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Abstract. We discuss and compare two greedy algorithms, that compute discrete versions of
Fekete-like points for multivariate compact sets by basic tools of numerical linear algebra. The
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1. Introduction.. Locating good points for multivariate polynomial approxi-
mation, in particular polynomial interpolation, is an open challenging problem, even
in standard domains. One set of points that is always good, in theory, are the so-
called Fekete points. They are defined to be those points that maximize the (absolute
value of the) Vandermonde determinant on the given compact set. However, these
are known analytically in only a few instances (the interval and the complex circle
for univariate interpolation, the cube for tensor product interpolation), and are very
difficult to compute, requiring an expensive and numerically challenging multivariate
optimization.

Recently, a new insight has been given by the theory of “admissible meshes” of
Calvi and Levenberg [15], which are nearly optimal for least-squares approximation
and contain interpolation sets nearly as good as Fekete points of the domain. These
allow us to replace a continuous compact set by a discrete version, that is “just as
good” for all practical purposes.

In some recent papers, a simple and effective greedy algorithm to extract approx-
imate Fekete points from admissible meshes has been studied, and succesfully applied
in various instances, cf. [8, 9, 34, 35]. The algorithm gives an approximate solution to
a nonlinear combinatorial optimization problem (discrete maximization of the Van-
dermonde determinant) using only a basic tool of numerical linear algebra, namely
the QR factorization with column pivoting.

In this paper, we pursue an alternative greedy algorithm for discrete maximization
on (weakly) admissible meshes, i.e., the computation of the so-called Leja points of
the mesh. Following an idea recently proposed by R. Schaback [32], we show that
this algorithm can be easily implemented by another basic tool of linear algebra,
the LU factorization with partial (row) pivoting. We recall that approximate Fekete
points, computed with any basis from a weakly admissible mesh, are asymptotically
equidistributed with respect to the pluripotential-theoretic equilibrium measure of
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the compact set; cf. [8]. Here we prove that the same is true for discrete Leja points
computed with a special class of polynomial bases.

2. Some definitions and notation.. Suppose that X ⊂ Cd is a compact set.
Let P d

n(X) denote the space of polynomials (on Cd) of degree at most n, restricted to
X. We will assume that X is Pd

n-determining, i.e., if p ∈ Pd
n is identically zero on X,

then it is identically zero on Cd.
The following matrix and its determinant will be important. For any ordered set

of points z = {z1, z2, . . . , zk} ∈ Cd and ordered set of polynomials q = {q1, q2, . . . , qm}
on C

d, let

V (z; q) = V (z1, . . . , zk; q1, . . . , qm) := [qj(zi)]1≤i≤k,1≤j≤m ∈ C
k×m (2.1)

denote the associated Vandermonde matrix. The ordering of the sets z and q are
important, giving the ordering of the rows and columns, respectively of the matrix. It
is especially important to note that the rows of this matrix correspond to the points
zi and the columns to the polynomials qj . In particular, selecting a row in the matrix
corresponds to selecting a point in the set z.

In the case when m = k we let

vdm(z;q) = vdm(z1, . . . , zk; q1, . . . , qk) := det (V (z1, . . . , zk; q1, . . . , qk)) (2.2)

denote the determinant of the Vandermonde matrix.
In the following, we adopt the notation:

‖f‖X := sup
x∈X

|f(x)|

where f is any bounded function on the set X .

3. Fekete points.. The concept of Fekete points for interpolation can be de-
scribed in a very general, not necessarily polynomial, setting. It is worth observing
that such Fekete points should not be confused with the “minimum energy” Fekete
points (cf., e.g., [2] and references therein), the two concepts being equivalent only in
the univariate complex case (cf., e.g., [27]).

Given a compact set K ⊂ C
d, a finite-dimensional space of linearly independent

continuous functions,

SN = span(pj)1≤j≤N , (3.1)

and a finite set {ξ1, . . . , ξN} ⊂ K, if

vdm(ξ1, . . . , ξN ; p1, . . . , pN) 6= 0

then the set {ξ1, . . . , ξN} is unisolvent for interpolation in SN , and

ℓj(x) =
vdm(ξ1, . . . , ξj−1, x, ξj+1, . . . , ξN ; p)

vdm(ξ1, . . . , ξj−1, ξj , ξj+1, . . . , ξN ; p)
, j = 1, . . . , N , (3.2)

is a cardinal basis, i.e. ℓj(ξk) = δjk and

LSN
f(x) =

N∑

j=1

f(ξj) ℓj(x) (3.3)
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interpolates any function f at {ξ1, . . . , ξN}. In matrix terms, the cardinal basis ℓ =
(ℓ1, . . . , ℓN) is obtained from the original basis p = (p1, . . . , pN) as

