
Fast and stable rational RBF-based Partition of Unity interpolation

S. De Marchi, A. Martı́nez, E. Perracchione

Dipartimento di Matematica “Tullio Levi-Civita”, Università di Padova, Italia

Abstract

We perform a local computation via the Partition of Unity (PU) method of rational Radial Basis Function (RBF)
interpolants. We investigate the well-posedness of the problem and we provide pointwise error bounds. The resulting
scheme, efficiently implemented by means of the Deflation Accelerated Conjugate Gradient (DACG), enables us to
deal with huge data sets and, thanks to the use of Variably Scaled Kernels (VSKs), it turns out to be stable. For
functions with steep gradients or discontinuities, which are truly common in applications, the results show that the
new proposed method outperforms the classical and rescaled PU schemes.

Keywords: meshfree approximation, partition of unity method, rational RBF approximation.
2010 MSC: 65D05, 65D15, 65D17.

1. Introduction

It is well-known that, for univariate functions with steep gradients, the rational polynomial approximation is partic-
ularly suitable. Usually, this approach leads to overdetermined systems and consequently the interpolation conditions
must be relaxed, leading to least square solutions. Moreover, its extension to high dimensions is a challenging problem
(refer e.g. to [17, 19]) and, because of the dependence on meshes, it is not easy to implement for complex shapes of
the domain. These are the main reasons for which we direct our research towards Radial Basis Function (RBF)-based
schemes. Indeed, taking advantage of being meshfree, they are easy to implement in high dimension.

More precisely, we give a very general formulation of a rational RBF expansion and we investigate under which
conditions it leads to problems that admit solutions. Then, since the general form of the rational approximant is
not uniquely defined, following the idea presented in [18], we introduce additional constraints. The scheme, that
reduces to a largest eigenvalue problem, is extended to work with the Partition of Unity (PU) method [27], allowing
to overcome the usually hight complexity costs of global methods, mainly due to the solution of large linear systems.
Indeed, this local approach, based on decomposing the original reconstruction domain into many subdomains or
patches, leads to solving several systems of small sizes. Finally, we point out that the efficiency of the method which
makes use of rational interpolants is improved by means of the so-called Deflation Accelerated Conjugate Gradient
(DACG) algorithm (see e.g. [2]). It allows to efficiently compute the eigenvalues of positive definite matrices.

Furthermore, for the rational RBF expansion we investigate error bounds in terms of both power function and fill
distance. These bounds show strong similarities with those of the standard RBF interpolation [13, 27]. In particular,
the convergence order of the rational PU method depends on the one of the local approximants and it is consistent
with the empirical convergence rates.

The proposed method, thanks to the local scheme and to the DACG approach, allows to consider large data sets but
might suffer from instability due to the ill-conditioning of the local interpolation matrices; refer e.g. to [5, 8, 14]. To
avoid this drawback, we develop a stable computation of the rational RBF local interpolants by means of the so-called
Variably Scaled Kernels (VSKs) [4]. The VSKs, via a scale function, transform the original problem so that the usual
ill-conditioning of the kernel matrix is sensibly reduced.

∗Corresponding author: Stefano De Marchi
Email addresses: demarchi@math.unipd.it (S. De Marchi), acalomar@math.unipd.it (A. Martı́nez),

emma.perracchione@math.unipd.it (E. Perracchione)

Preprint submitted to Journal of Computational and Applied Mathematics December 5, 2017

This investigation reveals that the new method, namely Rational VSK-PU (RVSK-PU), performs better than the
classical PU [13] or the rescaled PU method [9], which can be viewed as a particular case of the method here proposed.
Moreover, when Compactly Supported RBFs (CSRBFs) are used, it enables us to increase the sparsity of the kernel
matrices and, at the same time, to maintain a good accuracy.

The paper is organized as follows. In Section 2, we briefly review the basic properties of RBF interpolation, while
in Section 3 we introduce the problem of rational RBF expansions. Then, in Section 4, we describe how to perform
a local computation of the rational RBF interpolants and we analyze stability and computational issues in Sections
5 and 6, respectively. Numerical results and applications are shown in Section 7. Finally, Section 8 is devoted to
conclusions and future work.

2. RBF interpolation

Let Ω ⊆ RM be a bounded set, XN = {xi, i = 1, . . . ,N} ⊆ Ω a set of distinct data points (also called data
sites or nodes) and FN = { fi = f (xi), i = 1, . . . ,N} a set of data values (or measurements or function values). The
interpolation problem consists in finding a function P : Ω −→ R such that P (xi) = fi, i = 1, . . . ,N. To this end, we
consider P ∈ HΦ(XN) = span{Φ(·, xi), xi ∈ XN}, where Φ : Ω × Ω −→ R is a strictly positive definite and symmetric
kernel. This assumption is not restrictive, indeed to every conditionally positive definite kernel there is an associate
normalized positive definite one (see for example [24]). With this choice the interpolant assumes the form [13]

P(x) =

N∑
k=1

αkΦ(x, xk), x ∈ Ω. (1)

The coefficients α = (α1, . . . , αN)T in (1) are found out by solving the linear system Aα = f , where the entries
of the matrix A ∈ RN×N are given by (A)ik = Φ(xi, xk), i, k = 1, . . . ,N, and f = (f1, . . . , fN)T . The uniqueness of the
solution is ensured by the fact that the kernel Φ is strictly positive definite and symmetric. More specifically, we take
RBFs and thus we suppose that there exist a function φ : [0,∞) → R and a shape parameter ε > 0 such that for all
x, y ∈ Ω we have Φ(x, y) = φε(||x − y||2) := φ(r).

For each positive definite and symmetric kernel Φ it is possible to define an associated real Hilbert space, the
so-called native space NΦ(Ω). To such scope, we first introduce HΦ(Ω) = span{Φ (·, x) , x ∈ Ω}, equipped with a
bilinear form (·, ·)HΦ(Ω) (see [13] for further details). Since HΦ(Ω) is a pre-Hilbert space with reproducing kernel Φ

[26], i.e. need not be complete, we define the native spaceNΦ(Ω) of Φ to be the completion of HΦ(Ω) with respect to
the norm || · ||HΦ(Ω) so that || f ||HΦ(Ω) = || f ||NΦ(Ω), for all f ∈ HΦ(Ω), see [13, 26].

We now report the following theorem on polynomial precision (cf. [26, Th. 3.14, p. 33]).

