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Abstract

The algebraic polynomial interpolation on uniformly distrted nodes isféected by the Runge phenomenon, also
when the function to be interpolated is analytic. Among edhniques that have been proposed to defeat this phe-
nomenon, there is the mock-Chebyshev interpolation wigamiinterpolation made on a subset of the given nodes
which elements mimias well as possibléhe Chebyshev-Lobatto points. In this work we use the siamglbus ap-
proximation theory to combine the previous technique wigfolynomial regression in order to increase the accuracy
of the approximation of an analytic function. We give indioas on how to select the degree of the simultaneous
regression so as to obtain polynomial approximant goodeénutiiform norm and provide a ficient condition to
improve, in that norm, the accuracy of the mock-Chebyshrjiolation with a simultaneous regression. Numerical
results are provided.

Keywords: Runge phenomenon, Chebyshev-Lobatto nodes, mock-Chebiyghrpolation, simultaneous regression

1. Introduction

In many scientific disciplines when we want to study a phenwmneave can start in observing and recording what
happens at regular instants of time. This provides a sanfgl@@mation that we can use to give a more or less
accurate approximation of the observed phenomenon. Foaiim mathematical tools are needful. The first step is to
imagine regular instants of time as a set of uniform distedypoints and the sample of information as the evaluations
of an unknown function. In this case a classical techniqeel g associate to the discrete set of experimental data a
continuous approximation of the phenomenon is the algelp@inomial interpolation. This technigue has the well-
known drawback that on uniformly distributed nodes mightemverge even if the considered function is regular. A
classical example is given by Runge’s function

1
f(t) =———=—, te[-1,1
(®) 14 25t2 [ ]
on an equally spaced triangular array of nodes
X0,0,  X01,X11,  X02,X12,X22, ...,  Xon, Xyn, ..., Xnn,
wherexn = -1+ ﬁi fori = 0,1,...,n,n € Np. In this case, the error made by interpolatihgvith polynomials

has wild oscillations, a phenomenon knownRasnge PhenomenoiMany techniques have been proposed to defeat
this phenomenon; just to mention some of them, the leasiregitting by polynomials [1], the barycentric rational
interpolation [2, 3, 4], its extended version [5], the ip@lation on subintervals [6]. A further technique expldite

cut down the Runge phenomenon is the so called mock-Chebgabset interpolation which takes advantages of the
optimality of the interpolation processes on Chebyshebdtto nodes [7]. The main goal of this paper consists in a
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combination of this kind of interpolation with a regressaimed to improve the accuracy of the approximation of an
analytic function; we will refer to this combination aenstrained mock-Chebyshev least-squares

The paper is structured as follows. In Section 2 we discusgestetails on the mock-Chebyshev subset inter-
polation. The constrained mock-Chebyshev least-squaeds@oduced in the Section 3 and deeply investigated in
Sections 4 and 5 in which we deal with the choice of the degird®esimultaneous regression and with an estimation
for the error in the uniform norm, respectively. Section @ésoted to some numerical results. Last Section contains
the algorithm.

2. Mock-Chebyshev subset interpolation

Let f be an analytic function with singularities close to the imé¢[—1, 1] and suppose that its evaluations are
known onn+ 1 equally spaced points of that interval. The idea that Uiedahe mock-Chebyshev subset interpolation
is to interpolatef only on a proper subset consistingrof+ 1 of the given nodes which "looks like” the Chebyshev-
Lobatto grid of ordem + 1. The result is that if we carefully choosg the convergence of the interpolation process
on such a subset of nodes fowhich tends to infinity will be preserved (cf. [8]). Some natas: from here onwards
we will indicate the equispaced grid of cardinality- 1 with the symbolX,,, while the mock-Chebyshev subset6f
of orderm + 1 will be denoted byX!,. To understand how to properly choasdsee e.g. [9]), let us remember that
them + 1 Chebyshev-Lobatto nodes are defined as