ℓt = Lpt , L := ((V (ξ; p))−1)t . (3.4)

In the case that such points maximize the (absolute value of the) denominator
of (3.2) in KN (Fekete points), then ‖ℓj‖∞ ≤ 1 for every j, and thus the norm of
the interpolation operator LSN

: C(K) → SN is bounded by the dimension of the
interpolation space,

‖LSN
‖ = max

x∈K

N∑

j=1

|ℓj(x)| = max
x∈K

‖Lpt(x)‖1 ≤ N . (3.5)

Clearly, Fekete points as well as ‖LSN
‖ are independent of the choice of the basis in

SN , since the determinant of the Vandermonde-like matrices changes by a factor inde-
pendent of the points (namely the determinant of the transformation matrix between
the bases).

In the present polynomial framework, we have that

SN = P
d
n(K) , N = dim(Pd

n(K)) (3.6)

and that

Λn := ‖LSN
‖ (3.7)

is the so-called Lebesgue constant of interpolation at the point set {ξj}, K being any
Pd

n-determining compact set. In this framework Fekete points and Lebesgue constants
are preserved under affine mapping of the domain. It is also worth recalling that (3.5)
is often a rather pessimistic overestimate of the actual growth.

There are several open problems about Fekete points, whose properties have been
studied till now mainly in the univariate complex case in view of their deep connection
with potential theory. They are analytically known only in few cases: the interval
(Gauss-Lobatto points) where Λn = O(log n), the complex circle (equispaced points)
where again Λn = O(log n), and the cube (tensor-product of Gauss-Lobatto points)
for tensorial interpolation where Λn = O(logd n), cf. [12]. An important qualitative
result has been proved only recently, namely that Fekete points are asymptotically
equidistributed with respect the pluripotential equilibrium measure of K, cf. [3].
Their asymptotic spacing is known only in few instances, cf. the recent paper [10].

Moreover, the numerical computation of Fekete points becomes rapidly a very
large scale problem, namely a nonlinear optimization problem in N × d variables. It
has been solved numerically only in very special cases, like the triangle (up to degree
n = 19, cf. [36]) and the sphere (up to degree n = 191, cf. [33]).

A reasonable approach for the computation of Fekete points is to use a discretiza-
tion of the domain, moving from the continuum to nonlinear combinatorial optimiza-
tion. But which could be a suitable starting mesh? A possible answer is given by
the theory of admissible meshes for multivariate polynomial approximation, recently
studied by Calvi and Levenberg [15], which is briefly sketched in the following section.

4. Weakly Admissible Meshes (WAMs).. Given a polynomial determining
compact set K ⊂ Cd, we define a Weakly Admissible Mesh (WAM) to be a sequence
of discrete subsets An ⊂ K such that

‖p‖K ≤ C(An)‖p‖An
, ∀p ∈ P

d
n(K) (4.1)
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where both card(An) ≥ N and C(An) grow at most polynomially with n. When
C(An) is bounded we speak of an Admissible Mesh (AM).

We sketch below the main features of WAMs in terms of ten properties (cf. [8, 15]):
P1: C(An) is invariant under affine mapping
P2: any sequence of unisolvent interpolation sets whose Lebesgue constant grows

at most polynomially with n is a WAM, C(An) being the Lebesgue constant
itself

P3: any sequence of supersets of a WAM whose cardinalities grow polynomially
with n is a WAM with the same constant C(An)

P4: a finite union of WAMs is a WAM for the corresponding union of compacts,
C(An) being the maximum of the corresponding constants

P5: a finite cartesian product of WAMs is a WAM for the corresponding product
of compacts, C(An) being the product of the corresponding constants

P6: in Cd a WAM of the boundary ∂K is a WAM of K (by the maximum principle)
P7: given a polynomial mapping πs of degree s, then πs(Ans) is a WAM for πs(K)

with constants C(Ans) (cf. [8, Prop.2])
P8: any K satisfying a Markov polynomial inequality like ‖∇p‖K ≤ Mnr‖p‖K

has an AM with O(nrd) points (cf. [15, Thm.5])
P9: least-squares polynomial approximation of f ∈ C(K) (cf. [15, Thm.1]): the

least-squares polynomial LAn
f on a WAM is such that

‖f − LAn
f‖K / C(An)