Theorem 2.1. Suppose that Ω ⊆ RM is compact and satisfies an interior cone condition with angle θ = (0, π/2) and
radius γ > 0. Fix L ∈ N and let ΠM

L−1 be the set of polynomials of degree L − 1. Then, there exist h0, C1, C2 > 0
constants depending only on L, θ and γ, such that for every XN = {xi, i = 1, . . . ,N} ⊆ Ω with hXN ≤ h0, where hXN is
the so-called fill distance

hXN = sup
x∈Ω

(
min

xk∈XN

‖x − xk‖2

)
,

and every x ∈ Ω, we can find real numbers vk(x), k = 1, . . . ,N, such that
∑N

k=1 vk (x) p (xk) = p (x), for all p ∈ ΠM
L−1,∑N

k=1 |vk (x) | ≤ C1, and vk (x) = 0 provided that ‖x − xk‖2 ≥ C2hXN .

To formulate error bounds, we also need to define the space Ck
ν(RM) of all functions f ∈ Ck whose derivatives

of order |µ| = k satisfy Dµ f (x) = O
(
||x||ν2

)
for ||x||2 −→ 0. We are now able to give the following generic estimate

(cf. [26, Th. 11.11, p. 181]). Such statement will be given for strictly positive definite functions, but it also holds for
the more general case of conditionally positive definite functions. However, in that case we would only have a native
space semi-norm.

Theorem 2.2. Suppose φ ∈ Cν
k(RM) is strictly positive definite and f ∈ NΦ(Ω). Moreover, suppose that Ω ⊆ RM is

bounded and satisfies an interior cone condition with constants θ and γ. For µ ∈ NM
0 , with |µ| ≤ k/2 and XN = {xi, i =

2

1, . . . ,N} ⊆ Ω satisfying hXN ≤ h0, there exists a constant C independent of hXN and depending on M, k, θ and φ, such
that

||Dµ f − DµP||L∞(Ω) ≤ Ch(k+ν)/2−|µ|
XN

|| f ||NΦ(Ω),

where h0 = γ/C2, with C2 from Theorem 2.1.

3. Rational RBF interpolation

In order to introduce the rational RBF interpolation, we need to remark the main features of univariate rational
polynomial approximation. Let p1 and p2 two univariate polynomials of degrees m and n respectively, the rational
approximant of degree m + n is given by

t(x) =
p1(x)
p2(x)

=
amxm + · · · + a0x0

xn + · · · + b0
.

Note that the polynomial p2 is monic and in this way, we reduce to m + n + 1 unknowns. We remark that, to solve
such problem, one can use Padé [22] or least square approximation.

3.1. General framework
It is well-known that the rational approximation is more robust than the standard polynomial interpolation for

functions characterized by steep gradients. However, it is a mesh-dependent approach and, as a consequence, extend-
ing polynomial approximation in higher dimensions is quite hard (refer e.g. to [17]). This is the main reason for which
we focus on RBFs as basis functions. Indeed, they take advantage of being easy to implement in higher dimensions.

Let us fix the integers m,n, k and j such that m, n ≤ N, 1 ≤ k ≤ N + m − 1 and 1 ≤ j ≤ N + n − 1. Letting
Xm = {xi, i = k, . . . , k + m − 1} and Xn = {xi, i = j, . . . , j + n − 1} two non-empty subsets of XN ⊆ Ω, with Ω ⊆ RM , a
natural extension of the RBF approximation to the rational case is

R(x) =
P(1)(x)
P(2)(x)

=

∑k+m−1
i1=k αi1Φ(x, xi1)∑ j+n−1
i2= j βi2Φ(x, xi2)

, (2)

provided P(2)(x) , 0, x ∈ Ω. Numerically, we observed that this is in practice not so restrictive, but from now on
we will always assume that the denominator of (2) is different from zero. Moreover, note that taking sequentially the
points on Xm and Xn is not limiting, in fact we can trivially re-order the nodes.

To solve the rational problem in this general framework, we need to determine n + m coefficients. Of course if
m + n < N, we can find a least square approximation, as for the polynomial case. However, we are interested in
interpolation and so we suppose m + n ≥ N. The reason why we also allow m + n > N (as in [18]) will be clarified in
the next subsection and will enable us to overcome the problem that the rational expansion defined above is obviously
non-unique (see also [25]). To point out this fact we consider a very simple example which is also devoted to show
the robustness of rational RBF in case of functions with discontinuities or steep gradients.

Let us take a set of N = 26 univariate scattered data on Ω = [0, 1] sampled from the constant function f (x1) = 1.
Let us fix Xm = {xi, i = 1, . . . ,m} ≡ Xn, with m = n = 13. It is evident that imposing the interpolation conditions

R(xi) =
P(1)(xi)
P(2)(xi)

= fi, i = 1, . . . ,N, (3)

leads to a squared and homogeneous system of equations Bξ = 0, where ξ = (α,β)T , 0 ∈ RN is the null vector and
B ∈ RN×N is from (3). Since the function f is constant, the matrix B is singular. Thus, we have infinite solutions.
Among them, as usually done in literature, we look for the one satisfying the constraint ||ξ||2 = 1. In this way, the
unique solution is given by [15]

min
ξ∈RN ,||ξ||2=1

||Bξ||2. (4)

In Figure 1 (left) we plot the function reconstructed via rational RBF by solving (4) and the one found out with
the classical RBF interpolation. Moreover, note that the method described by equation (4) could be used to obtain

3

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

4

Figure 1: The black dots represent the set of scattered data, the red solid line and the blue dotted one are the curves reconstructed via the rational
and classical RBF approximation, respectively.

non-trivial least square approximate solutions when the matrix is non-singular (which of course is not a solution).
This is the case, for instance, of the piecewise constant function considered in Figure 1 (right) for which we take
Xm = {xi, i = 1, . . . ,m} and Xn = {xi, i = m + 1, . . . ,N}, with m = 13.

From this first example, the fact that the rational RBF approximation enables us to better reconstruct functions
with steep gradients or discontinuities turns out to be evident. This is also due to the use of VSKs, a tool that will
be later introduced. However, it is also evident that the considered problem is not well-posed. Therefore, in the next
subsection, following [18], we add further constraints to the interpolation conditions so that we can make P(1) and P(2)

unique.