X?Lz—cos(%j), j=01,...,m

Letus expand(fL in Taylor series centered in zero

xCL=—1+”—2+o<i><—1+”—2 (2.1)
! 2m2 m 2me’ ‘
Beingx§t = —1, the diference§" — xSt is aO (). In other words, this means that thre+ 1 nodes of Chebyshev-
Lobatto are distributed ifi—1, 1] with a density that is roughly quadratic m. So forn proportional tom? or m
proportional to~/n, we can select among the given nodes a subset which mimidfiaisntly large Chebyshev-
Lobatto grid. Letc be the constant of proportionality; a way to calculate iisnpose that the second node of the
Chebyshev-Lobatto grid is as close as possible to the setmaelof the equispaced s6t

b 2
—COS(—) ~ -1+ —-.
m n

This can be done in the following manner: by (2.1) we fix thgéat integem such that

71.2

1
1+ < 14—
+n +2mz

so for

m— [L \/ﬁJ (2.2)

for sure—1 + % is the point ofX, closest tO(fL (for an example, see Figure 1). This choicect % avoids the fact
that the endpoints-1 and 1 can be selected more than once.

For analytic functions the polynomial interpolation on Giighev nodes converges geometrically and stably. The
mock-Chebyshev interpolation is a stable procedure buttes of convergence is subgeometric. In [10] has been
shown that on equispaced nodes no stable method can comgesrgetrically.
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Figure 1: Plot of the Chebyshev-Lobatto nodesgnd mock-Chebyshev nodeg forn+ 1 =21 m= % V/20=9.

3. Constrained mock-Chebyshev least-squares

In performing the mock-Chebyshev interpolation we knowetialuations off on the whole seX,, but actually
we only use the information corresponding to the element&/of Indeed, in [9] then — m remaining nodes are
definitively discarded and the corresponding evaluatiosadast. Our idea is to use those nodes, whose set will be

denoted byX[ . = {Xlll,n_m» X e -5 xﬁ_mn_m}, X nem < Xopn_m < « < Xo_mn_m 10 improve the accuracy of
the approximation through a simultaneous regression. Moeeisely, letf be an analytic function of--1, 1] and
let P = {P eP IP(X ) =f(X ), 1 =0, 1,...,m} where#" is the space of polynomials of degreer and
m < r < n. We search the solution of the followirngnstrained least-squares problgid, 12, 13]

in |f —P|3 1
min ||t — Pl (3.1)

where|-|, is the discrete 2-norm oX//_ ..

Theorem 3.1. The constrained least-squares problem (3.1) has a uniquico.

Proof. Let us denote byPx the interpolating polynomial fof on X/,. It is not dificult to verify that a generic
polynomialP € P* is of the formP(t) = Px/(t) + Q(t)wm(t) with wm(t) = ]r_n[(t — X ) andQ(t) an arbitrary

i=0

polynomial of degree — m— 1. The problem (3.1) then becomes

. 2
oemin_ I = (Px + Qum) 3

= min kzl {f (Xl/</,n—m) — Px (X{(l,n_m) - Q (Xl/</,n—m) Wm (Xﬁ,n—m) }2

err—m—l
2
o [ (K) = Px (Knm)
= Qegr“ﬂ‘fl Z -Q (Xl/:,nfm) (‘)En (Xﬁ,nfm) .

/!
om (4 1)

By introducing the following discrete weighted 2-norm

1

n—m 2
Iullz. iz, = (Z WkuZ(XL’,n_m)>
k=1
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wherew = a)zm(x{(’,nfm) fork=1,...,n—mand by defininng as

F ) = Pe()

f(t) == o . te[-11], (3.2)

the problem (3.1) can be reduced to the following classeast-squares problem

. o 2
oemin_ [ = Q. (3.3)

which has a unique solutiorm
By denoting withQx- (t) the solution of (3.3), the desired polynomial approximant i

Py (t) = Px:(t) + Oxr (Dwm(t). (3.4)

To write Py explicitly, let us introduce the discrete inner produciasated to the nornfe(|,,,2

W) = 3 WU VO )
k=1

and let{r;(t, w? .r:m_l be a basis oP" ™ 1 orthogonal with respect to the previous product. We can Wy (t
m/Ji=0 g p p p

with respect to that basis as

. r—m—1 (f,ﬂi)wz
Qu(®) = ), am(t). g = L—==.
i—o b g

ThenPx(t) becomes explicitly

Px(t) = Py (t) + ( '

Theorem 3.2. In the discrete2-norm on X the inequality
If = Pxl, <IIf = P,
holds.