√
card(An) min {‖f − p‖K , p ∈ P

d
n(K)}

P10: Fekete points: the Lebesgue constant of Fekete points extracted from a WAM
can be bounded like Λn ≤ NC(An) (that is the elementary classical bound of
the continuum Fekete points times a factor C(An)); moreover, their asymp-
totic distibution is the same of the continuum Fekete points, in the sense
that the corresponding discrete probability measures converge weak-∗ to the
pluripotential equilibrium measure of K (cf. [8, Thm.1])

The properties above give the basic tools for the construction and application of
WAMs in the framework of polynomial interpolation and approximation. For illus-
trative purposes we focus briefly on the real bivariate case, i.e. K ⊂ R2. Property P8,
applied for example to convex compacts where a Markov inequality with exponent
r = 2 always holds, says that it is always possible to obtain an Admissible Mesh with
O(n4) points. In order to avoid such a large cardinality, which has severe computa-
tional drawbacks, we can turn to WAMs, which can have a much lower cardinality,
typically O(n2) points.

In [8] a WAM on the disk with about 2n2 points and C(An) = O(log2 n) has
been constructed with standard polar coordinates, using essentially property P2 for
univariate Chebyshev and trigonometric interpolation. Moreover, using property P2
and P7, WAMs for the triangle and for linear trapezoids, again with about 2n2 points
and C(An) = O(log2 n), have been obtained simply by mapping the so-called Padua
points of degree 2n from the square with standard quadratic transformations. We
recall that the Padua points are the first known optimal points for bivariate polynomial
interpolation, with a Lebesgue constant growing like log-squared of the degree (cf.
[7, 14]).

In [11] these results have been improved, showing that there are WAMs for the
disk and for the triangle with approximately n2 points and still the same constants.
Property P4 allows to obtain WAMs for any polygon that can be subdivided into
triangles or trapezoids by standard algorithms of computational geometry.
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5. Approximate Fekete points.. The WAMs described in the previous sec-
tion can be used directly for least-squares approximation of continuous functions, by
property P10. On the other hand, it is also important to identify good interpolation
points. Once we have a WAM, by property P10 we can try to compute Fekete points
of the WAM, that is to solve the nonlinear discrete optimization problem. The lat-
ter, however, is known to be NP-hard [16], so heuristic or stochastic algorithms are
mandatory.

To this purpose, we can adopt the greedy algorithm recently studied in [8, 9, 34],
which gives an approximate solution using only optimized tools of numerical linear
algebra (namely QR-like factorizations). Consider a WAM {An} of a polynomial
determining compact set K ⊂ Cd

a = An = {a1, . . . , aM} , M ≥ N = dim(Pd
n(K)) (5.1)

and the associated rectangular Vandermonde-like matrix

V (a; p) = V (a1, . . . , aM ; p) := [pj(ai)] , 1 ≤ i ≤ M , 1 ≤ j ≤ N (5.2)

where {pj} is a basis of Pd
n(K). We sketch below the algorithm in a Matlab-like

notation.

Algorithm AFP: Approximate Fekete Points
(i) V0 = V (a; p) ; T0 = I ; (inizialization)

for k = 0, . . . , s − 1 (successive orthogonalization)
Vk = QkRk ; Pk = inv(Rk) ;
Vk+1 = VkPk ; Tk+1 = TkPk ;

end ;
(ii) ind = [ ] ; W = V t

s ; (inizialization)
for k = 1, . . . , N (greedy algorithm for a maximum volume submatrix)

– “select the largest norm column colik
(W )”; ind = [ind, ik];

– “remove from every column of W its orthogonal projection onto colik
”;

end ;
(iii) ξ = a(ind) ; (extraction of Approximate Fekete Points)

The core of the algorithm is given by (ii) and can be efficiently implemented by the
well-known QR factorization with column pivoting [13]. In Matlab-like programming,
the greedy algorithm simply reduces to the following instructions

w = W\b ; ind = find(w 6= 0) ; (5.3)

where b is any nonzero column vector, since the “backslash” standard solver uses ex-
actly the QR factorization with column pivoting when applied to an undetermined sys-
tem. The purpose of (i) is to manage the ill-conditioning that arises with nonorthog-
onal bases, like the standard monomial basis. Indeed, it eventually amounts to a
change of basis from p = (p1, . . . , pN) to the discrete orthonormal basis

ϕ = (ϕ1, . . . , ϕN ) = pTs (5.4)

with respect to the inner product

〈f, g〉 =

M∑

i=1

f(ai)g(ai) . (5.5)
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In practice s = 1 or 2 iterations suffice, unless the original matrix V (a; p) is so severely
ill-conditioned (rule of thumb: condition number much greater than the reciprocal of
machine precision) that the algorithm fails. This well-known phenomenon of “twice
is enough” in numerical Gram-Schmidt orthogonalization, has been deeply studied
and explained in [21]. Observe that we don’t really need orthogonality, but rather a
reasonable conditioning of the Vandermonde matrix in the transformed basis, namely
V (a; ϕ) = V (a; p)Ts = Vs.