3.2. Well-posed problems
To deal with well-posed problems, according to [18], we impose extra constraints. In doing so, we focus on the

case for which m = n = N. In this case the rational interpolant can be rewritten as

R(x) =
P(1)(x)
P(2)(x)

=

∑N
i=1 αiΦ(x, xi)∑N
k=1 βkΦ(x, xk)

, (5)

Imposing the interpolation conditions would lead to solve (A − DA)ξ = 0, where D = diag(f1, . . . , fN) and A is the
standard kernel matrix. It is easy to see that the system is underdetermined and so we add extra conditions. In practice,
to have a well-posed problem, one way is to find out a vector q = (P(2)(x1), . . . , P(2)(xN))T so that we can construct
its relative RBF interpolant P(2) in the standard way. Once we have q, we then define P(1) such that it interpolates the
function values p = Dq. In other words, if we assume that p and q are given, to compute the rational interpolant, we
need to solve

Aα = p, and Aβ = q. (6)

The existence and uniqueness of the solutions of (6) trivially follows from the fact that the kernel we consider is
strictly positive definite. Thus, the problem now turns to the one of determining the vectors p and q. To this aim, first
note that it is reasonable to select P(1) and P(2) such that the sum of their native space norms, relative to the size of
their values, is as small as possible. Following [18] this leads to find

min
P(1),P(2)∈NΦ(Ω),

1/|| f ||22 ||p||
2
2+||q||22=1,

P(1)(xk)= fk P(2)(xk).

 1
|| f ||22
||P(1)||2NΦ(Ω) + ||P(2)||2NΦ(Ω)

 . (7)

Note that the so-constructed method is not able to handle the case where f is zero at some data sites. Indeed in this
case 1/|| f ||22 would be infinite. Nevertheless, one can trivially overcome such problem.

4

Then, taking into account (6) and the symmetry of the kernel matrix, the native space norms can be computed as

||P(1)||2NΦ(Ω) = pT A−1 p, and ||P(2)||2NΦ(Ω) = qT A−1q.

Therefore, the problem (7) reduces to solve

min
q∈RN ,

1/|| f ||22 ||Dq||22+||q||22=1.

 1
|| f ||22

qT DT A−1Dq + qT A−1q
 .

This is equivalent to find the eigenvector q associated to the smallest eigenvalue of the generalized eigenvalue problem
Λq = λΘq, with [18, 23]

Λ =
1
|| f ||22

DT A−1D + A−1, and Θ =
1
|| f ||22

DT D + IN ,

where IN is the N × N identity matrix. Then, we simply define P(1) and P(2) as standard RBF interpolants of p and q,
respectively. In other words, taking into account the fact that P(2)(xi) = qi, i = 1, . . . ,N, the rational approximant can
be rewritten as

R(x) =
∑N

i=1 αi
Φ(x, xi)∑N

k=1 βkΦ(x, xk)
=

∑N
i=1 αi

Φ(x, xi) qi∑N
k=1 βkΦ(x, xk)

∑N
k=1 βkΦ(xi, xk)

,

:=
∑N

i=1 α̃i
Φ(x, xi)∑N

k=1 βkΦ(x, xk)
∑N

k=1 βkΦ(xi, xk)
:=

∑N
i=1 α̃iΦR(x, xi),

where ΦR is strictly positive definite, provided so is Φ and P(2)(x) , 0, x ∈ Ω (see [1, 9] for further details). The
formulation given above is not practical for implementation purposes. Nevertheless, it points out that R shows strong
similarities with the rescaled interpolant given in [9]. Indeed, as evident, R is rescaled. At the same time, the rescaled
interpolant, based on constructing P(2)(x) such that it interpolates a constant function, can be seen as a particular case
of the method here propose. Finally, note that in this paper we assume P(2)(x) , 0, x ∈ Ω. If it does not hold, it is
sufficient to impose the following constraints for the minimization problem: qi > 0, i = 1, . . . ,N. Once we have such
function values, we can use the method proposed in [10] to obtain a positive approximant.

In practice, to construct the rational interpolant, we only need to solve (6) and evaluate (5). This implies that we
construct a rational RBF interpolant by means of the standard RBF interpolation matrix A. This enables us to give
error bounds. In particular, one could extend Theorem 2.2. This technique will be used in the next section to bound
the error via the PU interpolant. Here instead we investigate an error bound expressed in terms of the so-called power
function PΦ,XN (x). To this aim we need to think of p and q as the values obtained by sampling some functions p and
q ∈ NΦ(Ω).

Proposition 3.1. Let Ω ⊆ RM , Φ ∈ C(Ω × Ω) be a strictly positive definite kernel and suppose that the points
XN = {xi, i = 1, . . . ,N} ⊆ Ω are distinct. Moreover, let us suppose that p and q ∈ NΦ(Ω), then

| f (x) −R (x) | ≤
1

|P(2)(x)|
(| f (x)|||q||NΦ(Ω) + ||p||NΦ(Ω))PΦ,XN (x), x ∈ Ω.

Proof 3.1. Let us consider x ∈ Ω, then | f (x) −R(x)| = |(P(2)(x) f (x) − q(x) f (x)) + (q(x) f (x) − P(1)(x))|/|P(2)(x)|. For
a function g ∈ NΦ(Ω) we have |g (x) − P (x) | ≤ PΦ,XN (x)||g||NΦ(Ω), x ∈ Ω (see e.g. [13, Th. 14.2, p.117]). Therefore,∣∣∣q(x) − P(2)(x)

∣∣∣ ≤ PΦ,XN (x)||q||NΦ(Ω).

Moreover, taking into account how p and q are related, we obtain

| f (x) −R(x)| ≤
1

|P(2)(x)|
(
| f (x)|||q||NΦ(Ω) + ||p||NΦ(Ω)

)
PΦ,XN (x).

5

Remark 3.1. Proposition 3.1 enables us to study pointwise error in terms of the power function. Thus, also for the
rational RBF expansion we recover a bound split into two components. The former depends on the kernel Φ via the
native space norm and the latter only depends on the data sites. Later, for the PU interpolant we will see that we can
refine the error bound by expressing the influence of the data locations in terms of the fill distance and it should be
clear that this can be used for the global case too.

The main drawback of the method described in this section is the computational cost due to solving potentially
large systems. For instance, when we deal with real applications, we often need to interpolate huge data sets and in
those cases the computational cost is prohibitive. This is the main reason for which we direct our research towards the
PU method.

4. Rational RBF-PU interpolation

The basic idea of the PU method consists in decomposing the original reconstruction domain into many subdo-
mains. Then, for each patch we solve local interpolation problems of small sizes.

At first, we cover the domain Ω with d overlapping subdomains Ω j. The overlap must be sufficient so that each
point x ∈ Ω is located in the interior of at least one subdomain Ω j. To be more precise, we require a regular covering,
i.e. {Ω j}

d
j=1 must fulfil the following properties [27]:

i. for each x ∈ Ω, the number of subdomains Ω j, with x ∈ Ω j, is bounded by a global constant d0,

ii. the local fill distances hXN j
are uniformly bounded by the global fill distance hXN , where XN j = XN ∩Ω j.

iii. there exists Cr > C2 such that each subdomain Ω j satisfies an interior cone condition with angle θ̃ ∈ (0, π/2)
and radius γ̃ = CrhXN .

