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Abstract

We present new results concerning estimating the intrinsic dimension (ID) of point
clouds based on persistent homology. In particular, we compare topological ID estimators
with different approaches, comprehensively assessing their strengths and weaknesses. We
show that a combination of the so-called i-dimensional persistent homology fractal dimen-
sion estimator and the persistent homology dimension, which we termed i-dimensional
« persistent homology fractal dimension, is a suitable choice for obtaining an effective
estimation of the ID in many benchmark datasets.
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1 Introduction

Due to the increasing availability of large datasets, developing principled and effective ap-
proaches to compress the information they contain is becoming a central issue in all applied
sciences. In this context, a key role is played by dimensionality reduction approaches aimed
at reducing the number of variables (coordinates) in the data with little or no loss of infor-
mation [61, 21]. What justifies this step is that the data, despite being originally defined in a
space with many coordinates, typically lie on a manifold of lower dimension. This dimension,
corresponding to the minimum number of local coordinates needed to describe the data, is
called intrinsic dimension (shortly, ID). Knowing the value of the ID is critical to ensure the
reliability low-dimensional data visualization [62] and the validity of dimensionality reduction
as a data preprocessing step [35]. In addition, the ID is often a very useful metric per se,
allowing the analyst to capture key information about the geometry of the data [2, 39, 1, 20],
compare data and models [36], and track temporal variations of complexity [6, 4]. Yet, the
ID is generally not known a priori, calling for methods to obtain ID estimates directly from
the data.

A wide variety of ID estimation techniques have been advanced in the literature [11, 12]. A
majority of the proposed methods fall into one of two categories, that of projective methods
and that of geometric-statistical methods. Projective methods try to project the data onto
a space of dimension D, and assess the quality of the projection (in terms of its ability to
retain key characteristics of the original dataset) as a function of D [63]. The prototype for
these methods is principal component analysis (PCA) [22], which projects the data onto the
linear subspace spanned by the first D eigenvectors of the covariance matrix, and uses the
fraction of variance within this subspace as a quality metric. A major limitation of projec-
tive methods is that they yield a clear ID estimate only when the quality metric exhibits a
clear drop below a given D. Typically, this does not occur, and the ID is fixed (rather than
estimated) by searching for an optimal compromise between quality and compression (such
as retaining the D components explaining 95% of the variance in PCA).
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Geometric-statistical methods build on the fact that, under broad assumptions, distances
between points in the dataset follow statistical relations that depend parametrically on the
ID. The prototypes of this class are methods developed in the 1980s to characterize the di-
mension of strange attractors in the field of dynamical systems. For instance, the correlation
dimension [19] is based on the fact that the number of points within small neighborhoods
of radius r around a given point scales as N, ~ rP for r < 1, with D being the intrinsic
dimension, so that D can be estimated as lim,_,q % More advanced methods is this class
follow a similar logic, but make specific assumptions about the probability distribution of
the data, such as local uniformity [18, 17] or isotropy [12, 16]. The main limitation of these
methods is that they typically require a large number of data points when the ID is high
(a facet of the well-known curse of dimensionality problem), and may fail in the presence of
highly non-uniform or non-isotropic distributions.

Following the recent surge of topological data analysis [23, 24, 25], several authors have ex-
plored topological approaches to ID estimation [5], that do not fall within the two classes
defined above as they are insensitive to the particular metric chosen to define distances in
the data set. In principle, these methods might provide more robust estimates by overcoming
some of the previously listed difficulties. Topological ID estimators are based on persistent
homology, a popular method for computing topological features of a space at different reso-
lutions [26, 27, 28].

In this work, we set out to compare topological ID estimators with alternative methods,
providing a comprehensive assessment of their relative strengths and weaknesses. Upon com-
paring well-known and well-characterized benchmark datasets, we will focus on real data.
One of the fields where ID estimation has risen to prominence in recent years is neuroscience,
where it can be used to estimate the dimension of neural activity. The responses of N recorded
neurons across time span a neural manifold embedded in the N—dimensional configuration
space of all neurons [15]. While artificial neural networks trained to replicate real brains often
display low-dimensional activity [42], biological neural activity is typically high-dimensional
activity [13, 14], which has opened a wide debate. Here, we will consider an artificial network
trained on simple tasks mimicking those performed by macaques in decision-making exper-
iments [46], and compare the ID of the neural manifold as assessed by traditional methods
and topological methods.