The quality of the approximate Fekete points given by Algorithm AFP is in
general affected by the choice of the basis. Nevertheless, it has been proved in [8,
Thm.1] that their asymptotic distribution is the same of true Fekete points, in the
sense that the corresponding discrete probability measures converge weak-* to the
pluripotential equilibrium measure of K.

6. Leja points.. Let X ⊂ Cd be a continuous or discrete compact set. Suppose
again that we are given an ordered basis

p = {p1, . . . , pN} (6.1)

for Pd
n(X). Here, of course, N := dim

(
Pd

n(X)
)
. The Leja points for X, up to degree n,

with respect to the ordered basis p, is a sequence of points ξ1, ξ2, . . . , ξN ∈ X, defined
as follows.

The first point, ξ1, is defined to the max point of |p1| on X (if there is more than
one then each choice will lead to a different Leja sequence). Suppose then that the
points ξ1, ξ2, . . . , ξk have already been chosen. The next point ξk+1 ∈ X is chosen to
be a max point of the function

x 7→ |vdm(ξ1, . . . , ξk, x; p1, . . . , pk, pk+1)|.

Again, if there is more than one max point, each choice leads to a different sequence.
This procedure can be seen as a greedy algorithm for the maximization of the Van-
dermonde determinant in the set X .

There are also “non determinantal” versions of multivariate Leja points, which
are related to potential theory and minimum energy configurations (the two concepts
being equivalent in the univariate complex setting). For an overview about theoretical
and computational aspects of Leja points we may quote, e.g., [1, 4, 5, 17, 23, 28, 31]
and references therein.

6.1. The LU decomposition and partial pivoting.. Suppose that k ≥ m. If
Gaussian elimination can be, and is, directly applied to the matrix A ∈ Ck×m the end
result is the so-called LU decomposition A = LU where L ∈ Ck×m is lower triangular
with Ljj = 1, j = 1, . . . , m, and U ∈ Cm×m is upper triangular. This, as it turns out,
is not always possible, as is easily verified, for example, for the matrix

A =

[
0 1
1 0

]
.

If the rows of A are allowed to be permuted then an LU decompostion of the form
PA = LU, where P ∈ Ck×k is a certain permutation matrix, is always possible. The
simplest such strategy for permuting the rows is called partial (or row) pivoting and
it works as follows.

Gaussian elimination is the process of sequentially subtracting from certain rows
a multiple of the “pivot row” with the purpose of producing an equivalent matrix with
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as many zeros in it as possible. Partial pivoting is a simple strategy for choosing the
pivot rows. The first pivot row is that row i = p1 so that the element |Ap11| is as large
as possible. Then each row j for j 6= p1 is replaced by that row minus the multiplier
Aj1/Ap11 times row p. The resulting matrix Ã, say, is then such that Ãj1 = 0, j 6= p1.
The usual practice is then to interchange the pivot row with the first row, by means of
a simple permutation, and apply the same procedure to the submatrix A1 = Ã2≤i,2≤j

etc.. If we set A0 then the matrices Aj ∈ Ck−j,m−j and the process stops after m− 1
steps.

The elements Pivj = (Aj−1)pj1 are called the pivot elements and end up being
the diagonal entries Ujj of the upper triangle matrix U. It is then easy to see that
(see e.g. [22, Ch.3])

s∏

t=1

Pivt = det((PA)1≤i≤s,1≤j≤s) (6.2)

where P is the matrix of the permutations used in the process. This determinant for-
mula allows us to interpret the pivot selection process as follows. At any stage the pre-
vious pivots have already been chosen and are fixed. Hence maximizing over the candi-
dates in a column to find |Pivs| is the same as maximizing |

∏s
t=1 Pivt| and this in turn

is equivalent to maximizng over the various subdeterminants |det((PA)1≤i≤s,1≤j≤s)|.
Here, the candidate rows each result in a candidate permuation and so, in this for-
mulation, we maximize over the various allowed permutation matrices P.