Note that, the first assumption plays a crucial role also in the implementation of the PU method. In fact, such
property leads to the requirement that the number of subdomains is proportional to the number of data [27].

Moreover, we need to select a family of d continuous and non-negative weight functions W j which form a partition
of unity and such that supp(W j) ⊆ Ω j. For instance, such conditions are fulfilled by the so-called Shepard’s weights
(see e.g. [13]). Then, the rational RBF-PU interpolant assumes the form

I (x) =

d∑
j=1

R j (x) W j (x) , x ∈ Ω,

where R j denotes a rational RBF interpolant defined on a subdomain Ω j. Therefore, it assumes the form

R j(x) =
P(1)

j (x)

P(2)
j (x)

=

∑N j

i=1 α
j
i Φ(x, x j

i)∑N j

k=1 β
j
kΦ(x, x j

k)
,

where N j indicates the number of points on Ω j and x j
k ∈ XN j , with k = 1, . . . ,N j.

Thus, for each patch Ω j we define q j as the eigenvector associated to the smallest eigenvalue of the problem
Λ jq j = λ jΘ jq j, with

Λ j =
1
|| f j||

2
2

DT
j A−1

j D j + A−1
j , and Θ j =

1
|| f j||

2
2

DT
j D j + IN j ,

where f j = (f j
1 , . . . , f j

N)T are the local function values, D j = diag(f j
1 , . . . , f j

N) and A j is the standard local kernel
matrix. Once pj and q j are found out for each patch Ω j, the coefficients α j and β j are defined by solving the two
linear systems A jα j = pj and A jβ j = q j.

Remark 4.1. The PU subdomains have some mild overlap among them and thus a point, let us say xk, could belong
to more than one patch. Let us suppose that xk belongs to Ωl and Ωm. On one hand, we might have P(1)

l (xk) , P(1)
m (xk)

and P(2)
l (xk) , P(2)

m (xk), but on the other one we obtain that Rl(xk) = Rm(xk), making the problem consistent.

6

According to [27], several further requirements on the PU weights are needed. In particular, the functions W j,
j = 1, . . . , d, must form a k-stable partition of unity. Such assumption is essential to prove the convergence theorem
for a general derivative of order |µ| = k of the classical PU interpolant (see [26] Th. 15.19, p. 277 and [27]). For the
rational approximant, we have the following error bound.

Proposition 4.1. Suppose φ ∈ Cν
k(RM) is strictly positive definite. Let XN = {xi, i = 1, . . . ,N} ⊆ Ω. Let {Ω j}

d
j=1

be a regular covering for (Ω,XN) and W j, j = 1, . . . , d, a family of continuous and non-negative functions which
form a partition of unity and such that supp(W j) ⊆ Ω j. Then, there exists an index t ∈ {1, . . . , d} and a constant C∗,
independent of hXN , and depending on M, k, θ̃ and φ such that, if pt and qt ∈ NΦ(Ωt), for all x ∈ Ω we have:

| f (x) − I (x) | ≤
1∣∣∣P(2)

t (x)
∣∣∣C∗h(k+ν)/2

XN
(| f|Ωt (x)|||qt ||NΦ(Ωt) + ||pt ||NΦ(Ωt)),

provided that XNt = {xi, i = 1, . . . ,Nt} ⊆ Ωt satisfies hXNt
≤ h0, with h0 = γ̃/Ct

2 and Ct
2 is from Theorem 2.1 applied to

the local setting. We denote by f|Ωt the restriction of f on Ωt.

Proof 4.1. Since W j j = 1, . . . , d, are a family of continuous and non-negative functions which form a partition of
unity and such that supp(W j) ⊆ Ω j, we obtain

| f (x) − I (x) | ≤
d∑

j=1

W j(x)| f (x) −R j (x) | ≤ max
j=1,...,d

|| f (x) −R j (x) ||L∞(Ω j) := || f|Ωt (x) −Rt (x) ||L∞(Ωt).

Furthermore, we can apply Theorem 2.2 to the local setting. Indeed, since we require a regular covering, we know
that each subdomain fulfills an interior cone condition. IfXNt = {xi, i = 1, . . . ,Nt} ⊆ Ωt satisfies hXNt

≤ h0, taking into
account Theorem 2.2 and the argument used in the proof of Proposition 3.1, there exists a constant C∗, independent
of hXNt

, and depending on M, k, θ̃ and φ such that

|| f|Ωt (x) −Rt (x) ||L∞(Ωt) ≤
1∣∣∣P(2)

t (x)
∣∣∣C∗h(k+ν)/2

XN
(| f|Ωt (x)|||qt ||NΦ(Ωt) + ||pt ||NΦ(Ωt)).

Remark 4.2. If we compare the result reported in Proposition 4.1 with the error estimate shown in Theorem 2.2, we
can see that the rational PU interpolant preserves the local approximation order. This will be empirically verified in
the next section where we estimate the convergence rates.

Finally we point out that, as for the standard RBF interpolant, the rational one might suffer from instability
problems, especially for small values of the shape parameter. Thus, we carry out a stable computation via VSKs.

5. Stability issues

Also for rational interpolation the selection of the shape parameter ε is a tedious computational issue. Indeed,
wrong choices of the shape parameter might lead to serious problems of ill-conditioning, especially for smooth RBFs.

Therefore, the choice of the shape parameter is crucial and can be selected such that it is optimal (for a general
overview see [13]). However, selecting its optimal value is usually expensive and moreover, all the techniques based
on a priori error estimates only give an approximated optimal value; meaning that such value is close to the one that
can be found via trials provided that the solution is known.

Alternatively, one can use stable approximations of the solution. For the Gaussian kernel there are well-established
tools, such as RBF-QR and Hilbert-Schmidt Singular Value Decomposition (HS-SVD) methods, that allow to over-
come the instability issues. Refer to [12, 14] for further details on these techniques. Finally, we remark that there are
also two other classes of stable methods, namely the Weighted SVD (WSVD) [5, 8] and the VSKs [4] that properly
work with any RBF.

Here, we propose a stable method for the solution of the rational RBF problem via VSKs. The idea is from [4]
and will be reviewed in what follows. The VSKs allow to vary the scales in a continuous way by letting the scale
parameter be an additional coordinate. According to this, we give the following (cf. [4, Def. 2.1]).

7

Definition 5.1. Let ψ : RM → (0,∞) be a given scale function. A Variably Scaled Kernel (VSK) Kψ on RM is

Kψ(x, y) := K((x, ψ(x)), (y, ψ(y))), ∀x, y ∈ RM .

where K is a kernel on RM+1.

