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Abstract

The algebraic polynomial interpolation on uniformly distributed nodes is affected by the Runge phenomenon, also
when the function to be interpolated is analytic. Among all techniques that have been proposed to defeat this phe-
nomenon, there is the mock-Chebyshev interpolation which is an interpolation made on a subset of the given nodes
which elements mimicas well as possiblethe Chebyshev-Lobatto points. In this work we use the simultaneous ap-
proximation theory to combine the previous technique with apolynomial regression in order to increase the accuracy
of the approximation of an analytic function. We give indications on how to select the degree of the simultaneous
regression so as to obtain polynomial approximant good in the uniform norm and provide a sufficient condition to
improve, in that norm, the accuracy of the mock-Chebyshev interpolation with a simultaneous regression. Numerical
results are provided.
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1. Introduction

In many scientific disciplines when we want to study a phenomenon we can start in observing and recording what
happens at regular instants of time. This provides a sample of information that we can use to give a more or less
accurate approximation of the observed phenomenon. For this aim mathematical tools are needful. The first step is to
imagine regular instants of time as a set of uniform distributed points and the sample of information as the evaluations
of an unknown function. In this case a classical technique used to associate to the discrete set of experimental data a
continuous approximation of the phenomenon is the algebraic polynomial interpolation. This technique has the well-
known drawback that on uniformly distributed nodes might not converge even if the considered function is regular. A
classical example is given by Runge’s function

f ptq �
1

1� 25t2
, t P r�1, 1s

on an equally spaced triangular array of nodes

x0,0; x0,1, x1,1; x0,2, x1,2, x2,2; . . . ; x0,n, x1,n, . . . , xn,n; . . .

wherexi,n � �1� 2
n i for i � 0, 1, . . . , n, n P N0. In this case, the error made by interpolatingf with polynomials

has wild oscillations, a phenomenon known asRunge Phenomenon. Many techniques have been proposed to defeat
this phenomenon; just to mention some of them, the least-squares fitting by polynomials [1], the barycentric rational
interpolation [2, 3, 4], its extended version [5], the interpolation on subintervals [6]. A further technique exploited to
cut down the Runge phenomenon is the so called mock-Chebyshev subset interpolation which takes advantages of the
optimality of the interpolation processes on Chebyshev-Lobatto nodes [7]. The main goal of this paper consists in a
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combination of this kind of interpolation with a regressionaimed to improve the accuracy of the approximation of an
analytic function; we will refer to this combination asconstrained mock-Chebyshev least-squares.

The paper is structured as follows. In Section 2 we discuss some details on the mock-Chebyshev subset inter-
polation. The constrained mock-Chebyshev least-squares are introduced in the Section 3 and deeply investigated in
Sections 4 and 5 in which we deal with the choice of the degree of the simultaneous regression and with an estimation
for the error in the uniform norm, respectively. Section 6 isdevoted to some numerical results. Last Section contains
the algorithm.

2. Mock-Chebyshev subset interpolation

Let f be an analytic function with singularities close to the interval r�1, 1s and suppose that its evaluations are
known onn�1 equally spaced points of that interval. The idea that underlies the mock-Chebyshev subset interpolation
is to interpolatef only on a proper subset consisting ofm� 1 of the given nodes which ”looks like” the Chebyshev-
Lobatto grid of orderm� 1. The result is that if we carefully choosem, the convergence of the interpolation process
on such a subset of nodes forn which tends to infinity will be preserved (cf. [8]). Some notations: from here onwards
we will indicate the equispaced grid of cardinalityn� 1 with the symbolXn, while the mock-Chebyshev subset ofXn

of orderm� 1 will be denoted byX1m. To understand how to properly choosem (see e.g. [9]), let us remember that
them� 1 Chebyshev-Lobatto nodes are defined as

xCL
j � � cos

�

π

m
j
	

, j � 0, 1, . . . ,m.

Let us expandxCL
1 in Taylor series centered in zero

xCL
1 � �1�

π2

2m2
�O

�

1
m4




  �1�
π2

2m2
. (2.1)

BeingxCL
0 � �1, the differencexCL

1 � xCL
0 is aO

�

1
m2

�

. In other words, this means that them�1 nodes of Chebyshev-
Lobatto are distributed inr�1, 1s with a density that is roughly quadratic inm. So for n proportional tom2 or m
proportional to

?

n, we can select among the given nodes a subset which mimic a sufficiently large Chebyshev-
Lobatto grid. Letc be the constant of proportionality; a way to calculate it is to impose that the second node of the
Chebyshev-Lobatto grid is as close as possible to the secondnode of the equispaced setXn

� cos
�

π

m

	

� �1�
2
n
.

This can be done in the following manner: by (2.1) we fix the largest integermsuch that

�1�
1
n
  �1�

π2

2m2

so for

m�

Z

π
?

2

?

n

^

(2.2)

for sure�1� 2
n is the point ofXn closest toxCL

1 (for an example, see Figure 1). This choice ofc  π
?

2
avoids the fact

that the endpoints�1 and 1 can be selected more than once.
For analytic functions the polynomial interpolation on Chebyshev nodes converges geometrically and stably. The

mock-Chebyshev interpolation is a stable procedure but itsrate of convergence is subgeometric. In [10] has been
shown that on equispaced nodes no stable method can convergegeometrically.
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Figure 1: Plot of the Chebyshev-Lobatto nodes (�) and mock-Chebyshev nodes (�) for n� 1� 21,m�

π
?

2

?

20� 9.