The paper is organized as follows: in Section 2 we introduce the basic definitions related
to persistent homology, in Section 3 we describe the meaning of Intrinsic Dimension (ID),
its importance, and common ways to compute, Section 4 introduces and explains the actual
estimators of ID using PH and Section 5 collects all numerical tests that we have run. Finally,
in Section 6 we make some conclusions and some future developments.

2 Persistent Homology: basic definitions

Persistent homology (PH) is now widely known and used. Comprehensive treatments are
covered in recent textbooks on topological data analysis, such as [24, 25]. Here, we limit
ourselves to a brief recapitulation.

Let X be a topological space (for all practical purposes, this can be assumed to be a manifold).
The k-th homology group X, Hy(X), consists of the k-dimensional holes of X. The number
of connected components (0-dimensional holes), cycles (1-dimensional holes), cavities/voids
(2-dimensional holes), and higher-order holes characterize the intrinsic topology space X,
providing a qualitative summary of it. In practical applications, one does have access to X,
but only to a set of points X = {x;};=1. nv C X. Persistent homology tries to characterize
the X by analyzing the homology of simplicial complexes built on X. Let us briefly recall
the basic concepts of simplicial homology.

Definition 2.1. A simplicial complex IC consists of a set of simplices of different dimensions
so that every face of a simplex A € K belongs to K and the non-empty intersection of any
two simplices A1, Ay € K is a face of both Ay and Ao.

Given a simplicial complex K, let S;(K) denote the set of k-dimensional simplices of K.



Definition 2.2. An integer valued k-dimensional chain is a linear combination of k-simplices
of K with coefficients in Z,

c=Y aili, A eS(K), a€Z. (1)

Let Ci(K) denote the set of integer-valued k-dimensional chains of I, which is a group under
the operation of addition.

Definition 2.3. The boundary operator Oy : S — Ci—1 maps an oriented simplex A € Si(K)
into the (k — 1)-dimensional chain

k
A =) (~1)*a;. (2)
=0

where o; is the (k — 1)-face obtained by removing the i-the vertex of the simplex (with vertex
order fixed by the orientation. The boundary operator can be extended by linearity to a
general element of Cj(K), obtaining a map 0y : Cx(K) — Ci_1(K).

Definition 2.4. The kernel of 0y is the group of k-cycles, Zy(K) := ker(9;). The image
of O41 is the group of k-dimensional boundaries, By (K) := im(011). Finally, the quotient
group Hy(K) = Z,(K)/By(K) is the k-homology group of K. The generators of Hj, are called
homology classes.

Simplicial complexes can be built on X by forming simplexes with all points below a certain
distance, as follows.

Definition 2.5. Let (X,d) denote a finite metric space. The Vietoris-Rips complex for
X, associated to a parameter € and denoted by V.(X), is the simplicial complex where the
following hold.

i) X forms the vertex set;

ii) any subset {xq,...,x;} € X spans a k-simplex if and only if d(x;,x;) < 2e for all
0 < Z)] < k.

Persistent homology analyzes nested sequences of simplicial complexes arising at increasing
values of e, trying to identify the topological features (homology classes) that persist across
a wide range of values of e.

Definition 2.6. Let 0 < €] < --- < ¢ be an increasing sequence of real numbers. A filtration
is the sequence of sets
PCcKiCcKyC---CKy (3)

with IC; = Ve, (X)
Definition 2.7. The p-persistent homology group of K; is the group
H» = Z}/(B"P N Z})

This group contains all stable homology classes in the interval [i,i + p], that is, classes born
before step ¢ which are still alive after p steps.

Definition 2.8. Let v be a homology class in Hy(K;). We say that v is born at the instant
iify ¢ H,ifl’l, i.e. it cannot be identified with a previously existing class in H,(KC;—1). We
say that a homology class born at K; dies at iy, if v € H,i’p_l and v ¢ H,i’p. Then p is
called the persistence of .



Notice that, highly persistent homology classes typically correspond to topological fea-
tures of X' (cf. [7]). Hence, during the filtration process, homology classes thus appear and
disappear. We can represent classes in RZ = R>¢ x {R>g U {+oc}} by assigning the point
(i,7) to a class born at IC; and died at C; (j can take the value 400, since some features can
be alive up to the end of the filtration). Since there can be several independent classes born
at IC; and died at K;, then each point (i, j) has a multiplicity, say fi; ;.