In particular the rational PU interpolant that makes use of VSKs (RVSK-PU) can be defined as follows.

Definition 5.2. Given the set XN = {xi, i = 1, . . .N} on Ω and the scale functions ψ j : RM → (0,∞), j = 1, . . . , d,
the RVSK-PU interpolant is

Iψ (x) =

d∑
j=1

Rψ j (x) W j (x) , x ∈ Ω, (8)

with

Rψ j (x) =

∑N j

i=1 α
ψ j

i K((x, ψ j(x)), (x j
i , ψ j(x j

i)))∑N j

k=1 β
ψ j

k K((x, ψ j(x)), (x j
k, ψ j(x j

k)))
, x ∈ Ω j, (9)

In Definition 5.2, the coefficients αψ j and βψ j
are found out at first by solving the eigenvalue problem

Λψ j qψ j
= λψ jΘ jqψ j

, (10)

where
Λψ j =

1
|| f j||

2
2

DT
j A−1

ψ j
D j + A−1

ψ j
, (11)

and Aψ j is constructed via (9). Then, we simply need to solve the two linear systems

Aψ jαψ j = pψ j
, and Aψ jβψ j

= qψ j
. (12)

Furthermore, from [4] we know that if the VSKK is radial then the entries of the associated kernel matrix Aψ j are
given by

(Aψ j)ik = φ
((
||x j

i − x j
k ||

2
2 + (ψ j(x j

i) − ψ j(x j
k))2

)1/2
)
, i, k = 1, . . . ,N j. (13)

Remark 5.1. From (13), the fact that the well-known separation distance (see e.g. [13]) never decreases easily
follows. This allows to partially overcome problems due to instability. Indeed, the ill-conditioning grows primarily
due to the decrease of the separation distance and not necessarily due to the increase of the number of data points.
However, also the fill distance, which from Proposition 2.2 we know that it is a measure of the error, grows. In fact,
the rational VSK interpolation by the kernel K takes place on RM+1. So the analysis of error and stability of the
variably-scale problem on RM coincides with the analysis of a fixed-scale problem on a submanifold in RM+1.

6. Computational issues

This section is devoted to summarize the RVSK-PU algorithm and to point out the computational aspects.

Step 1: Construction of the PU framework
In the PU setting, at first we need to define the set of evaluation points Es = {x̄i, i = 1, . . . , s} ⊆ Ω and the set

of PU centres Cd = {x̃i, j = 1, . . . , d} ⊆ Ω. Both these sets are constructed as grids of points on Ω. Furthermore, in
Section 4, we require that the subdomains Ω j, j = 1, . . . , d, form an open, bounded and regular covering for Ω. In
what follows, as subdomains we take balls of a certain radius δ. In particular, we know that the number of patches d
should be proportional to N and a suitable choice is given by N/d ≈ 2M [13].

Also the PU radius δ must be carefully chosen. In fact, the patches must be a covering of the domain Ω and
must satisfy the overlap condition. A possible choice that fulfills the above requirements is given by: δ ≥ δ0, with
δ0 = (1/d)1/M .

8

Once the PU subdomains are generated, the whole problem reduces to solving for each patch a local rational in-
terpolation problem. Specifically, for the j-th local interpolation problem, only those data sites and evaluation points
belonging to Ω j are involved. Consequently, a partitioning data structure and a related searching procedure must be
employed to efficiently find for each subdomain the set of nodes XN j and the one of evaluation points Es j lying on Ω j.
To this end, we perform the so called integer-based data structure outlined in [7].

Step 2: Construction of the VSKs local distance matrices
After organizing both data sites and evaluation points, on a given Ω j we define a scale function ψ j and compute

the local matrices Λψ j and Θ j (see (10)–(11)), where Aψ j is obtained by means of VSKs. In this way we are able to
overcome the instability problems. Then, to compute local rational fits, i.e. rational interpolants on each subdomain,
we need to solve the eigenvalue problem outlined in (10).

Step 3: Construction of the local fit
To solve the eigenvalue problem, a number of iterative procedures have been developed to compute a few eigen-

pairs of a large and sparse symmetric positive definite matrix, or to solve the partial generalized symmetric eigenvalue
problem on Ω j defined as in (10). One of the most widely used algorithms is the Implicitly Restarted Lanczos method
(IRLM). Here instead, we consider the DACG [3]. All these methods are iterative, in the sense that they compute one
or more eigenpairs by constructing a sequence of vectors which approximate the exact solution. However, the DACG
has been shown to be highly competitive with the Lanczos method [20] when a small number of eigenpairs are being
sought. As numerical evidence will confirm, in this case, it leads to a meaningful saving of computational time. The
DACG sequentially computes on Ω j the eigenpairs by minimizing the Rayleigh quotient Q(z j) = zT

j Λψ j z j/zT
j Θ j z j,

z j ∈ RN j , over the subspace orthogonal to the eigenvectors previously computed.
Given a positive definite matrix S , it calculates the eigenvalues sequentially, starting from the smallest one [2, 3],

by a nonlinear Conjugate Gradient minimization of the Rayleigh quotient over a subspace orthogonal to the previously
computed eigenvectors. Like Preconditioned Conjugate Gradient (PGD) for linear systems, also DACG takes advan-
tage of preconditioning. The best results in terms of convergence are obtained when the preconditioner is S −1. In such
case the number of DACG iterations are found to be inversely proportional to the square root of the relative separation
between consecutive eigenvalues. Similar convergence rates (and a more cost-effective algorithm) are obtained using
the inverse of the Cholesky factorization as preconditioner. In any case, when two eigenvalues are relatively very
close, DACG convergence may be very slow.

The extension of DACG to the generalized eigenproblem defined in (10) is straighforward. In this case, being both
matrices strictly positive definite, the algorithm returns a set of Θ j-orthonormal vectors approximating the leftmost
eigenvectors of the matrix pencil (Λψ j ,Θ j).

Step 4: Construction of the RVSK-PU
Finally, when qψ j

and pψ j
are computed, we need to solve the two linear systems (12). Then, by means of the PU

weights, the local fits are accumulated into the global rational interpolant Iψ (8).

7. Numerical experiments

The experiments have been carried out with Matlab on a Intel(R) Core(TM) i7 CPU 4712MQ 2.13 GHz processor.
The codes are available at http://www.math.unipd.it/~demarchi/RBF/CAARBF.html.

In this section we fix M = 2 and Ω = [0, 1]2. However, we point out that any extension to non-trivial domains is
possible and straightforward. In the numerical results we use two kinds of data sets: Halton [16] and Non-Conformal
points [11]. The former are quasi-uniform, while the latter are clustered in certain regions and therefore the interpola-
tion problem is particularly challenging.