3. Constrained mock-Chebyshev least-squares

In performing the mock-Chebyshev interpolation we know theevaluations off on the whole setXn, but actually
we only use the information corresponding to the elements ofX1m. Indeed, in [9] then � m remaining nodes are
definitively discarded and the corresponding evaluations are lost. Our idea is to use those nodes, whose set will be

denoted byX2n�m �

!

x21,n�m, x
2

2,n�m, ..., x
2

n�m,n�m

)

, x21,n�m   x22,n�m   ...   x2n�m,n�m, to improve the accuracy of

the approximation through a simultaneous regression. Moreprecisely, letf be an analytic function onr�1, 1s and

let Pr�
�

!

P P P
r : Ppx1i,mq � f px1i,mq, i � 0, 1, . . . ,m

)

wherePr is the space of polynomials of degree¤ r and

m  r ¤ n. We search the solution of the followingconstrained least-squares problem[11, 12, 13]

min
PPPr�

} f � P}2
2 (3.1)

where}�}2 is the discrete 2-norm onX2n�m.

Theorem 3.1. The constrained least-squares problem (3.1) has a unique solution.

Proof. Let us denote byPX1 the interpolating polynomial forf on X1m. It is not difficult to verify that a generic

polynomialP P P
r� is of the formPptq � PX1ptq � Qptqωmptq with ωmptq �

m
±

i�0
pt � x1i,mq andQptq an arbitrary

polynomial of degreer �m� 1. The problem (3.1) then becomes

min
QPPr�m�1

} f � pPX1 � Qωmq}
2
2

� min
QPPr�m�1

n�m̧

k�1

 

f
�

x2k,n�m

�

� PX1
�

x2k,n�m

�

� Q
�

x2k,n�m

�

ωm

�

x2k,n�m

�(2

� min
QPPr�m�1

n�m̧

k�1

$

&

%

f
�

x2k,n�m

	

� PX1

�

x2k,n�m

	

ωm

�

x2k,n�m

	

� Q
�

x2k,n�m

�

,

.

-

2

ω2
m

�

x2k,n�m

�

.

By introducing the following discrete weighted 2-norm

}u}2,ω2
m
�

�

n�m̧

k�1

wku
2
px2k,n�mq

�

1
2
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wherewk � ω2
mpx

2

k,n�mq for k � 1, . . . , n�m and by definingf̂ as

f̂ ptq :�
f ptq � PX1ptq

ωmptq
, t P r�1, 1s , (3.2)

the problem (3.1) can be reduced to the following classical least-squares problem

min
QPPr�m�1

�

� f̂ � Q
�

�

2

2,ω2
m

(3.3)

which has a unique solution.

By denoting withQ̂X2ptq the solution of (3.3), the desired polynomial approximant is

P̂Xptq � PX1ptq � Q̂X2ptqωmptq. (3.4)

To write P̂X explicitly, let us introduce the discrete inner product associated to the norm}�}2,ω2
m

pu, vqω2
m
�

n�m̧

k�1

wkupx
2

k,n�mqvpx
2

k,n�mq

and let
 

πipt, ω2
mq
(r�m�1

i�0 be a basis ofPr�m�1 orthogonal with respect to the previous product. We can expressQ̂X2ptq
with respect to that basis as

Q̂X2ptq �
r�m�1
¸

i�0

qiπiptq, qi �

�

f̂ , πi

�

ω2
m

pπi , πiqω2
m

.

ThenP̂Xptq becomes explicitly

P̂Xptq � PX1ptq �

�

r�m�1
¸

i�0

qiπiptq

�

m
¹

i�0

pt � x1i,nq.

Theorem 3.2. In the discrete2-norm on X2n�m the inequality

�

� f � P̂X

�

�

2   } f � PX1}2

holds.

Proof. The choice of an orthogonal basis forPr�m�1 allows us to express the errorf̂ � Q̂X2 in the }�}2,ω2
m

norm as
follows:

�

� f̂ � Q̂X2
�

�

2,ω2
m
�

#

�

� f̂
�

�

2

2,ω2
m
�

r�m�1
¸

i�0

q2
i }πi}

2
2,ω2

m

+

1
2

, qi �

�

f̂ , πi

�

ω2
m

pπi , πiqω2
m

.

Therefore the errorf � P̂X in the 2-norm is

�

� f � P̂X

�

�

2 �

#

} f � PX1}
2
2 �

r�m�1
¸

i�0

q̃2
i }πiωm}

2
2

+

1
2

, q̃i �
p f � PX1 , πiωmq

pπiωm, πiωmq
.

In other words, the error made by using the constrained mock-Chebyshev least-squares method is, in the 2-norm,
strictly smaller than the error produced when we restrict ourselves to the mock-Chebyshev subset interpolation.
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4. The degree of simultaneous regression

As shown in the previous section we approximate the functionf with a least-squares polynomial that satisfies
interpolation conditions on a mock-Chebyshev subset of thegiven nodes. We have not specified yet how to choose
the degree of the constructed approximantP̂X. When this degree increases up to the total number of nodes the
approximation gets worse, since the combined approximant approaches the interpolating polynomial.

Theorem 4.1. Let r be the degree of̂PX and let us denote by PX the interpolating polynomial of f on Xn. If r � n
then

P̂X � PX.

Proof. Recalling that
P̂Xptq � PX1ptq � Q̂X2ptqωmptq

if P̂X is ann degree polynomial, the regression polynomialQ̂X2 must be an� m� 1 degree polynomial. Since the
least-squares setX2n�m has cardinalityn�m, Q̂X2 is the interpolating polynomial for̂f on X2n�m that is

Q̂X2px
2

k,n�mq � f̂ px2k,n�mq, k � 1, . . . , n�m.