The collections of points (7,j) together with their multiplicity is called a Persistence

Diagram (PD).
Figure 1 is an example of a PD collecting features (homology classes) of dimension 0 (in
blue), 1 (in orange), and 2 (in green). Points close to the diagonal represent features with a
short lifetime (usually associaed with noise) while features away from the diagonal are stable
topological features.
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Figure 1: A persistence diagram with classes of dimension 0,1 and 2. At the top of the plot,
there is a dashed line that indicates infinity and allows for plotting also couples as (i, +00).

3 Intrinsic Dimension Estimation

The minimum number of parameters required to account for the observed properties of data
is the intrinsic (or effective) dimension. of the data set. The concept of Intrinsic Dimension
(ID) has become central in all fields dealing with a large amount of data characterized by a
high number D of features, such as machine learning [11]. Estimating the ID, which counts
the number of essential and fundamental features d < D, is crucial to uncover the data
structure and simplify analysis, enabling data compression.

Following [11], we can define the ID of a dataset as as the minimal dimension of a manifold
preserving the information contained in the data set.

Definition 3.1. A dataset @ C R” is said to have Intrinsic Dimension (ID) d if its elements
lie entirely, without information loss, within a d - dimensional manifold M of R”, where
d<D.

3.1 Common fractal ID estimators

Estimating the ID from data is a challenging task. While the first ID estimation algorithm
dates back to 1969 [11], the literature now includes a wide variety of estimators (cf. e.g.
[12, 16, 17]). Among popular methods we recall linear estimators, as the PCA, and the
non linear ones, such as the kernel PCA. While the linear estimators are based on linear
mappings to lower dimensional space of the data, they are particular fast and suitable with
data that are ”quasi” linearly distributed, but often they overestimate the ID of the mani-
fold. The non linear ones work better with more complex data, providing learning techniques



which are particularly efficient because are based on the preservation of the geometric struc-
ture of the original feature space. Unfortunately they are usually more computationally
expensive (see for instance the recent paper [37]). A new class are the so-called fractal-based
estimators which rely on the key idea that distances between points lying on a fractal or a
low-dimensional manifold follow scaling laws that depend on the ID [5]. That is the volume
of the d-dimensional balls of radius e grows proportional to €. The most famous fractal
methods are the box counting and the correlation dimension .

The boz-counting dimension is based on the number of boxes needed to cover a data set. Let
Xy C RP be a set of N points of RP, considered as a metric space. Let N (€) be the number
of boxes (hypercubes) of size € needed to cover X . By scaling the box size €, one generally
obtains a a power-law scaling of N(¢) [5]:

N(€) ox e~ 9B (4)
Definition 3.2. Let Xy be a subset of RP, and let N, denote the infimum of the number of
closed balls of radius € required to cover X. The Box-Counting Dimension of €2 is
(5)
provided this limit exists.

If Xy is an I.I.D. sample of N points from a regular metric z on R”, then limy_,oo dpc = d.

Another fractal ID estimator that has become one of the most common and widely used
is the correlation dimension (CD). It describes how the number of points within a certain
distance (or radius) scales with the radius as it increases. Mathematically, it is defined using
the correlation integral of a given measure p, which is the probability that pairs of points in
a dataset are within a certain distance, say e, of each other [5]:

Definition 3.3. Let Q C R” be equipped with a measure p. Given e > 0, the correlation
integral of u is defined as:

C0) = By [ drdlr = I1X = YI)] = Exoymn[Hee = X =YD (6)
where || - || is a norm (typically, the Euclidean norm), §(z) is the delta function, and H is the
Heaviside step function (H(z) =0 for x < 0, H(z) =1 for x > 0). The CD is defined as:

1
dor = lim 128LC€() (7)

e—0 log(e)

The idea behind this definition is that, as € — 0, the correlation integral scales as
C(e) x €@ (8)

If 1 is an absolutely continuous measure on €2, then d¢ = d.
The CD can be estimated from a finite set of points. Let Xy be an I.I.D. sample of N points
from p. Let us count the number of pairs of points within distance e,

C(N,e) = Y. H(e— i —a). (9)
Ti, Tj € XN
T 75 T 5

We then have (cf. e.g. [60]): )
C(e) = lim C(N,¢) (10)
N—o0
In applications, given a finite (large) set of points x, the CD can be estimated as the slope
of the log-log plot of C'(N,€) versus € in the limit of small e.