Proof. The choice of an orthogonal basis #8f~™! allows us to express the errér— Q. in the |ll2 norm as
follows:

If = Qx

~2 r-m-1 5 5 3 ( v
203 ||f||2,w%‘ - ZO i ||7Z'i ”2,0)% , G = (72-7
i=

Therefore the errof — Py in the 2-norm is

R r—m—1 2 f _ P T
. {f I S nmwmé} g = (= Pxoon)
i=0

(i wm, Ttiwm)

]
In other words, the error made by using the constrained n@Ziebyshev least-squares method is, in the 2-norm,
strictly smaller than the error produced when we restricselves to the mock-Chebyshev subset interpolation.



4. The degree of smultaneousregression

As shown in the previous section we approximate the functiavith a least-squares polynomial that satisfies
interpolation conditions on a mock-Chebyshev subset ofjthen nodes. We have not specified yet how to choose
the degree of the constructed approximBat When this degree increases up to the total number of noges th
approximation gets worse, since the combined approxingaroaches the interpolating polynomial.

Theorem 4.1. Let r be the degree d®x and let us denote by,Pthe interpolating polynomial of f on X If r = n
then A
Px = Px.

Proof. Recalling that . .
Px(t) = Px (1) + Qx ()wm(t)

if Py is ann degree polynomial, the regression polynon®g} must be an — m — 1 degree polynomial. Since the
least-squares s’ . has cardinalityn — m, Qx~ is the interpolating polynomial fof on X"_  that is

O () = FKlp ) k=L...on—m
From the previous relation it follows that
ISX(X{(I,nfm) = PX’(Xﬁ,nfm) + QX”(XZ,nfm)(”m(XZ,nfm)
= PX’(X:(l,n—m) + f(Xﬁ,n—m)wm(X{én—m)
f(xﬁ,n—m) - PX'(Xf(l,n—m)

= Py X! —m)
( k,n m) wm(xﬁ,n,m)

wm(xﬁ,nfm)

= f(xil:,nfm)

that isPy interpolatesf on X”_,.. However, by constructioRy interpolates alsd on X/, then it coincides with the
interpolating polynomial foif on X, by the uniqueness of the interpolating polynomial of degrea X,. =m

By taking into account this result, let us come back to theahof a proper degree fdtx. Clearly, it depends
on the degree of the simultaneous regression polynomiaigheof the polynomiax-. In order to determine a
degree forQx~» which gives, in the uniform norm, better accuracy of the ¢@msed mock-Chebyshev least-squares
with respect to the mock-Chebyshev interpolation we ussatrpresented by L. Reichel in [14]. This result implies
that for an equispaced set@finternal) nodes of—1, 1]

2k—1

7= -1+ ,k=1....q (4.1)
the degreep of the least-squares polynomial should be selected so hiea¢ tis a subset of cardinalify + 1 of

the equispaced set which is close, in the mock-Chebyshesesemthep + 1 Chebyshev grid. Actually, the result
presented in [14] is more general since it deals with thetdsgqsares approximation of a function on a Jordan curve
in the complex plane. To explain the outlines of Reichelésidve use his notation. LEtbe a Jordan curve or Jordan
arc in the complex plane and I€tthe open set bounded by If I' is a Jordan arc thef is void. Let{zk,q}E:l be a

set ofq distinct nodes ofr. For a given functiorp onT, let L, 4¢ denote the least-squares polynomial of degtee
with respect to the semi-norm