From the previous relation it follows that

P̂Xpx
2

k,n�mq � PX1px
2

k,n�mq � Q̂X2px
2

k,n�mqωmpx
2

k,n�mq

� PX1px
2

k,n�mq � f̂ px2k,n�mqωmpx
2

k,n�mq

� PX1px
2

k,n�mq �
f px2k,n�mq � PX1px2k,n�mq

ωmpx2k,n�mq
ωmpx

2

k,n�mq

� f px2k,n�mq

that isP̂X interpolatesf on X2n�m. However, by construction̂PX interpolates alsof on X1m then it coincides with the
interpolating polynomial forf on Xn by the uniqueness of the interpolating polynomial of degreen on Xn.

By taking into account this result, let us come back to the choice of a proper degree for̂PX. Clearly, it depends
on the degree of the simultaneous regression polynomial, namely of the polynomialQ̂X2 . In order to determine a
degree forQ̂X2 which gives, in the uniform norm, better accuracy of the constrained mock-Chebyshev least-squares
with respect to the mock-Chebyshev interpolation we use a result presented by L. Reichel in [14]. This result implies
that for an equispaced set ofq (internal) nodes ofr�1, 1s

zk � �1�
2k� 1

q
, k � 1, . . . , q, (4.1)

the degreep of the least-squares polynomial should be selected so that there is a subset of cardinalityp � 1 of
the equispaced set which is close, in the mock-Chebyshev sense, to thep� 1 Chebyshev grid. Actually, the result
presented in [14] is more general since it deals with the least-squares approximation of a function on a Jordan curve
in the complex plane. To explain the outlines of Reichel’s idea we use his notation. LetΓ be a Jordan curve or Jordan
arc in the complex plane and letΩ the open set bounded byΓ. If Γ is a Jordan arc thenΩ is void. Lettzk,qu

q
k�1 be a

set ofq distinct nodes onΓ. For a given functionϕ onΓ, let Lp,qϕ denote the least-squares polynomial of degree¤ p
with respect to the semi-norm

}ϕ} :� pϕ, ϕq
1
2

defined through the inner product

pϕ, ψq :�
q̧

k�1

ϕpzk,qqψpzk,qq.

Moreover, letIpϕ be the interpolating polynomial ofϕ at p� 1 distinct pointstwk,pu
p
k�0 onΓ. We write Ip   Lp,q if

twk,pu
p
k�0 � tzk,qu

q
k�1. We equip the domain and the range ofLp,q andIp with the uniform norm onΓ

}ϕ}
Γ
� sup

zPΓ
|ϕpzq|
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and we denote the induced operator norm with the symbol}
�
}. Finally, we define

Eppϕq :� inf
QpPP

p
}ϕ� Qp}Γ

The following theorem [14, Theorem 2.1] bounds the norm of the least-squares projectionLp,q in terms of the norm
of the interpolation projectionIp.

Theorem 4.2. Let Lp,q and Ip be defined on the set of continuous function onΓYΩ and analytic inΩ. Then

}Lp,q} ¤ }Ip}

�

1�
?

q sup
}ϕ}

Γ
�1

Eppϕq

�

, �Ip   Lp,q, �q¥ p. (4.2)

By means of examples it has been shown that also whenp is fixed the
?

q growth of the right-hand side of (4.2)
can be achieved. This suggests to make further assumptions on the distribution of the interpolation nodes and on
the smoothness of the function. Generally, we will assume that p is an increasing function ofq. Using a Jackson’s
theorem [15, p. 147] the following corollary [14, Corollary2.1] shows that additional smoothness of the function to
be approximated decreases the growth of}Lp,q}with q, ppqq.

Corollary 4.3. Let Γ � r�1, 1s and let Fd,k,Γ :�
!

ϕ : ϕ P Ck
r�1, 1s,

�

�

�

dkϕ

dzk

�

�

�

Γ

¤ d
)

be the domain of Lp,q. Then for

some constant D depending on the constant d and on the integerk

}Lp,q} ¤ }Ip}
�

1� D
?

qpp� 1q�k
�

, �Ip   Lp,q.

The next step is to determine a bound for minIp Lp,q }Ip}. We do not discuss in detail the estimates calculated
for }Ip} in [14] but only mention that a useful bound for minIp Lp,q }Ip} is obtained when the interpolation points are
Fejér points or points close to Fejér points. Let us recallthat for a generic curveΓ the Fejér points are defined as the
image onΓ of equispaced nodes onto the unit circle through a particular conformal mapping [14]. In particular, if
Γ � r�1, 1s the Chebyshev points are Fejér points [14, Example 3.1]. The estimates obtained for}Ip} in [14] suggest
the following least-squares approximation method:

Criterion 4.4. Let Γ � r�1, 1s. Given a functionϕ P Fd,k,Γ and q least-squares nodestzk,qu
q
k�1 on Γ, choose the

degree of the approximating polynomial Lp,qϕ as the greatest p such that p� 1 points are close to p� 1 Fejér points.

When theq nodes are equispaced like in (4.1) this means that the degreep of the least-squares approximant should be
selected so that there arep� 1 points among the equispaced ones which are close to thep� 1 Chebyshev nodes. In
other words,p should be selected in the mock-Chebyshev sense.

In the case of simultaneous regression the least-squares nodes are those ofX2n�m and therefore they are not equally
spaced. However, when the cardinality ofXn is sufficiently large we can approximate an equispaced grid with width
¥ 2h, h� 2

n using nodes belonging toX2n�m. In fact, the maximum distance between two consecutive nodes ofX2n�m is

at most 2h. To be aware of it, let us observe that the intervalI �
�

x21,n�m, x
2

n�m,n�m

�

according to the mock-Chebyshev

extraction is properly contained inr�1, 1s and symmetric with respect to the origin. Because of the choice ofm the
first and the second node ofX1m are equal tox0,n andx1,n, respectively, i.e.X1m � tx0,n, x1,n, . . . u. Moreover, we have

Lemma 4.5. The first three nodes of Xn belong to X1m, i.e.