3.2 ID estimators using persistent homology

Several PH-based estimators have been proposed in the literature. For instance, the authors
in [5] introduced the i-Dimensional Persistent Homology Fractal Dimension, while in [32] they
introduced the Persistent Homology Dimension, and the Persistent Homology Complezity.
Assume we have a probability measure p with support on M C RP. Let Xy denote an I.I.D.
sample from p. Let K(Xy) denote a Vietoris-Rips complex on Xy. Let v be a k-dimensional
topological feature (persistent homology group generator), i.e., i, v € Hj(K(Xn), and let
|v| denote its persistence.

Definition 3.4. For any a > 0,
Ey(Xn) = > il (11)
Ji, yEH}(K(XN))

The first PH-based ID estimator proposed in the literature is the k-dimensional Persistent
homology Fractal Dimension (cf. [5]):

Definition 3.5. The k-dimensional Persistent Homology Fractal Dimension (k-PHFD) of p
is given by
dimpy (p) = Inf { 3C(k, p,d) : EF(Xy) < ONU@D/4 with probability 1 as N — +oo} .
(12)

This definition says to us that the dimension may depend on the choice of the filtered
simplicial complex (in our case, the Vietoris-Rips) and on the choice of the coefficients for
homology computations.

Although a stringent analytical proof is still lacking, numerical tests brought the authors
to the following

Conjecture 3.6. Let 4 be a nonsingular probability measure on a compact set X C RP, D >
2. Then, for all 0 < k < D, there is a constant C(k, u, D) > 0 such that

Ef(Xxy) = CNW-D/d (13)
with probability 1 as N — oc.

Assuming the validity of this conjecture, taking the logarithm in (13), we get

d—1

log( B} (X)) = log(C) + log(N), (14)

which suggests that we can estimate d from the scaling of log(E?(Xy)). Practically, an
estimate of d is obtained by performing a linear regression of (log(E!(Xy)) as a function of
log(N)), taking the slope as an estimate of d%‘ll, and finally obtaining d through a simple

inversion. In applications, the value d can then be inferred from this log-log plot.

Building on this work, in [32] has been introduced the Persistent Homology Dimension
(PHD).

Definition 3.7. Let X and p be as above. For each £ € N and o > 0, the Persistent
Homology Dimension (PHD is

(0}

1-p

dimppg (p) =

where

s log(E(E% (X))
B _lzlvniilig log(N)



In practice, it is not so obvious how to treat the expectation value. But analyzing this
estimator more carefully, it appears to be an “extension” of k-PHFD. Observing the numerical
results in [32], it is clear that the parameter « generally increases the global performance and,
consequently, the estimation.

Inspired by the fact that the parameter a gives to the PHD some advantages over i-PHFD,
we propose to combine both definitions, providing an estimator that we call i-dimensional o
Persistent Homology Fractal Dimension, that can easily be defined.

Precisely, the i-dimensional o Persistent Homology Fractal Dimension (i-a-PHFD) of u
is given by

{d 1 30(i, 4, D) : EL(Xy) < ON@=9/ with probability 1 as N — +oo} .

(17)
Finally, we recall the definition that measures the complexity of data, known as Persis-
tent Homology complexity (cf. [32] ). This quantity is an indicator of when the dimension
is difficult to compute with the methods presented above.
The starting point is the cumulative PH; curve F;

dim®%, (1) = inf
impy (1) = inf

Fy(X,e) = #{I € PH;(X)||I| > ¢}

Hence, the PH; complexity of X is

—log(Fi(X
comppy,(X) = limM

18
e—0 log e (18)

We notice that comppm, (R™) = 0 for all <. For more details see the survey [32].

4 Numerical Tests

In the present literature, no comparison has been made of the available ID estimators based
on PH. Here, we systematically test and compare them on some benchmark datasets and a
dataset taken from a computational neuroscience study.

e Benchmark datasets. They are commonly tested in the context of ID estimators.
They consist of data sampled from “regular” manifolds. We collect all the related
information in the Table below (see e.g. [12])

Dataset d Description
Helix 2 2-dimensional helix in R?
Swiss 2 Swiss-Roll in R3
Sphere 3 3-dimensional sphere linearly embedded in R?
NonLinear 4 Nonlinear Manifold in R3
Affine3d5d 3 Affine space in R®
Mist 4 | Conc. figure, mistakable with a 3-dim. one in RS
CurvedManifold | 12 Nonlinear (highly curved) manifold in R
NonLinear6d36d | 6 Nonlinear manifold in R3°

e Fractal dataset. This dataset comes from the world of fractals and dynamical systems,
in particular the Sierpinski and Ikeda Attractor (see Figure 4), both taken from [32].
Because of the computational burden of computing topological features, here we have
computed 4000 points for the Sierpinski Triangle and 5000 for the Ikeda attractor,
respectively.

e Neural activity dataset. To validate PH-based ID estimation methods, we test them
on a real dataset that was extensively characterized with other ID estimation methods.