1
2

lell := (¢.¢)
defined through the inner product

q
(00) 1= D ¢(Za)¥ (%a)-
k=1

Moreover, letl ;¢ be the interpolating polynomial ¢f at p + 1 distinct points,{w|(,p}»|’j:O onT. We writel, < Lpq if
{Wicpte—_o © {Zcq}te_,- We equip the domain and the range.gf, and|, with the uniform norm o

lelly = suple(2)]
zel’
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and we denote the induced operator norm with the syroFinally, we define
Eoly) = Jnf le = Qolr

The following theorem [14, Theorem 2.1] bounds the norm efldast-squares projectidsp q in terms of the norm
of the interpolation projectioty,.

Theorem 4.2. Let L4 and |, be defined on the set of continuous functiofan Q and analytic inQ. Then

ILpgll < (1ol <1+ \/d sup Ep(‘P)) , Vlp < Lpg, VQ = p. (4.2)

lelr=1

By means of examples it has been shown that also vghsrfixed the /g growth of the right-hand side of (4.2)
can be achieved. This suggests to make further assumptiotteeadistribution of the interpolation nodes and on
the smoothness of the function. Generally, we will assuraghis an increasing function af. Using a Jackson’s
theorem [15, p. 147] the following corollary [14, Corolla2yl] shows that additional smoothness of the function to
be approximated decreases the growthlof, |with g, p(q).
Corollary 4.3. Letl’ = [—1,1] and let Ryxr := {tp e C-1,1], %‘f

some constant D depending on the constant d and on the irkkeger

ILpgl < [Tl (1+ Da(p + 1)7k)’ Vlp < Lpg.

The next step is to determine a bound for min,, ||Ip[l. We do not discuss in detail the estimates calculated
for |[Ip] in [14] but only mention that a useful bound for myjin. ||1,] is obtained when the interpolation points are
Fejér points or points close to Fejér points. Let us reibalt for a generic curvE the Fejér points are defined as the
image onl" of equispaced nodes onto the unit circle through a partimdaformal mapping [14]. In particular, if
I' = [—1, 1] the Chebyshev points are Fejér points [14, Example 3.18.é&timates obtained fdk, | in [14] suggest
the following least-squares approximation method:

RS d} be the domain of }4. Then for

Criterion4.4. LetT' = [—1,1]. Given a functionp € Fqxr and q least-squares nodézk,q}gzl onT, choose the
degree of the approximating polynomigdy as the greatest p such thatipl points are close to g- 1 Fejér points.

When theg nodes are equispaced like in (4.1) this means that the degrethe least-squares approximant should be
selected so that there apet 1 points among the equispaced ones which are close tp #h& Chebyshev nodes. In
other words p should be selected in the mock-Chebyshev sense.

In the case of simultaneous regression the least-squaties aoe those of_ _ and therefore they are not equally
spaced. However, when the cardinalityX¢fis suficiently large we can approximate an equispaced grid wittitwid

> 2h, h = 2 using nodes belonging %&/_,... In fact, the maximum distance between two consecutivesioti/ . is
at most h. To be aware of it, let us observe that the intefval [x’l’,nfm, xﬁ_mn_m] according to the mock-Chebyshev
extraction is properly contained [r-1, 1] and symmetric with respect to the origin. Because of theaghof m the
first and the second node Xf, are equal to, andxy , respectively, i.eX!, = {Xon, X1n, - - - }. Moreover, we have

Lemma4.5. The first three nodes ofbelong to X, i.e.
Xin = {Xon: X1ns X, - -+ } -

Proof. To prove thatx,, together withxgn, X1.n has been taken during the mock-Chebyshev extraction, we toee
expand in Taylor series theftérence between the second and the third Chebyshev-Lolmatéo n

2n n 3 n m 3n n* n 3r
CL__ (L _ _ = 2\ - P et H _ T N0 -~ et
X5 — X{ cos<m> +cos(m) 25m<2m> sm( Zm) 22m2m+o<m4> <22m2m'
Recalling tham is given by (2.2) the previousfiierence can be rounded up ﬁyand the thesis follows (see Figure
2). m
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Figure 2: Proof of Lemma 4.5

Lemma4.6. Forn > 7, x3n does not belongto/X i.e.
Xan € Xf m N>T.