X1m � tx0,n, x1,n, x2,n, . . . u .

Proof. To prove thatx2,n together withx0,n, x1,n has been taken during the mock-Chebyshev extraction, we need to
expand in Taylor series the difference between the second and the third Chebyshev-Lobatto node

xCL
2 � xCL

1 � � cos

�

2π
m




� cos
�

π

m

	

� �2 sin

�

3π
2m




sin
�

�

π

2m

	

� 2
π

2m
3π
2m

�O

�

π4

m4




  2
π

2m
3π
2m

.

Recalling thatm is given by (2.2) the previous difference can be rounded up by3
n and the thesis follows (see Figure

2).
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Figure 2: Proof of Lemma 4.5

Lemma 4.6. For n¡ 7, x3,n does not belong to X1m, i.e.

x3,n P X2n�m, n¡ 7.

Proof. Let us expandxCL
3 in Taylor series

xCL
3 � � cos

�

3π
m




� �1�
9π2

2m2
�

81π4

24m4
�O

�

�

3π
m


6
�

¡ �1�
9
n
�

27
2n2

and check for which values ofn P N the following inequality holds

�1�
9
n
�

27
2n2

¡ �1�
7
n
.

We obtain that

n¡
27
4

and therefore
�

�xCL
3 � 1� 6

n

�

�

¡

�

�xCL
3 � 1� 8

n

�

�.

Proposition 4.7. For sufficiently large n the following inequality

max
2¤i¤n�m

�

�x2i�1,n�m� x2i,n�m

�

�

¤ 2h

holds.

Proof. The thesis is equivalent to the fact that among the nodes ofX1m belonging toI �
�

�1� 6
n , 1�

6
n

�

there are not
two consecutive nodes ofXn. By Lemma 4.5 and Lemma 4.6 the nodes of them� 1 Chebyshev-Lobatto grid which
are contained inI are

xCL
j � � cos

�

π

m
j
	

, j � 3, . . . ,m� 3. (4.3)

It is well-known that the nodes (4.3) are more dense near the endpoints ofI and less near its center, therefore it is
sufficient to verify that the distance betweenxCL

3 andxCL
4 is greater than 2h. Let us expand in Taylor seriesxCL

4 � xCL
3

xCL
4 � xCL

3 � � cos

�

4π
m




� cos

�

3π
m




� �2 sin

�

7π
2m




sin
�

�

π

2m

	

� 2

�

7π
2m

�

�

7π
2m


3 1
6
�O

�

�

7π
2m


5
���

π

2m
�

�

π

2m

	3 1
6
�O

�

�

7π
2m


5
��

�

7π2

2m2
�

175π4

24m4
�O

�

π6

m6




round downward by
7
n
�

175
6n2

  xCL
4 � xCL

3

7



and impose that
4
n
 

7
n
�

175
6n2

.

From the previous inequality it follows that

n¡
175
18

� 9.72

and the thesis holds.

At this point we can apply the results presented in [14] to thesimultaneous regression. Taking into account that the

grid (4.1) is equispaced with width2q in
�

�1� 1
q , 1�

1
q

�

, we note that, forn sufficiently large, we can approximate

such a grid withq� n
6 �

1
3h and nodes coming fromX2n�m. We denote this grid with̃X2n�m. The choice for the degree

of the simultaneous regression which gives good approximation in the uniform norm is therefore

p�

Z

π
?

2

?

q

^

�

Z

π
?

2




n
6

^

. (4.4)

Let us observe that since the degree of the mock-Chebyshev interpolation and the degree of the regression are chosen
in the same way, we can obtain the previous result applying toX2n�m the idea explained in [9], that is imposing that

� cos

�

π

p




� �1�
6
n
.

It is a straightforward calculus to prove thatp will be like in (4.4).

5. Uniform norm estimation

We have determined the degreep as in (4.4) for the polynomial̂QX2 which, according to Reichel’s theory, gives
good approximation in the uniform norm. Now, we want to calculate an estimation for the norm errorEP̂X

p f q �
�

� f � P̂X

�

�

8

in the uniform norm. Let̂PX : Cr�1, 1s Ñ Pr� the projection operator which associates to a continuous
function in r�1, 1s its constrained mock-Chebyshev polynomial and letQ̂X2 : Cr�1, 1s Ñ P

r�m�1 the projection
operator which associates to a continuous function inr�1, 1s its least-squares polynomial in the norm}�}2,ω2

m
.

As in the proof of Theorem 4.2 and Corollary 4.3 we get an estimate for the operator norm
�

�Q̂X2
�

�.

Theorem 5.1. Let ϕ P Cr�1, 1s and Ipϕ be the interpolating polynomial ofϕ on the p� 1 mock-Chebyshev subset

X3p �

!

x3k,p

)p

k�0
of X̃2n . Then

�

�Q̂X2
�

�

¤
}Ip}

�

�

�

�

�

�

1�

�

n�m
°

k�1
wk




1
2

min
j�0,...,p

a

w̃ j
sup

}ϕ}
8

�1
Eppϕq

�

Æ

Æ

Æ

Æ




Proof. Let Q�

pϕ be the polynomial of degree¤ p such thatEppϕq �
�

�ϕ� Q�

pϕ
�

�

8

. By (3.3)
�

�Q̂X2ϕ� ϕ
�

�

2,ω2
m
¤

�

�Q�

pϕ� ϕ
�

�

2,ω2
m
.

On the other hand,

�

�Q�

pϕ� ϕ
�

�

2,ω2
m
�

�

n�m
°

k�1
wk

�

Q�

ppx
2

k,n�mq � ϕpx2k,n�mq

	2



1
2

¤

�

n�m
°

k�1
wk




1
2
�

�Q�

pϕ� ϕ
�

�

8

�

�

n�m
°

k�1
wk




1
2

Eppϕq.