To test the accuracy of the RVSK-PU method, we take the following oscillating functions with steep gradients

f1(x1, x2) =
tan[9(x2 − x1) + 1]

tan 9 + 1
, f2(x1, x2) = (x1 + x2 − 1)7,

and
f3(x1, x2) = sin(3x2

1 + 6x2
2) − sin(2x2

1 + 4x2 − 0.5).

9

The RBFs considered in the examples are the Gaussian, the Inverse MultiQuadric (IMQ), the Wendland’s C2 and the
Matérn C2 functions, whose formulae respectively are

φ1(r) = e−ε
2r2
, φ2(r) =

1√
1 + (εr)2

, φ3(r) = (1 − εr)4
+(4εr + 1), and φ4(r) = e−εr(εr + 1).

where r is the Euclidean distance, ε is the shape parameter and (·)+ denotes the truncated power function. The
interpolants are evaluated on a grid of s = 40 × 40 points Es = {x̄i, i = 1, . . . , s}. To point out the accuracy of the
RVSK-PU, we refer to the Root Mean Square Error (RMSE) or to the Relative RMSE (RRMSE):

RMSE =

√√
1
s

s∑
i=1

| f (x̄i) − Iψ(x̄i)|2, RRMSE =

√√
1
s

s∑
i=1

| f (x̄i) − Iψ(x̄i)|2

f (x̄i)2 .

We also estimate the empirical convergence rate via the formula:

λk =
log(RMSEk−1/RMSEk)

log(hk−1/hk)
, k = 2, 3, . . .

where RMSEk is the error for the k-th numerical experiment and hk is the fill distance of the k-th computational mesh.
Furthermore, we evaluate the Maximum Condition Number (MCN) of the local matrices.

Remark 7.1. Using VSKs can lead to small perturbation on the fill distances. Indeed, the original points are es-
sentially mapped throughout the scale function. However, since we compare the RVSK-PU with other methods, it is
reasonable to approximate the convergence rates with the fill distances of the original data sets.

The RVSK-PU is applied with circular patches defined in Section 6. Furthermore, for a given Ω j, we consider the
following scale function

ψ(1)
j (x1, x2) = 0.5 +

√
r2 − [(x1 − x̃1 j)2 + (x2 − x̃2 j)2], (14)

with x = (x1, x2) ∈ Ω j. This choice is quite natural; indeed given circular patches, we map them on a semisphere
of radius r. In what follows we fix r = 3. In general, since the aim consists in increasing the separation distance to
improve the stability, small values for r are not recommended. Furthermore, note that for CSRBFs, the scale function
enables us to control the sparsity of the interpolation matrix. For instance, let us consider the following scale function
on Ω j

ψ(2)
j (x1, x2) = u

√
x2

1 + x2
2, (15)

where u is the scale factor and x = (x1, x2) ∈ Ω j. If we take u = 1, then the sparsity of the interpolation matrix will
coincide with that of the standard one found out with the support of the CSRBF equal to 1. Thus, the sparsity of the
interpolation matrix grows with u. In the numerical experiments that follow we take u = 9. Moreover, we point out
that for a standard CSRBF interpolant, as the support of the function becomes smaller, the sparsity of the interpolation
matrix increases, but the accuracy of the fit usually gets worse. On the opposite, the scale via VSKs enables us to
construct moderately sparse matrices and to maintain a good accuracy.

The generalized eigenvalue problem (10) is solved by means of the DACG method. To stop the DACG iteration
on a given subdomain Ω j, we use the following exit test: wk/w0 ≤ τDACG, with wk = ‖Λψ j zk

j − Q(zk
j)Θ j zk

j‖/‖z
k
j‖Θ j ,

where k identifies the iteration number of DACG. It allows the iteration to proceed until the initial eigenresidual norm
has been reduced by a factor τDACG. All the results included in this section have been obtained using τDACG = 10−2.
Decreasing the value of parameter τDACG does not produce a reduction of the RMSE. The DACG method has been
preconditioned by matrix Aψ j , which can be thought as a good approximation of Λ−1

ψ j
(see (11)). For the same reason,

we compute a suitable starting vector for the DACG method by performing a few (very cheap) iterations of the power
method to approximate the largest eigenvalue of Aψ j . Roughly speaking, we will show that with the DACG algorithm
we are able to obtain approximations that are really close to the ones that can be found with the IRLM routine, but
with a meaningful saving in term of computational time. We remark that the IRLM is implemented in Matlab by the
function eigs (see also ARPACK [21]).

10

7.1. Tests with globally defined RBFs

As first example we take several sets of Halton data and the test function f1. We compare the standard PU method,
which in what follows is denoted by SRBF-PU, with the RVSK-PU interpolant. For both methods we fix the radius
of patches δ = δ0. The RMSEs, MCNs and empirical convergence rates, obtained with the Gaussian kernel and the
scale function (14), are reported in Table 1. The shape parameter for the standard PU has been selected so that the
MCN is comparable to the one that is found out with the RVSK-PU scheme. As expected, the RVSK-PU gives more
accurate approximations when the conditioning grows, enhancing the stability of the method. Finally, the surfaces
reconstructed with the SRBF-PU and RVSK-PU are plotted in Figure 2.

The accuracy of the RVSK-PU method is also confirmed by the estimated convergence rates. However, it is
difficult to deal with the spectral convergence predicted for infinitely smooth kernels, which is usually visible for a
limited number of experiments [13]. We can see that the convergence rates of the two methods are comparable, but
the RVSK-PU saturates faster. In other words, we observe in some sense a kind of trade-off; precisely, the rational
approach enables us to improve the accuracy, especially for functions with steep gradients and also for data sets of
relatively small size, but saturates for data sets that are only moderately large.

N h Method ε RMSE MCN λ

1089 3.93E − 02 SRBF-PU 2 4.03E − 02 6.58E + 19 –
RVSK-PU – 1.39E − 04 1.04E + 20 –

4225 2.91E − 02 SRBF-PU 3 5.48E − 04 2.41E + 21 14.3
RVSK-PU – 6.04E − 06 7.61E + 21 10.4

16641 1.03E − 02 SRBF-PU 4 3.46E − 05 2.75E + 23 2.65
RVSK-PU – 6.97E − 07 4.67E + 21 2.07

66049 4.93E − 03 SRBF-PU 5 1.22E − 06 5.60E + 22 4.53
RVSK-PU – 2.76E − 07 3.09E + 22 1.25

Table 1: Fill distances, RMSEs, MCNs and convergence rates computed on Halton points. Results are obtained using f1 as test function and the
Gaussian C∞ kernel as local approximant.