6.2. Discrete Leja points by LU with partial pivoting.. Assume now that
our compact set X is finite and ordered in some manner. We take

x = X = {x1, . . . , xM} , A = V (x; p) ∈ C
M×N

where, as before, N = dim
(
Pd

n(X)
)
. Our assumption that X is determining implies

that M ≥ N (indeed typically M ≫ N). We emphasize again that the rows of the
Vandermonde matrix correspond to the points, and the columns to the basis. Hence
selecting rows of A corresponds exactly to selecting points of X. Which rows, and
hence points of X, does partial pivoting select?

By (6.2) (and the remarks following) the criteria of partial pivoting is to choose the
maximum such determinant, in absolute value. Suppose that the rows selected, in se-
quence, correspond to the points ξ1, ξ2, . . . etc., then the determinant det((PA)1≤i≤s,1≤j≤s)
is just the determinant

vdm(ξ1, . . . , ξs; p1, . . . , ps)

and hence partial pivoting chooses the rows corresponding to the Leja points for X,
in the same order!

In view of the considerations above, we can write the following matrix imple-
mentation of the greedy algorithm that computes the Leja points of a WAM, say
X = An, of a polynomial determining compact set K (cf. (5.1)-(5.2)). Again, we use
a Matlab-like notation:

Algorithm DLP: Discrete Leja Points
• a = An = {a1, . . . , aM} ;
• A = V (a; p) ;
• [L, U, σ] = LU(A, ’vector’) ; (σ is a permutation vector)
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• ind = σ(1 : N) ; ξ = a(ind) ; (extraction of Discrete Leja Points)

When V (a; p) is very ill-conditioned, as typically happens with nonorthogonal bases,
we can still apply step (i) of algorithm AFP to get a discrete orthonormal basis and
a better conditioned Vandermonde matrix.

Remark 6.1. Observe that the first k Leja points depend only on the first k
basis functions in p. Hence the Leja points are a sequence, i.e., computing the Leja
points for the basis obtained from p by adding an element to the end of p does not
change the Leja points already computed for p.

In particular, if the basis is chosen so that the first Nj = dim(Pd
j (K)) basis

elements span Pd
j (K), then the first Nj Leja points are a candidate set of interpolation

points for polynomials of degree j. Moreover, by the nature of the Gram-Schmidt
process, this latter property is not affected by a preliminary orthogolization process
as in step (i) of algorithm AFP (since the matrix Ts is upper triangular).

In contrast, the Approximate Fekete points depend on the entire basis, and not
on its order.

6.3. Asymptotics of Discrete Leja Points.. We showed in [8] that the Ap-
proximate Fekete Points selected from a WAM An ⊂ K, using any polynomial basis,
and the true Fekete points for K both have the same asymptotic distribution.

We first introduce some notation. By

vdm(z1, . . . , zN)

we will mean the Vandermonde determinant computed using the standard monomial
basis. Further, we set mn to be the sum of the degrees of the N monomials of degree
at most n, i.e., mn = dnN/(d + 1).

Then it is known (see [38]) that if Fn = {f1, . . . , fN} ⊂ K is a set of true Fekete
points for degree n in K, the limit

lim
n→∞

|vdm(f1, . . . , fN )|1/mn =: τ(K)

exists and is called the transfinite diameter of K.

Theorem 6.1. (cf. [8]) Suppose that K ⊂ C
d

is compact, non-pluripolar,
polynomially convex and regular (in the sense of Pluripotential theory) and that for
n = 1, 2, . . . , An ⊂ K is a WAM. Let {ξ1, . . . , ξN} be the Approximate Fekete Points
selected from An by the greedy algorithm AFP described above, using any polynomial
basis p = {p1, . . . , pN}. Then

• lim
n→∞

|vdm(ξ1, . . . , ξN )|1/mn = τ(K), the transfinite diameter of K;

• the discrete probability measures µn := 1
N

∑N
j=1 δξj

converge weak-* to the
pluripotential-theoretic equilibrium measure dµK of K.

Remark 6.2. For K = [−1, 1], dµ[−1,1] = 1
π

1√
1−x2

dx; for K the unit circle S1,

dµS1 = 1
2π dθ. If K ⊂ R

d ⊂ C
d

is compact, then K is automatically polynomi-
ally convex. We refer the reader to [24] for other examples and more on complex
pluripotential theory.

Remark 6.3. The second assertion follows from the first by the fundamental
result of [3].

Leja points depend more strongly on the ordering of the basis than do Fekete
points and hence it is perhaps not surprising that the convergence theorem for Leja
points that we are able to offer is slightly weaker than that for Fekete points. In
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fact, we give a convergence theorem that holds for a certain class of ordered bases.
Specifically, let

e = {e1, . . . , eN}

be any ordering of the standard monomials zα that is consistent with the degree, i.e.

j ≤ k =⇒ deg(ej) ≤ deg(ek).