(5.1)
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Let lkptq k � 0, . . . , p be the elementary Lagrangian polynomials associated withX3p , that is

Ipϕptq �
p̧

j�0

ϕpx3j,pql jptq.

Let us expresŝQX2ϕ in the same basis as

Q̂X2ϕptq �
p̧

j�0

α j l jptq

for some coefficientsα j . From (5.1) it follows that

b

rw j

�

�

�

α j � ϕpx3j,pq
�

�

�

¤

�

�Q̂X2ϕ� ϕ
�

�

2,ω2
m
¤

�

n�m̧

k�1

wk

�

1
2

Eppϕq, j � 0, . . . , p.

whererw j , j � 0, . . . , p are the positive weights corresponding to the nodes
!

x3k,p

)p

k�0
and then

�

�

�

α j � ϕpx3j,pq
�

�

�

¤

�

n�m
°

k�1
wk




1
2

a

rw j

Eppϕq.

Substituting the previous relation into

�

�Q̂X2ϕptq
�

�

¤

p̧

j�0

�

�

�

α j � ϕpx3j,pq
�

�

�

|l jptq| �
p̧

j�0

�

�

�

ϕpx3j,pq
�

�

�

|l jptq|

we obtain

�

�Q̂X2
�

�

� sup
}ϕ}

8

�1

�

�Q̂X2ϕ
�

�

8

¤
}Ip}

�

n�m
°

k�1
wk




1
2

min
j�0,...,p

a

rw j

sup
}ϕ}

8

�1
Eppϕq � }Ip}

which proves the theorem.
Recall that, fixedΓ � r�1, 1s, according to [14], for eachk P N andd ¡ 0 we set

Fd,k,Γ :�

"

ϕ : ϕ P Ck
r�1, 1s,

�

�

�

�

dkϕ

dzk

�

�

�

�

Γ

¤ d

*

.

Corollary 5.2. If Q̂X2 has domain Fd,k,Γ there exists a constant D depending on d and on the integer k such that

�

�Q̂X2
�

�

¤
}Ip}

�

�

�

�

�

�

1� D

�

n�m
°

k�1
wk




1
2

min
j�0,...,p

a

rw j

pp� 1q�k

�

Æ

Æ

Æ

Æ




(5.2)

Proof. From a Jackson’s theorem [15, p. 147] forϕ P Fd,k,Γ it follows

Eppϕq ¤ Dpp� 1q�k

whereD is a constant depending ond and on the integerk.
With these results in mind we can provide an estimate in the uniform norm for the error of the constrained mock-

Chebyshev least-squares.
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Theorem 5.3. Let f P Fd,p,Γ. Then

EP̂X
p f q ¤

�

�

�

�

�

�

1� }Ip}

�

�

�

�

�

�

1� D

�

n�m
°

k�1
wk




1
2

min
j�0,...,p

a

rw j

pp� 1q�p

�

Æ

Æ

Æ

Æ




�

Æ

Æ

Æ

Æ




Epp f̂ q }ωm}
8

(5.3)

Proof. Let us start from the following relations

EP̂X
p f q �

�

� f � PX1 f � Q̂X2 f̂ωm

�

�

8

�

�

�

�

�

f � PX1 f
ωm

ωm� Q̂X2

�

f � PX1 f
ωm




ωm

�

�

�

�

8

¤ EQ̂X2

�

f � PX1 f
ωm




}ωm}
8

whereEQ̂X2

�

f�PX1 f
ωm

	

is the uniform norm error made in approximatingf̂ with its least-squares polynomial in the

norm}
�
}2,ω2

m
. SinceQ̂X2 is a projection operator which reproduces the polynomials the following inequality holds

EQ̂X2

�

f � PX1 f
ωm




¤

�

1�
�

�Q̂X2
�

�

�

Epp f̂ q

whereEpp f̂ q � min
QPPp

�

� f̂ � Q
�

�

8

. Therefore

EP̂X
p f q ¤

�

1�
�

�Q̂X2
�

�

�

Epp f̂ q }ωm}
8

which applying Corollary 5.2 tof gives the thesis.
Theorem 5.3 gives a sufficient condition to improve in the uniform norm the accuracy of the mock-Chebyshev

interpolation through the constrained mock-Chebyshev least-squares.

Corollary 5.4. Let f P Cm�1
r�1, 1s. If

�

�

�

�

�

�

1� }Ip}

�

�

�

�

�

�

1� D

�

n�m
°

k�1
wk




1
2

min
j�0,...,p

a

rw j

pp� 1q�p

�

Æ

Æ

Æ

Æ




�

Æ

Æ

Æ

Æ




Epp f̂ q  

�

� f pm�1q
�

�

pm� 1q!

then
EP̂X

p f q   EPX1
p f q

where EPX1
p f q � } f � PX1}

8

.

Proof. Let us recall that the error in the Lagrange interpolation can be bounded as follows

EPX1
p f q ¤

�

� f pm�1q
�

�

pm� 1q!
}ωm}

8

.

From Theorem 5.3 we get the thesis.
Finally, the following corollary shows that the operatorP̂X reproduces polynomials of degree¤ m� p.

Corollary 5.5. If f � pr with pr P P
m�p, then

P̂X f � f

10



Proof. If f � pr with r ¤ m

f̂ ptq �
prptq � PX1prptq

ωmptq
�

ppm�1q
r pξtq

pm� 1q!
� 0.

If f � pr with m  r ¤ m� p

f̂ ptq �
prptq � PX1 prptq

ωmptq

is a polynomial of degreer � pm� 1q. In both casesEpp f̂ q � 0 and the right-hand side of (5.3) is zero.