Figure 2: Sierpinski triangle (left) and Ikeda map (right)

In Ref. [cite preprint], the authors characterized the ID of manifolds generated by sim-
ulated neural activity. To this aim, they considered artificial recurrent neural networks
(RNNs), which are frequently taken as simplified models of real brain networks. In
particular, they trained RNNs to perform 20 interrelated tasks mimicking typical tasks
in experiments with non-human primates and useful to understand basic cognitive pro-
cesses such as working memory, inhibition, and context-dependent integration [46]. In
each task, the network receives one or two inputs or ‘stimuli’, both representing an
angular variable or direction, and should produce an ‘output’, also representing a di-
rection. In real experiments, animals are shown dots moving in a specific direction in
their left visual field (input 1) and right visual field (input 2) and they should produce
a motor response, typically a gaze movement (output) in a specific direction that is a
function of the received stimuli. The figure represents the idea of how to use an RNN.
We have considered only 3 stimuli, whose data are stored in .csv file with the names
Fdgo, Context, and Reactgo_filtered with 25200, 10400 and 5200, respectively, in R2%6.

comes from a research project still open. Starting from the analysis of activity trajec-
tories of particular recurrent neural networks (RNNs), the aim is to mirror the brain
functionality related to basic tasks using an NN. In particular, we considered the RNNs
developed by Yang et al. [46] for the study of the properties of the network while
performing cognitive tasks. In the literature, the authors trained RNNs to solve sim-
ple tasks that mimic typical stimulus-response mapping in experiments with primates.
They selected 20 interrelated tasks, useful to understand basic cognitive processes such
as working memory, inhibition, and context-dependent integration. In each task, the
network receives one or two inputs or ’stimuli’, both representing an angular variable
or direction (in real experiments, animals are shown dots moving in a specific direction
in their left or right eye). In addition, the network receives a ’fixation input’, corre-
sponding to the instruction to maintain The gaze is fixed on a cross in the center of the
screen. When the fixation input disappears, the network should produce an ’output’,
representing a motor response. The correct output depends (in more or less simple
ways) on the preceding stimuli (in real experiments, animals should move their gaze in
a direction that is a function of the received stimuli). The figure represents the idea of
how to use an RNN. We have considered only 3 stimuli, whose data are stored in .csv
file with the names Fdgo, Context, and Reactgo_filtered with 25200, 10400, and 5200,
respectively, in R?%6.

For the last examples, coming from an open field of research, a priori, the ID is completely

unknown. To have only a probably decent idea of which ID is expected, we have decided to
compute the related Correlation Dimension that, nowadays, is indeed such a good indicator
in practice. For the sake of completeness, we have finally computed it for all datasets and
collected the results here in Table 4, where d denotes the ID being approximated.

All codes have been written in Python 3.11 and are available on the GitHub page

https://github.com/cinziabandiziol/Topological ID_Estimator
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Figure 3: Scheme of the source of data

’ Dataset ‘ d ‘ Corr. dim.
Helix 2 1.99
Swiss 2 1.98
Sphere 3 2.98
NonLinear 4 3.87
Affine3d5d 3 3.01
Mist 4 3.54
CurvedManifold 12 11.66
NonLinear6d36d (§ 5.82
Sierpinski Triangle | 1.585 1.585
Tkeda unk 1.68
Fdgo unk 1.07
Contextdm1 unk 1.14
Reactgo unk 2.15

Table 1: Correlation Dimension of all datasets

Shape Parameter Analysis

Taking the new definition, namely that of i-dim. « PHFD, it depends on the parameter
«. Now we are interested in investigating if the choice a = 1 turns out to be equal exactly
to the i-dim. PHFD, or is there a better choice of the parameter? We have conducted a
numerical analysis and, inspired by paper [32], we consider taking «, the parameter to be
tested, in the range (0,4). We have chosen values not so large since the analysis in [32] has
taken this direction, which has been revealed to be the most meaningful. For each value of
a, we computed the related i-dim. o« PHFD as follows.