We consider the ordered bases of Pd
n, p = {p1, . . . , pN}, that can be written in the

form

p = Le (6.3)

where L ∈ CN×N is lower triangular. Note that these are exactly the kind of bases
of which we discussed in Remark 6.1.

Theorem 6.2. Suppose that K ⊂ C
d

is compact, non-pluripolar, polynomially
convex and regular (in the sense of Pluripotential theory) and that for n = 1, 2, · · · ,
An ⊂ K is a WAM. Let {ξ1, . . . , ξN} be the Discrete Leja Points selected from An by
the greedy algorithm DLP described above, using any basis p of the form (6.3). Then

• lim
n→∞

|vdm(ξ1, . . . , ξN )|1/mn = τ(K), the transfinite diameter of K;

• the discrete probability measures µn := 1
N

∑N
j=1 δξj

converge weak-* to the
pluripotential-theoretic equilibrium measure dµK of K.

Proof. The proof of the first assertion is based on a slight modification of the proof
of Proposition 3.7 of [5], which concerns the true Leja points of K. Once we have
established the first, then the second assertion follows immediately, as in the proof of
Theorem 6.1 (cf. [8, Thm.1]), from the main result of [3].

First note that, since the k-th column of vdm(An; p) consists of pk evaluated at
all the points of An. Further, since the pivoting strategy is a comparison of elements
in a column, the order of rows selected is not affected by multiplying a column, i.e.,
multiplying a pk, by a constant. Hence, without loss of generality, we may assume
that the diagonal elements Ljj of the transformation in (6.3) are Ljj = 1. Hence each
pk may be assumed to be of the form

pk(z) = ek(z) +
∑

j<k

cjej(z), cj ∈ C.

Moreover, each combination

pk(z) +
∑

j<k

ajpj(z) = ek(z) +
∑

j<k

cjej(z) (6.4)

is of exactly the same form.
It follows that the so-called Chebyshev constants

tk(K) := inf
cj∈C

‖ek(·) +
∑

j<k

cjej(·)‖1/deg(ek)
K

may also be defined as

tk(K) := inf
cj∈C

‖pk(·) +
∑

j<k

cjpj(·)‖1/deg(pk)
K
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and similarly for the Chebyshev constants for An, tk(An).
We also need to make use of the geometric mean of the Chebyshev constants, i.e.,

t0k(K) :=




∏

deg(ej)=k

tj(K)




1/(Nk−Nk−1)

where Nk := dim(Pd
k(K)).

Note also, that in our case, An is assumed to be a WAM and hence

(tk(An))deg(ek) ≥ 1

C(An)
(tk(K))deg(ek), 1 ≤ k ≤ Nn. (6.5)

Consequently we also have

t0k(An) ≥
(

1

C(An)

)1/k

t0k(K).

Thus, by (3.7.3) of [5] we have

|vdm(ξ1, . . . , ξN )| ≥
(

1

C(An)

)Nn n∏

k=1

(t0k(K))rk

where

rk := k(Nk − Nk−1).

(We remark that in (3.7.3) of [5] there is a small typographical error – the exponent
on the right should be rk and not k.)

By the definition of Fekete points we even have

|vdm(f1, . . . , fN )| ≥ |vdm(ξ1, . . . , ξN )| ≥
(

1

C(An)

)Nn n∏

k=1

(t0k(K))rk .

Note then that, by the definition of C(An),

(
1

C(An)

)Nn/mn

→ 1 and

(
n∏

k=1

(t0k(K))rk

)1/mn

= τ(K)

by the famous result of Zaharjuta [38]. The result follows. �
Remark 6.4. The idea of computing Leja sequences from Weakly Admissible

Meshes appears also in the recent paper [4], which concerns mostly the univariate
complex case. Their approach is embedded in the more general concept of a Pseudo
Leja Sequence, for which they prove the univariate case of the asymptotic result above.
The present LU-based strategy can be viewed as an alternative computational method
for producing such “discrete” univariate Leja sequences.

7. Numerical examples.. In this section we present some examples of compu-
tation of Discrete Leja Points (DLP) and Approximate Fekete Points (AFP) by the
matrix algorithms discussed in Sections 5 and 6.