6. Numerical results

We finally carried out a series of numerical tests to compare,in the uniform norm, the approximation of the con-
strained mock-Chebyshev least-squares and the mock-Chebyshev interpolation. A first set of test functions includes
the following ones (the first three functions were already considered in [16]):

f1ptq �
a

|t|,

f2ptq � 1
1�25t2 ,

f3ptq � 10�15

10�15
�25t2 ,

f4ptq � t |t| ,

t P r�1, 1s.

The functionf1 is Hölder continuous with exponent 1{2, the functionf3 is a modification off2 obtained by introducing
the exponential 10�15 in order to squashf2 on x andy axes, the functionf4 is of classC1. The errors are computed as
the maximum absolute value of the difference between the approximant and the exact function at 10001 equispaced
points in r�1, 1s. Let us rename withp the degree of the simultaneous regression polynomialQ̂X2 . In Table 1p
ranges fromp � 28 to p � 100. We denote withp� the degree of the simultaneous regression which, accordingto
the theory explained above, gives good approximation in theuniform norm. Table 1 allows to compare the two errors
of interest in the case ofn� 1� 1001 equispaced interpolation nodes. At the top of the table, in green, is highlighted
the errorEP̂X

p fiq in correspondence of the degreep�. In red is highlighted the minimum possible errorEP̂X
p fiq in

the ranger1, n� m� 1s. At the bottom, in blue, is represented the errorEPX1
p fiq. As we can see, the constrained

mock-Chebyshev least-squares improve the accuracy of the approximation of the mock-Chebyshev interpolation. We
note that in correspondence of the degreep� we obtain an improvement of the accuracy of approximation. More in
detail, for f1 there is an interval forp in which the approximation obtained with our method is better than the one
coming from the mock-Chebyshev interpolation. In this casethe improvement involves only the coefficients. When
the function to be approximated is the Runge function, our approximation is everywhere more accurate forp ranging
from 1 to 100. In particular, there is a range forp in which we get 2 digits of precision more than the mock-Chebyshev
interpolation andp� lies in this range. Forf3 our approximation is, up to a certain value, better but almost the same of
the approximation obtained with the mock-Chebyshev interpolation and then gets little worse. In the case off4 there
is an interval forp in which we get 1 digits of precision more than the mock-Chebyshev interpolation.

We have done further tests using the Runge function and the following ones:

f5ptq � 1
t2�p1�0.5q ,

f6ptq � 1

t4�
�

?

26
5 �1

	

t2�
p

13
50q

2 ,

f7ptq � 1

t4�
p

2
50q

2 ,

t P r�1, 1s,
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p EP̂X
p f1q EP̂X

p f2q EP̂X
p f3q EP̂X

p f4q

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

28 7.9726586e� 002 9.7493857e� 009 9.9994994e� 001 5.4308526e� 005
29 7.8915085e� 002 8.5899644e� 009 9.9994769e� 001 5.4308526e� 005
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

33 7.7268588e� 002 6.2480174e� 009 9.9994276e� 001 4.8879070e� 005
34 7.7268642e� 002 6.2483426e� 009 9.9994277e� 001 4.6554802e� 005
35 7.7593676e� 002 7.6886833e� 009 9.9994378e� 001 4.6554852e� 005
36 7.7593662e� 002 7.6886787e� 009 9.9994377e� 001 4.8513243e� 005
37 7.6667437e� 002 5.8468658e� 009 9.9994084e� 001 4.8512907e� 005
38 7.6667394e� 002 5.8470333e� 009 9.9994083e� 001 5.0626752e� 005
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

47 7.5926645e� 002 7.2563305e� 009 9.9993836e� 001 7.8662677e� 005
48 7.5926555e� 002 7.2566879e� 009 9.9993834e� 001 8.3106886e� 005
49 7.6081471e� 002 8.0118418e� 009 9.9993892e� 001 8.3106580e� 005
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

59 9.8058844e� 002 9.7826094e� 009 9.9993832e� 001 1.2059132e� 004
60 9.8061139e� 002 9.7829010e� 009 9.9993831e� 001 1.2342356e� 004
61 1.0514604e� 001 1.1889342e� 008 9.9993920e� 001 1.2342492e� 004
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

99 3.5158374e� 001 2.9978376e� 008 3.0304570e� 000 3.8993185e� 004
100 3.5157737e� 001 2.9977317e� 008 3.0304057e� 000 4.0022643e� 004

EPX1
p f1q EPX1

p f2q EPX1
p f3q EPX1

p f4q

8.7569583e� 002 8.9863528e� 007 9.9996656e� 001 1.5095571e� 004

Table 1: Comparison betweenEP̂X
p fiq andEPX1

p fiq for n� 1000. In this casem� 70, p� � 28.

which, as the Runge function, are analytic in the intervalr�1, 1s. The function f5 has poles at�
?

1� 0.5, while
the functionf6 has poles at15 � i 1

10 and� 1
5 � i 1

10 and the functionf7 has poles at 1
5
?

2
� i 1

5
?

2
and� 1

5
?

2
� i 1

5
?

2
.

Figure 3 compares the errors forf2. The error in the constrained mock-Chebyshev least-squares is, for every 30¤
n ¤ 3530, smaller than the error in the mock-Chebyshev interpolation. The numbern � 3530 is due to the fact that
the constrained mock-Chebyshev least-squares method reaches order 10�15 onn� 1 � 3531 equispaced nodes. The
accuracy of the mock-Chebyshev interpolation on the same set of nodes is of order 10�12. Figure 4 shows how the
errors vary for the functionf5 when 20¤ n ¤ 292. Also in this case the approximation provided by the constrained
mock-Chebyshev least-squares is more accurate than the oneprovided by the mock-Chebyshev interpolation and
again when the accuracy of the former is of order 10�15 the accuracy of the latter is of order 10�11. Figure 5 shows
the errors behaviour for the functionf6 when 40¤ n ¤ 924 and the results are similar than in the previous cases.
Finally, Figure 6 compares the errors forf7. In this case, the maximum order of precision that can be reached by the
constrained mock-Chebyshev method is 10�12.