Figure 2: The approximate surface f1 obtained with the SRBF-PU (left) and RVSK-PU (right) methods with N = 1089 Halton data. Results are
computed using the Gaussian C∞ kernel as local approximant.

For this example, we also compare the RMSEs and CPU times of the RVSK-PU computed without the DACG
algorithm, i.e. the RVSK-PU implemented with the IRLM scheme. This test is devoted to show that by means of

11

the DACG algorithm, RVSK-PU performs with about the same CPU times of the standard PU, while the RVSK-PU
implemented with the IRLM method is slower; see Figure 3 (left).

DACG revealed superior to the IRLM scheme on all test cases. This is mainly due to the fact that, differently from
IRLM, DACG does not require any linear system solution, but only matrix vector products with the matrices Λψ j and
Θ j. In this way these matrices are never formed explicitly inside the Matlab code, and its product times a vector is
done by means of suitable function handles. Besides, the IRLM is penalized by the need of constructing a projection
subspace even in the case the number of eigenpairs sought is equal to one. Further, we also compare the RMSE of
the two different implementation of the RVSK-PU, to point out that the two different approaches (DACG and IRLM)
are comparable from the point of view of the accuracy, refer to Figure 3 (right). In view of these results, in what
follows we omit the comparison between the two different implementation of the RVSK-PU. Indeed, similar results
also hold for the following tests and, because of the saving in terms of computational time, we will always use the
DACG method.

0 1 2 3 4 5 6 7

x 10
4

0

5

10

15

20

25

30

N

C
P

U

SRBF−PU

RVSK−PU (no DACG)

RVSK−PU

0 1 2 3 4 5 6 7

x 10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

N

R
M

S
E

SRBF−PU

RVSK−PU (no DACG)

RVSK−PU

Figure 3: Left: the number of points N versus the CPU times for the SRBF-PU, RVSK-PU and RVSK-PU (no DACG), i.e. the RVSK-PU computed
with the IRLM scheme. Right: the number of points N versus the logarithmic scale of the RMSE for the SRBF-PU, RVSK-PU and RVSK-PU (no
DACG).

For the second test we take Non-Conformal points and the test function f2. Again, we compare the classical PU
method with the RVSK-PU. For the latter we select the optimal PU radius as in [7], while for the classical PU the radius
is selected so that the Average of Points (AP) per patch is about the same than the one of the RVSK-PU approach.
The results obtained with the IMQ kernel and the scale function (14) are reported in Table 2. We also point out that,
from numerical experiments here omitted, the choice of the shape parameter for the SRBF-PU does not improve the
accuracy of the approximation; meaning that for the considered points and test function the approximation obtained
with this method is not performing. On the opposite, the RVSK-PU gives truly accurate approximations. This is also
evident from Figure 4, where we can see that it is more robust in approximating the function where the gradient is
more steep.

Concerning the convergence rates, for the RVSK-PU we recover the same pattern of the previous example. On the
contrary, with this kind of data, the SRBF-PU method leads to negative convergence rates, meaning that it completely
fails.

7.2. Tests with compactly supported RBFs

For the last example we consider noisy Halton data (0.01 noise) and the test function f3. For both the SRBF-PU
and RVSK-PU methods we select d = 16 subdomains (fixed for all the data sets) and the radius of patches equal
to δ0. This choice follows from the fact that we want to take advantage of using compactly supported functions,
allowing the construction of sparse interpolation matrices. We will refer to the Average Density (AD) of the matrices,
which represents an average of the number of non-zero entries of the local matrices. In this experiment we take the

12

Figure 4: The approximate surface f2 obtained with the SRBF-PU (left) and RVSK-PU (right) methods with N = 1089 Non-Conformal points.
Results are computed using the IMQ C∞ kernel as local approximant.

Wendland’s C2 kernel. Therefore, we carry out a comparison with the rescaled method proposed in [9], which is
well-known to be truly performing when CSRBFs are used. Such method will be denoted by RSRBF-PU.

The results obtained with the scale function (15) are reported in Table 3. The shape parameter for the RSRBF-PU
method is selected such that the related RMSEs are comparable with the ones of the RVSK-PU. In this case, about
with the same accuracy, the RVSK-PU increases the sparsity of the matrices. If we instead choose the shape parameter
for the RSRBF-PU so that the average densities of the considered approaches are comparable, then the approximations
via the RSRBF-PU method are not satisfying.

7.3. Tests with real data

In this subsection we focus on an application to Earth’s topography. The data set we consider is called Monte-
belluna data. The points describe the homonymous municipality in Province of Treviso and surrounding areas, such
as Valdobbiadene. They can be downloaded at http://idt.regione.veneto.it/app/metacatalog/, where the
geographic data of Veneto Region are available. The data set consists of 62677 grid data and among them we take
2726 points to test the accuracy via cross-validation, only taking the remaining 59951 for the interpolation. For a 3D
view refer to Figure 5 (left).

To reconstruct the surface described by these data, we consider the RVSK-PU method with the Matérn C2 function.
In Figure 5 (right), we show the so-reconstructed surface (RRMSE = 2.11E − 02). In this case we do not report the

N h Method ε RMSE AP λ

1089 1.27E − 01 SRBF-PU 4 3.94E − 02 58 –
RVSK-PU – 1.32E − 04 59 –

4225 7.63E − 02 SRBF-PU 4 3.32E − 02 63 0.33
RVSK-PU – 2.76E − 06 63 7.59

16641 5.93E − 02 SRBF-PU 4 5.15E − 02 68 −1.74
RVSK-PU – 1.65E − 06 69 2.26

66049 3.62E − 02 SRBF-PU 4 5.70E − 02 62 −0.20
RVSK-PU – 2.93E − 07 62 3.38

Table 2: Fill distances, RMSEs, APs and convergence rates computed on Halton points. Results are obtained using f2 as test function and the IMQ
C∞ kernel as local approximant.

13

errors obtained via the classical PU method since it fails.

Figure 5: The 3D view of the Montebelluna (left) data. The surface reconstructed via the RVSK-PU (right) method.

8. Conclusions

In this paper we have presented a fast algorithm for the PU method which makes use of rational RBF expansions
as local approximants. Both theoretical investigations and numerical evidence show that it is truly effective compared
to the classical PU scheme. Furthermore, when CSRBFs are used it performs better than the rescaled PU method.

Future work consists in investigating the behavior of the RVSK-PU for interpolating nodes on the sphere [6].
Moreover, the collocation via rational interpolation might be useful to approximate the solution of partial differential
equation, especially for functions with steep gradients and discontinuities.