MULTIVARIATE FEKETE AND LEJA POINTS BY NUMERICAL LINEAR ALGEBRA 11

7.1. A circular sector.. As a first example, we take the circular sector (3/4 of
the unit disk, written in polar coordinates)

K = {(ρ, θ) : 0 ≤ ρ ≤ 1 , −π/2 ≤ θ ≤ π} (7.1)

which has been already considered in [32, Ex.2]. Our first step is to construct an
Admissible Mesh (AM) for K, that will be used to extract DLP and AFP. To this
purpose, in view of Property P4, it is convenient to see K as the union of three
quadrants, since these are convex compact sets where we can easily compute an AM.

We show now, following the proof of [15, Thm.5] (which is much more general),
how to construct an AM in a convex compact set K ⊂ R2. First, we recall that every
convex compact set of R2 admits the Markov inequality

max
x∈K

‖∇p(x)‖2 ≤ M n2 ‖p‖K , M =
α(K)

w(K)
, ∀p ∈ P

2
n(K) , (7.2)

where α(K) ≤ 4, and w(K) is the minimal distance between two parallel supporting
lines for K, cf. [26].

Consider a cartesian grid {(ih, jh) , i, j ∈ Z} with constant stepsize h: for every
square of the grid that has nonempty intersection with K, take a point in this inter-
section. Let An be the mesh formed by such points. For every x ∈ K, let a ∈ An the
point closest to x: by construction, both belong to the same square of the grid. Using
the mean value theorem, the Cauchy-Schwarz inequality and the Markov inequality,
we can write

|p(x) − p(a)| ≤ ‖∇p(y)‖2‖x − a‖2 ≤ M
√

2hn2 ‖p‖K ,

since y belongs to the open segment connecting x and a, which lies in K. Then, from
|p(x)| ≤ |p(x) − p(a)| + |p(a)| ≤ M

√
2hn2 ‖p‖K + |p(a)|, the polynomial inequality

‖p‖K ≤ 1

1 − µ
‖p‖An

follows, provided that

h = hn : M
√

2hnn2 ≤ µ < 1 , (7.3)

i.e., An is an AM with constant C = 1/(1 − µ), cf. (4.1).
In the case of the first quadrant of the unit disk, we have that w(K) = 1, and we

take the upper bound for convex compacts α(K) = 4, since sharper bounds do not
seem to be available in the literature. Hence, by (7.2)-(7.3) we get an AM as soon as we
consider the cartesian grid {(ihn, jhn) , i, j ∈ Z} with 4

√
2n2hn < 5.66n2hn ≤ µ < 1

for some fixed µ. For example, taking hn = (6n2)−1 we get µ = 5.66/6 and C ≈ 17.65.
Since we can partition the set of grid squares into subsets of four adjacent squares
and, apart from a neighborhood of the boundary of the quadrant, take as mesh point
their common vertex, then the cardinality of the mesh is roughly estimated as 1/4 of
the number of grid points in the unit square times the area of the quadrant, that is
card(An) ≈ ((6n2)2/4)π/4 ≈ 7n4. We could obtain a lower constant C, paying the
price of increasing the cardinality of the mesh.

By Property P1 and P4 of admissible meshes then we get an AM of the compact
set (7.1) as union of three meshes of the three quadrants, with the same constant C ≈
17.65 and cardinality card(An) ≈ 3×7n4 = 21n4. In Figure 7.1 we show the DLP and
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AFP computed for degree n = 6, with the Koornwinder orthogonal basis of the unit
disk for the Vandermonde matrix (cf. [25]). In this example the Vandermonde matrix
is not ill-conditioned, so the preliminary orthogonalization iterations are not necessary.
It is worth noticing two facts. The first is that in our implementation (Matlab 7.6.0
on an Intel Core 2 Duo 2.13GHz Processor with 4Gb RAM), the computation of DLP
is 3 times faster than that of AFP (around 0.03s versus 0.09s). On the other hand,
the quality of AFP is better than that of DLP. Not only do they appear more evenly
distributed, but in addition the absolute value of the Vandermonde determinant and
the Lebesgue constant (numerically evaluated) are |vdm| ≈ 2 · 104 and Λ6 ≈ 4 for
the AFP, whereas |vdm| ≈ 7 · 102 and Λ6 ≈ 12 for the DLP. Notice that both the
Lebesgue constants are much below the theoretical bound for Fekete points extracted
from an AM, namely Λn ≤ CN .

In this example we are already using for a low degree a huge number of mesh
points, namely around 27000 points. This is a typical situation with Admissible
Meshes, since their cardinality increases like O(n4). It is therefore necessary to reduce
the cardinality of the extraction meshes, even for low/moderate degrees. This can be
obtained using Weakly Admissible Meshes, when available, as is done in the next
subsection with triangles and polygons.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 7.1. N = 28 AFP (Approximate Fekete Points, circles) and DLP (Discrete Leja Points,
asterisks) for degree n = 6 extracted from an AM (Admissible Mesh) of a circular sector.

