11].

Here, focusing on a particular competition model presenting tristability, we approximate the basins of attraction of
its stable equilibria. To do that, we propose an efficient andstable kernel-based interpolation method to reconstruct
(unknown) multiple surfaces partitioning the three-dimensional space or the phase space into disjoint regions. Sincein
many situations the standard basis interpolant may suffer from instability due to ill-conditioning of the kernel matrices,
we consider a change of basis that makes the related interpolant more stable than the standard one. This computational
approach extends our recent research in this field (see [2, 3,4, 5, 6]).

Denoting now the three populations byx, y andz, we consider the competition model

dx
dt = p

(
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u
)
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dy
dt = q

(
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v
)

y−cxy−eyz,

dz
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(
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w
)

z− f xz−gyz,

(1)

where all the parameters characterizing the system are positive and defined as follows:

• p, q andr are the growth rates ofx, y andz, respectively;
• a, b, c, e, f andg are the competition rates;
• u, v andw are the carrying capacities of the three populations.

The model (1) has eight equilibria. The originE0 = (0,0,0) and the points associated with the survival of only one
populationE1 = (u,0,0), E2 = (0,v,0) andE3 = (0,0,w). Then we have three equilibrim points with two coexisting
populations, i.e.,

E4 =

(

uq(av− p)
cuva− pq ,

pv(cu−q)
cuva− pq ,0

)

, E5 =

(

ur(bw− p)
f uwb− rp ,0,

wp( f u− r)
f uwb− rp

)

, E6 =

(

0,
vr(we−q)
gvwe−qr ,

wq(vg− r)
gvwe−qr

)

.

Finally, we have the coexistence equilibriumE7 = (x7,y7,z7), which can be assessed only via numerical simulations.



For example, taking as parametersp = 1, q = 2, r = 2, a = 5, b = 4, c = 3, e = 7, f = 7, g = 10, u = 3,
v = 2, w = 1, the points associated with the survival of only one population, i.e. E1 = (3,0,0), E2 = (0,2,0) and
E3 = (0,0,1), are stable, the originE0 = (0,0,0) is an unstable equilibrium and the coexistence equilibriumE7 ≈
(0.1899,0.0270,0.2005) is a saddle point. The remaining equilibriaE4 ≈ (0.6163,0.1591,0), E5 ≈ (0.2195,0,0.5317)
andE6 ≈ (0,0.1714,0.2647) are other saddle points. The manifolds joining these saddles partition the phase space into
the different domains of attraction, but intersect only at the coexistence saddle pointE7.

2. IMPLICIT PARTITION OF UNITY METHOD VIA STABLE BASES

In this section we present the method used to reconstruct thebasins of attraction. Since they are often described by
implicit surfaces, we consider the implicit partition of unity method using locally stable bases. Such surfaces are
defined by point cloud data sets of the formXN = {xi ∈ R

3, i = 1, . . . ,N}, belonging to a surface inR3.

2.1. Stable bases

Our goal is to recover a functionf : Ω →R on a bounded domainΩ ⊂R
3, samplingf onN pairwise distinct points

XN ⊂ Ω, namely f = [ f1, . . . , fN]T , fi = f (xi), xi ∈ XN. To do that, we consider a positive definite and symmetric
kernelΦ : Ω×Ω → R and construct the interpolant as

R(x) =
N

∑
j=1

c jΦ(x,x j), x∈ Ω, (2)

whereΦ is a radial kernel depending on ashape parameterε > 0, i.e.Φ(x,y) = φε(||x− y||2) = φ(ε ||x− y||2) and
φ : R≥0 → R for all x,y ∈ Ω. The coefficientsc = [c1, . . . ,cN]

T in (2) are determined by solving the linear system
Ac= f , where the interpolation matrixA = [Φ(xi ,x j)]

N
i, j=1. So the obtained solutionR is a function of thenative

Hilbert spaceNΦ(Ω) uniquely associated with the kernel, and, iff ∈NΦ(Ω), it is in particular theNΦ(Ω)-projection
of f into the subspaceNΦ(XN) spanned by the standard basis of translatesTXN = {Φ(x,x j),1≤ j ≤ N} (cf. e.g. [7]).

Since in most cases the matrixA can be severely ill-conditioned and therefore the interpolant (2) unstable, many
efforts have recently been made to construct stable bases (see e.g. [8, 9, 12]). In particular, here we focus on a change
of basis, known as theWSVD basis, described in [5, 6]. To construct this basisU = {u j} j of NΦ(XN), we can assign
an invertible coefficient matrixDU = [di j ]

N
i, j=1 such that

u j =
N

∑
i=1

di j Φ(·,xi),

or, equivalently, an invertible value matrixVU = [u j(xi)]
N
i, j=1 so thatA=VU ·D−1

U
[12]. To define the WSVD basisU

for NΦ(XN), the matrices are given by

DU =
√

W ·Q·Σ−1/2 and VU =
√

W−1 ·Q·Σ1/2,

where
√

W ·A·
√

W = Q·Σ ·QT is a SVD of the weighted kernel matrixAW =
√

W ·A·
√

W, Wi j = δi j wi is a diagonal
matrix of positive weights, andΣ= diag(σ1, . . . ,σN) the corresponding singular values. This basis has been constructed
to mimic in a discrete sense theeigenbasisdefined through Mercer’s Theorem (see e.g. [7]), where the inner product
of L2(Ω) is replaced with its discrete versionℓ2(XN). Moreover, as shown in [5], the WSVD basis{u j}N

j=1 enjoys the
following properties, i.e.,

i) it is NΦ(Ω)-orthonormal,
ii) it is ℓ2(XN)-orthogonal with normσk,

iii) (uk, f )ℓ2(XN) = σk(uk, f )NΦ(Ω), ∀ f ∈ NΦ(Ω),
iv) σN ≥ ·· · ≥ σ1 > 0,
v) ∑k σk = φ(0) meas(Ω).