N h Method ε RMSE AD λ

289 8.17E − 02 RSRBF-PU 2 1.83E − 02 1.00E + 00 –
RSRBF-PU 6 4.60E − 02 5.32E − 01 –
RVSK-PU – 2.57E − 02 5.73E − 01 –

1089 4.43E − 02 RSRBF-PU 2 3.79E − 03 1.00E + 00 2.32
RSRBF-PU 6 9.41E − 03 5.32E − 01 2.34
RVSK-PU – 3.75E − 03 5.04E − 01 2.84

4225 2.93E − 02 RSRBF-PU 2 1.87E − 03 1.00E + 00 1.70
RSRBF-PU 6 4.03E − 03 5.33E − 01 2.05
RVSK-PU – 6.60E − 04 5.76E − 01 4.19

16641 1.30E − 02 RSRBF-PU 2 5.35E − 04 1.00E + 00 1.54
RSRBF-PU 6 1.21E − 03 5.35E − 01 1.35
RVSK-PU – 3.00E − 04 5.76E − 01 0.97

Table 3: Fill distances, RMSEs, ADs and convergence rates computed on noisy Halton points. Results are obtained using f3 as test function and
the Wendland’s C2 kernel to construct local approximant.

14

9. Acknowledgments

This research has been accomplished within Rete ITaliana di Approssimazione (RITA) and partially supported
by the GNCS-INdAM funds 2017. The first author is partially supported by the research project Approximation by
radial basis functions and polynomials: applications to CT, MPI and PDEs on manifolds, No. DOR1695473. The
second author is partially supported by the GNCS project Numerical methods for constrained optimization problems.
The third author is supported by the research project Radial basis functions approximations: stability issues and
applications, No. BIRD167404.

References

[1] N. Aronszajn, Theory of Reproducing Kernels, Trans. Amer. Math. Soc. 68 (1950), pp. 337–404.
[2] L. Bergamaschi, G. Gambolati, G. Pini, Asymptotic convergence of conjugate gradient methods for the partial symmetric eigenproblem,

Numer. Linear Algebra Appl. 4 (1997), pp. 69–84.
[3] L. Bergamaschi, M. Putti, Numerical comparison of iterative eigensolvers for large sparse symmetric matrices, Comp. Methods App. Mech.

Engrg. 191 (2002), pp. 5233–5247.
[4] M. Bozzini, L. Lenarduzzi, M. Rossini, R. Schaback, Interpolation with variably scaled kernels, IMA J. Numer. Anal. 35 (2015), pp. 199–219.
[5] R. Cavoretto, S. DeMarchi, A. De Rossi, E. Perracchione, G. Santin, Partition of unity interpolation using stable kernel-based techniques,

Appl. Numer. Math. 116 (2017), pp. 95–107.
[6] R. Cavoretto, A. De Rossi, Fast and accurate interpolation of large scattered data sets on the sphere, J. Comput. Appl. Math. 234 (2010),

pp. 1505–1521.
[7] R. Cavoretto, A. De Rossi, E. Perracchione, Optimal selection of local approximants in RBF-PU interpolation, to appear on J. Sci. Comput.

(2017).
[8] S. DeMarchi, G. Santin, Fast computation of orthonormal basis for RBF spaces through Krylov space methods, BIT 55 (2015), pp. 949–966.
[9] S. De Marchi, A. Idda, G. Santin, A rescaled method for RBF approximation, Approximation theory XV: San Antonio 2016, pp. 3959,

Springer Proc. Math. Stat., 201, 2017.
[10] A. De Rossi, E. Perracchione, Positive constrained approximation via RBF-based partition of unity method, J. Comput. Appl. Math. 319

(2017), pp. 338–351.
[11] T.A. Driscoll, Algorithm 843: Improvements to the Schwarz-Christoffel toolbox for Matlab, ACM Trans. Math. Softw. 31 (2005), pp.

239–251.
[12] G.E. Fasshauer, M.J. McCourt, Kernel-based Approximation Methods Using Matlab, World Scientific, Singapore, 2015.
[13] G.E. Fasshauer, Meshfree Approximations Methods with Matlab, World Scientific, Singapore, 2007.
[14] B. Fornberg, E. Larsson, N. Flyer, Stable computations with Gaussian radial basis functions, SIAM J. Sci. Comput. 33 (2011), pp. 869–892.
[15] G.H. Golub, C. Reinsch, Singular value decomposition and least squares solutions, Numer. Math. 14 (1970), pp. 403–420.
[16] J.H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math. 2 (1960),

pp. 84–90.
[17] X.G. Hu, T.S. Ho, H. Rabitz, Rational approximation with multidimensional scattered data, Phys. Rev. 65 (2002), pp. 035701-1–035701-4.
[18] S. Jakobsson, B. Andersson, F. Edelvik, Rational radial basis function interpolation with applications to antenna design, J. Comput. Appl.

Math. 233 (2009), pp. 889–904.
[19] R. Lehmensiek, P. Meyer, Creating accurate multivariate rational interpolation models of microwave circuits by using efficient adaptive

sampling to minimize the number of computational electromagnetic analyses, IEEE Trans. Microw. Theory Tech. 49 (2001), pp. 1419–1430.
[20] R.B. Lehoucq, D.C. Sorensen, Deflation techniques for an implicitly restarted Arnoldi iteration, SIAM J. Matrix Anal. Appl. 17 (1996), pp.

789–821.
[21] R.B. Lehoucq, D.C. Sorensen, C.Yang, ARPACK Users Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi

Methods, (1997).
[22] H. Padé, Sur la répresentation approchée d’une fonction par des fractions rationelles, Thesis, Ann. École Nor. 9 (1892), pp. 1–93.
[23] S.A. Sarra, Y. Bay, A rational radial basis function method for accurately resolving discontinuities and steep gradients, preprint, 2017.
[24] R. Schaback, Native Hilbert spaces for radial basis functions I, in: M. D. Buhmann et al. (Eds.), New Developments in Approximation Theory,

Int. Series of Numerical Mathematics 132. Birkh’́auser Verlag 199, pp. 255–282.
[25] J. Stoer, Einführung in die Numerische Mathematik I, Springer-Verlag, 1972.
[26] H. Wendland, Scattered Data Approximation, Cambridge Monogr. Appl. Comput. Math., vol. 17, Cambridge Univ. Press, Cambridge, 2005.
[27] H. Wendland, Fast evaluation of radial basis functions: Methods based on partition of unity, in: C.K. Chui et al. (Eds.), Approximation

Theory X: Wavelets, Splines, and Applications, Vanderbilt Univ. Press, Nashville, 2002, pp. 473–483.

15