The remaining part of the present Section is devoted to the comparison of the constrained mock-Chebyshev method
with some Radial Basis Functions, Hermite Function interpolation (cf. [17]) and Floater-Hormann barycentric inter-
polation. A difference between these techniques and the constrained mock-Chebyshev least-squares is the structure
of the approximation. Indeed, only the constrained mock-Chebyshev least-squares is based on polynomials, while the
other approximants belong to other classes of functions.

Constrained mock-Chebyshev method vs RBF interpolation

Givenn pointsξ1, . . . ξn in r�1, 1s (called centers) and the corresponding valuesfi of a given functionf on them,
an RBF interpolant forf takes the form

Sptq �
ņ

i�1

λiφp|t � ξi |q
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Figure 3: Comparison betweenEP̂X
p f2q (�) (lower curve)

andEPX1
p f2q (
) (upper curve) for 30¤ n¤ 3530. When

n� 3530, degpP̂X f2q � m� p� � 131� 53.
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Figure 4: Comparison betweenEP̂X
p f5q (�) (lower curve)

andEPX1
p f5q (
) (upper curve) for 20¤ n ¤ 292. When

n� 292, degpP̂X f5q � m� p� � 37� 15.
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Figure 5: Comparison betweenEP̂X
p f6q (�) (lower curve)

andEPX1
p f6q (
) (upper curve) for 40¤ n ¤ 924. When

n� 923, degpP̂X f6q � m� p� � 67� 27.
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Figure 6: Comparison betweenEP̂X
p f7q (�) (lower curve)

andEPX1
p f7q (
) (upper curve) for 20¤ n¤ 7843. When

n� 7843, degpP̂X f7q � m� p� � 196� 80.

whereφprq is a function defined forr ¥ 0. Theλi are determined, as usual, by imposing the interpolation conditions
Spξ jq � f j , j � 1, ..., n. Popular choices forφprq are

• φprq � |r|2m�1, Monomials (MN),

• φprq � p1� rq4
�

p1� 4rq, Wendland (W2),

• φprq � 1
?

1�pεrq2
, Inverse Multiquadric (IMQ),

• φprq � expp�pεrq2q , Gaussian (G),

ε is known asshape parametersince asεÑ 0 RBFs become flater, whileεÑ8makes the RBFs spiky. The first two
are parameter-free and piecewise smooth, while inverse multiquadrics and gaussians are infinitely smooth and depend
on ε. Although we will numerically compare the constrained mock-Chebyshev method with the RBF interpolants
associated to every choice ofφ listed above, from a theoretical point of view we focus our attention on the Gaussian
RBFs (GRBFs). In [18] it has been proved that, whenε Ñ 0, smooth RBF interpolants converges on the polynomial
interpolants on the same nodes. This means that, in such a flatlimit case, as the polynomial interpolation also the
RBF approximation on uniform grids suffers of the Runge phenomenon. Furthermore, in [19] the authorshowed that
the GRBFs on equally spaced nodes and fixed parameter divergewhen interpolating functions that have poles in the
Runge region of polynomial interpolation. A way to avoid theRunge phenomenon when interpolating with GRBF is
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to vary the shape parameter withn. Indeed, as suggested in [20], if we defineα � ε 2
n, for α � O

�

1
4?n

	

the Runge

phenomenon disappears. Such a choice has a drawback since, as n Ñ 8, the condition number of the interpolation
matrix increases exponentially. Hence, the GRBFs can defeat the Runge Phenomenon just as the constrained mock-
Chebyshev least-squares, but being ill-conditioned they can be used only on few nodes. Ill-conditioning, mainly due
to the basis of translates, can be reduced significantly by using stable bases, as discussed in [21].

200 400 600 800 1000 1200 1400 1600 1800 2000

10
−10

10
−8

10
−6

10
−4

10
−2

Figure 7: Comparison betweenEP̂X
p f2q (�) and the errors

obtained in approximatingf2 with (from top to bottom)
W2 (
), MN (�), G (�), and IMQ (�) RBF interpolants
for 20¤ n¤ 2000.
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−10
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10
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Figure 8: Comparison betweenEP̂X
p f6q (�) and the error

obtained in approximatingf6 with the Hermite function in-
terpolant (�) for 40¤ n¤ 600.
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Figure 9: Comparison betweenEP̂X
p f7q (�) (upper curve),

and the error in the Floater-Hormann barycentric interpo-
lation (�) (lower curve) for 20¤ n¤ 7843.

Figure 7 shows that, in approximating the Runge functionf2, the constrained mock-Chebyshev least-squares are,
for initial values ofn, less accurate than the RBFs interpolants, while, asn increases, they become more accurate. To
have an idea of the discrepancy, while the constrained mock-Chebyshev least-squares reach order 10�15 (see Figure
3), the order of the RBFs interpolants for largen ranges from 10�7 to 10�9. In performing this numerical test, for
every fixedn, we have determined the shape parameter of IMQ and GRBFs using the so calledTrial & Error technique
which consists in varyingε into a fixed (discrete) range and choosing the ”optimal” parameter as the one that produces
the minimum error. Unfortunately this method requires a lotof CPU time for finding the ”optimal” shape parameter.
Other techniques are also available, as those described in [22, Ch. 17], but for our purposes the Trial & Error is a good
way to estimate the optimalǫ.