1.
2.

Compute the persistent feature, usually only of dimension 0, 1.

To mirror the limit n — oo, consider some number ny, closer to the maximum n available
(e.g. for the benchmark datasets n = 10000).

Consider the points (log(Ny),log(E: (Xy))) and compute the linear approximation (we

. . . SN . D—1
did by using the Python function numpy.polyfit): the slope is then equal to =5=.

. Make the inverse and obtain the approximated value of D.



We apply this workflow to all datasets with known ID, and we have considered the ap-
proximation errors as the differences between the real ID and the approximated one. There
exists say, an o, such that this error is closer to or equal to zero. We call this the ”optimal”
one.

Shape Analysis - Mist Dataset (PH = 0)

40 —— approx_ID
— D

x 254
2

T T T T T T T T T
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Figure 4: Shape Analysis for the dataset Mist with PH)

Interestingly, experiments reveal without any doubt that, considering PHy and PH; both,
the optimal value is exactly 1, revealing how the ¢-dim. PHFD is indeed optimal in . We
report in Figure 4.1 two plots: on the top, the approximation ID (red) and the real ID (blue),
while on the bottom, we plot the errors, and we have marked in blue the optimal point.
Notably, similar behavior can be seen for all benchmark datasets.

4.2 ID estimates

We report in Table 2 the approximation of ID of all datasets using the ”optimal” parameter
ot =1.

Dataset | d | PH, | PH, |
Helix 2 2.01 | 2.38
Swiss 2 1.93 | 2.16
Sphere 3 2.90 | 3.14
NonLinear 4 3.98 | 6.45
Affine3d5d 3 2.84 | 2.91
Mist 4 4.01 | 6.11

CurvedManifold 12 | 12.73 -
NonLinear6d36d 6 5.96 | 9.80

Serpinski 1.58 | 1.61 | 1.87
Ikeda Attractor | 1.71 | 2.12 | 2.13
Reactgo unk | 2.47 | 2.54
Fdgo unk | 2.14 | 2.17

Contextdml1 unk | 3.07 | 3.03

Table 2: Computations of 0, 1-dim. PHFD for all datasets

Remark 4.1. Some shreds of evidence.

e From the results, in general, considering PHy, the estimator performs better than on
estimating PH1. Besides, if we consider the approximation of ID for the neuroscience
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dataset obtained using Correlation Dimension, again, the results are not so promising.
This is a point that needs more investigation and analysis

e Finally, for what concerns the estimator comppy, we have tried to replicate the results
obtained in [32]. Unfortunately, the results seem to be far from the desiderata. We have
some doubts about the global definition of the estimator since, as shown in the refer-
ences, the corresponding function F' should have a clear linear behavior in a well-defined
interval. Concretely, in our application, we are not able to see it. These conclusions,
of course, have given us the curiosity to investigate the definition in depth, and this
represents a good direction for future research.

5 Conclusion

In this paper, we have considered the persistent homology approach as a tool for providing
an effective way to estimate the Intrinsic Dimension of a cloud of points. The estimation
of Intrinsic Dimension is essential, for example, in quantifying the complexity of the data in
terms of the minimal number of dimensions required to capture the data’s variance. At the
same time, in applications, having methods able to transform the original high-dimensional
data into a lower-dimensional representation is crucial. Especially in Machine Learning and
Data Analysis, it can be helpful to improve model performance, reduce computation time,
and mitigate the curse of dimensionality.

As claimed in Section §4, by Persistent Homology (PH), and inspired by the promising
result of UMAP, we provided a comparison of various estimators for the ID. In particular, we
focused on i-Dimensional Persistent Homology Fractal Dimension [5], Persistent Homology
Dimension and Persistent Homology Complezity [32].

We then decided to combine both definitions, to hopefully obtain another good and inter-
esting estimator that we called i-dim. « Persistent Homology Fractal Dimension. The choice
of the parameter o = 1 proved to be the optimal choice for estimating the corresponding ID
for almost all the benchmark datasets and the features PHy, PH;. For some datasets, like
Ikeda attractor, the ID estimated is far from the expected one. Also, for some datasets and
using other estimators, like the CD or the comprpyr, the results are not promising. These
issues should be investigated more deeply in future work.
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