7.2. Polygons.. The recent paper [11] gives a construction of a WAM for the
two-dimensional unit simplex, and thus for any triangle by affine mapping (Property
P1 of WAMs). This WAM, say An, has n2 + n + 1 points for degree n, and constant
C(An) = O(log2 n). The mesh points lie on a grid of intersecting straight lines,
namely a pencil from one vertex (image of the point (0, 0) of the simplex) cut by a
pencil parallel to the opposite side (image of the hypothenuse of the simplex). The
points on each segment of the pencils, and in particular the points on each side, are
the corresponding Chebyshev-Lobatto points.

Property P4 allows then to obtain WAMs for any triangulated polygon. The
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constant of any such WAM can be bounded by the maximum of the constants cor-
responding to the triangular elements, and thus is O(log2 n), irrespectively of the
number of sides of the polygon, or of the fact that it is convex or concave. Notice
that a rough triangulation is better in the present framework, to keep the cardinality
of the mesh low (which will be of the order of n2 times the number of triangles).

As a first example, we consider a nonregular convex hexagon, either trivially
triangulated by the barycenter, or by the so-called “ear-clipping” algorithm (cf., e.g.,
[20]). The latter constructs a minimal triangulation of any simple polygon with k
vertices, obtaining k − 2 triangles. In Figure 7.2, we show the N = 45 AFP and
DLP computed for degree n = 8, using the product Chebyshev basis of the minimal
surrounding rectangle for the Vandermonde matrix. In the first mesh the point (0, 0)
of the simplex is mapped to the barycenter for each triangle. The cardinality of the
barycentric-based mesh is 6(n2 + n + 1)− 6(n + 1)− 5 = 6n2 − 5, whereas that of the
other mesh is 4(n2 + n + 1) − 3(n + 1) − 2 = 4n2 + n − 1 (one has to subtract the
repetitions of points along the contact sides).

In Table 7.1 we show the numerically evaluated Lebesgue constants for the AFP
and DLP computed from the two meshes above, at a sequence of degrees. From these
results we see that DLP are of lower quality than AFP: this is not surprising, since
the same phenomenon is well-known concerning continuous Fekete and Leja points.
Nevertheless, both provide reasonably good interpolation points, as it is seen from
the interpolation errors on three test functions in Table 7.2.

In order to emphasize the flexibility of Algorithms AFP and DLP, finally we show
the points computed for a more complicated polygon in a shape of a hand, with 39
sides (obtained from the screen sampled hand of one of the authors, by piecewise
linear interpolation); see Figure 7.3. In this example we have used the ear-clipping
triangulation which gives 37 triangles and a WAM with approximately 37n2 points
for degree n.

Table 7.1

Lebesgue constants for AFP and DLP extracted from two WAMs of a nonregular convex hexagon
(WAM1 corresponding to barycentric triangulation, WAM2 to minimal triangulation).

mesh points n = 5 n = 10 n = 15 n = 20 n = 25 n = 30
WAM1 AFP 6.5 18.9 20.4 40.8 73.3 73.0

DLP 7.1 19.6 49.8 58.3 108.0 167.0
WAM2 AFP 6.8 12.3 34.2 52.3 49.0 80.4

DLP 10.7 48.4 62.0 91.6 86.6 203.0

Table 7.2

Max-norm of the interpolation errors with AFP and DLP extracted from WAM2 for three test
functions: f1 = cos (x1 + x2); f2 =Franke function; f3 = ((x1 − 0.5)2 + (x2 − 0.5)2)3/2.

function points n = 5 n = 10 n = 15 n = 20 n = 25 n = 30
f1 AFP 6E-06 5E-13 3E-15 3E-15 3E-15 4E-15

DLP 8E-06 2E-12 2E-15 4E-15 3E-15 4E-15
f2 AFP 1E-01 2E-02 5E-03 4E-04 3E-05 2E-06

DLP 3E-01 2E-02 9E-03 5E-04 4E-05 3E-06
f3 AFP 3E-03 2E-04 1E-04 4E-05 2E-05 1E-05

DLP 3E-03 3E-04 1E-04 3E-05 2E-05 5E-06
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Fig. 7.2. N = 45 AFP (circles) and DLP (asterisks) for degree n = 8 extracted from two
WAMs of a nonregular convex hexagon (dots).
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