Since the interpolation is aNΦ(Ω)-projection and thanks to property iii), we can rewrite the interpolant (2) in terms
of theNΦ(Ω)-orthonormal WSVD basis as

R=
N

∑
k=1

( f ,uk)NΦ(Ω)uk =
N

∑
k=1

σ−1
k ( f ,uk)ℓ2(XN)uk.

2.2. Implicit surface reconstruction via partition of unity interpolation

To find the implicit interpolant, we need to use additional interpolation conditions considering an extra set of off-
surface points. We construct the extra off-surface points by taking a small step away along the surface normalsni , thus
obtaining for each data pointxi two additional off-surface points. One point lies outside the surface and is denoted
by xN+i = xi + δni , whereas the other point lies inside and is denoted byx2N+i = xi − δni , whereδ is the stepsize
[7, Ch. 30]. Now, after creating the data set, we can compute the partition of unity interpolant, whose zero contour or
iso-surface interpolates the point cloud dataXN, as well as the setsX +

δ = {xN+1, . . . ,x2N} andX
−

δ = {x2N+1, . . . ,
x3N}. Some techniques to estimate the normals can be found in [10].

The idea of the partition of unity method is to decompose a large problem or domainΩ ⊆R
3 into d small problems

or subdomainsΩ j such thatΩ ⊆ ⋃d
j=1 Ω j with some mild overlap among the subdomains. Associated with these

subdomains we construct a partition of unity, i.e. a family of compactly supported, non-negative, continuous functions
Wj with supp(Wj)⊆ Ω j such that∑d

j=1Wj(x) = 1, x∈ Ω. The global approximant thus assumes the following form

I (x) =
d

∑
j=1

Rj(x)Wj(x), x∈ Ω. (3)

For each subdomainΩ j we may define aShepard weightfunctionWj : Ω j → R as

Wj =
ϕ j

∑d
k=1 ϕk

,

ϕ j being the compactly supported WendlandC2k, k≥ 1 functions [13], and a local WSVD interpolantRj : Ω j →R of
the form

Rj =
Nj

∑
k=1

σ−1
jk ( f ,u( j)

k )ℓ2(X j )u
( j)
k ,

whereNj indicates the number of data points inΩ j , i.e. the pointsx( j)
i ∈ X j = XN ∩Ω j .

The partition of unity approach is therefore a simple and effective computational technique because it allows us
to decompose a large problem into many small subproblems, ensuring that the accuracy obtained for the local fits is
carried over to the global one (for further details see [2, 3,13]).

3. DETERMINING THE BASINS OF ATTRACTION VIA STABLE BASES

In this section we show how the method previously introducedcan be used to approximate the basins of attraction of
systems presenting three stable equilibria.

In this situation we can use the routine outlined in [4] to approximate the basins of attraction of the system (1). More
precisely, we start consideringn equispaced points on each edge of the cube[0,γ ]3, whereγ ∈R

+, and we define a set
of initial conditions as follows

P1
i1,i2

= (xi1,yi2,0) and P2
i1,i2

= (xi1,yi2,γ), i1, i2 = 1, . . . ,n,
P3

i1,i2
= (xi1,0,zi2) and P4

i1,i2
= (xi1,γ ,zi2), i1, i2 = 1, . . . ,n,

P5
i1,i2

= (0,yi1,zi2) and P6
i1,i2

= (γ ,yi1,zi2), i1, i2 = 1, . . . ,n.

Then, by taking points in pairs and by performing a bisectionalgorithm, a certain number of separatrix points lying on
the basins of attraction is found. As an example, the points lying on the separatrix manifolds shown in Figure 1 have
been found consideringn= 15 andγ = 6.



In Figure 1 we report the plot of the three surfaces describing the domains of attraction. They have been recon-
structed with the stable method (3) presented in Section 2. Such approximate surfaces have been obtained by taking a
numberd = 4 of partition of unity subdomains and the WendlandC6 function

φε(r) = (1− εr)8
+ (32ε3r3+25ε2r2+8εr +1),

with shape parameterε = 0.001.
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FIGURE 1. Set of points lying on the surfaces determining the domains of attraction (left) and the reconstruction of the basins
of attraction ofE1, E2 andE3 (right) with parametersp= 1, q= 2, r = 2, a= 5, b= 4, c= 3, e= 7, f = 7, g= 10,u= 3, v= 2,
w= 1. The stable equilibria are marked with the blue dot, while the unstable saddle points are represented with the black dot.
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