Constrained mock-Chebyshev method vs Hermite function interpolation

For a given functionf the Hermite function interpolant onn pointsξ1, . . . ξn in r�1, 1s can be expressed in the first
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barycentric form as

Hptq � Ωptq
n
°

j�1

µ j

t�ξ j
f pξ jq, Ωptq � expp�pn� 1q{2 logp4qγ2t2q

n
±

i�1
pt � ξ jq, µ j �

�

dΩ
dt pξ jq

�

�1

whereγ is a free parameter (optimal choices are 1 or slightly smaller). As stated in [17], the computational cost of
the previous formula isOpn2

q which means that the Hermite function interpolation is cheaper than the GRBF interpo-
lation. Furthermore, in the same paper the authors give numerical evidence that the Hermite function interpolation is
substantially more accurate than the GRBF interpolation. However, as RBFs, also this kind of interpolation is strongly
ill-conditioned and therefore its use must be limited to a maximum of about 250 interpolation points. Figure 8 shows
how the ill-conditioning limits to 10�8 the best attainable accuracy in approximatingf6 with the Hermite interpolant,
while the constrained mock-Chebyshev least-squares are very close to machine precision (see Figure 5).

Constrained mock-Chebyshev method vs Floater-Hormann interpolation

A Floater-Hormann interpolant is a rational global approximant obtained blending local interpolating polynomials.
More precisely, givenn� 1 distinct points�1� x0   x2   . . .   xn � 1 and fixed an integerd such that 0¤ d ¤ n,
a Floater-Hormann barycentric interpolant forf can be written as

Rptq �
n�ḑ

i�0

νiptqpiptq
M

n�ḑ

i�0

νiptq

wherepiptq is the polynomial of degree at mostd which interpolatesf in xi , . . . , xi�d, i � 0, . . . , n� d, while

νiptq �
p�1qi

pt � xiq . . . pt � xi�dq
.

This is a stable technique as confirmed by the study of the Lebesgue constant in [23]. Looking at Figure 9, it is evident
that, in approximantingf7, the Floater-Hormann interpolant reaches 10�12 on few nodes, but then stabilizes without
gaining anymore precision. Such a limit seems to be related to the smoothness of the function and to the location of its
poles within the Runge region. The error in the Floater-Hormann barycentric interpolation has been calculated using
the Chebfun algorithms which for each value ofn choose the ”best” blending parameter [24].

From previous comparisons we can conclude that the constrained mock-Chebyshev least-squares are a competitive
polynomial strategyfor defeat the Runge phenomenon. In this context, we can affirm that this method currently
provides the best we can expect from polynomials.

7. Algorithm

Let us recall that, fixedp as in (4.4), the polynomial̂PX is given by

P̂Xptq � PX1ptq � Q̂X2ptqωmptq

where the polynomial̂QX2 is the solution of the following least-squares problem

min
QPPp

} f � PX1 � Qωm}
2
2 .

We can express the previous minimum problem in matrix-form as follows

min
cPRp�1

}Ac� b}2
2 (7.1)

whereA �

�

ωmpx2i,n�mq � px2i,n�mq
j�1

�

i�1,...,n�m
j�1,...,p�1

is a realpn�mq � pp� 1q matrix,c � rc1, . . . , cp�1s
T is the vector

of coefficients ofQ̂X2 andb�
�

PX1px21,n�mq � f px21,n�mq, . . . ,PX1px2n�m,n�mq � f px2n�m,n�mq

�T
. Thus, the polynomial

P̂X can be computed using the following algorithm:
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Algorithm 1 Constrained mock-Chebyshev least-squares

Input: Xn, the set ofn� 1 equispaced nodes inr�1, 1s and the evaluations off at Xn

1. Determine the subsetX1m of Xn whose elements are the nearest to them� 1 Chebyshev-Lobatto nodes and its
complementX2n�m;

2. Compute the polynomialPX1 of degreemwhich interpolatesf on X1m;
3. Compute the polynomialωm;
4. Form the matrixA;
5. Solve mincPRp�1 }Ac� b}2

2;

Output: P̂X � PX1 � Q̂X2ωm.

For the sake of better readability, in Algorithm 1 we have notspecified that, when we deal with the computation
of a polynomial (cf. Steps 2-3), we refer to its evaluations on a given array. To improve the performance of this
algorithm we implemented Step 2 using the barycentric formula (cf. [25]). Such a formula is stable (cf. [26]) and its
computational cost isOpm2

q � Opnq. The evaluations of̂QX2 andωm are performed using the Horner algorithm. Let
us observe that Step 5 is the most expensive one. SinceA has full rank, if we solve (7.1) with the Householder QR
factorization (which is a stable method) we need 2pn�mqpp�1q2�2pp�1q3{3 flops (cf. [27]). Recalling that bothm
andp are proportional to

?

n, solving (7.1) requiresOpn2
q flops. Thus, the cost of the constrained mock-Chebyshev

least-squares isOpn2
q.

8. Conclusion and perspective

In this work, we have combined the mock-Chebyshev interpolation with a simultaneous regression, to defeat the
Runge Phenomenon for analytic functions with singularities close to the intervalr�1, 1s. We have determined a degree
for the simultaneous regression and a sufficient condition under which for such a degree the error of theconstrained
mock-Chebyshev method is, in the uniform norm, less than theerror of the mock-Chebyshev interpolation. The
proposed examples confirms that, in the uniform norm, the constrained mock-Chebyshev least-squares has better
accuracy than the mock-Chebyshev interpolation. It might be interesting to extend this idea to the multivariate case
on domains whose optimal distribution of nodes is known (cf.[28]).
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