Proof. Let us expandSh in Taylor series

3r On? 81r* 37\ ° 9 27
cLo— ) 14 2 2 > 1422
X3 cos( ) tom T3 1+O<< >)> T om

and check for which values ofe N the following inequality holds

We obtain that

and thereforéxG- + 1 — 8| > Xt +1— 2| m

Proposition 4.7. For syficiently large n the following inequality

2<f|]l%Xm|X: 1,n—m Xi/fnfm| < 2h

holds.

Proof. The thesis is equivalent to the fact that among the nod&4 dfelonging tol = [—1 + %, 1- %] there are not
two consecutive nodes of,. By Lemma 4.5 and Lemma 4.6 the nodes oftie 1 Chebyshev-Lobatto grid which
are contained im are

. .
ijL=—cos(aJ),J=3,...,m—3. (4.3)

It is well-known that the nodes (4.3) are more dense nearrdpants ofl and less near its center, therefore it is
sufficient to verify that the distance betwegft andxS" is greater thanl2 Let us expand in Taylor serie§" — xS*

Xgh-xt = —COS<4—r:>+cos<3—n:>=—23in<27—:;>sin<—§n)
Rk (<7—”>))(§n—<§nfé+o

6"
_om_wst
T 2m 24mt

round downward by



and impose that

4 - 7 175
n n 6n%
From the previous inequality it follows that
175
—— ~972
n> 18

and the thesis holdss

At this point we can apply the results presented in [14] tosiheultaneous regression. Taking into account that the
grid (4.1) is equispaced with Widt%l in [—1 + é 1- é] we note that, fon suficiently large, we can approximate

such a grid withg = § = 3—1h and nodes coming fronq!__.. We denote this grid witlf(,’{_m. The choice for the degree
of the simultaneous regression which gives good approxmat the uniform norm is therefore

- |- 4]

Let us observe that since the degree of the mock-Chebystepatation and the degree of the regression are chosen
in the same way, we can obtain the previous result applyinf tq, the idea explained in [9], that is imposing that

—cos<z> ~ -1+ §
p n

It is a straightforward calculus to prove thawill be like in (4.4).

5. Uniform norm estimation

We have determined the degrpes in (4.4) for the polynomiax~ which, according to Reichel's theory, gives
good approximation in the uniform norm. Now, we want to citeian estimation for the norm errég, (f) =
|f = Px]|, inthe uniform norm. LePx : C[—1,1] — P™* the projection operator which associates to a continuous
function in [—1, 1] its constrained mock-Chebyshev polynomial and@gt : C[—1,1] — #' ™1 the projection
operator which associates to a continuous functigr-ihy 1] its least-squares polynomial in the nofrf, . .

As in the proof of Theorem 4.2 and Corollary 4.3 we get an esténfior the operator nonﬂéxm

Theorem 5.1. Lety € C[—1,1] and ¢ be the interpolating polynomial @f on the p+ 1 mock-Chebyshev subset
P .
Xy = {x{(’fp}kzo of X/. Then
n—m
()
k=1

<ol | 1+ ————= sup Ey(¢p)

[min /W el =1

.....

Nl

| Qx

Proof. Let Q¢ be the polynomial of degreg p such thaEp(¢) = |l¢ — Qj¢| . By (3.3)

| Qurep — ‘PHM% <[Qpe - ‘p”zw% ‘
On the other hand,

1
2

n—m 2
156 =l = (2 W (ki) (X))

< (Z'w) Ioze-el, 1
- (Tw) &)
k=1



Letlk(t) k=0,..., p be the elementary Lagrangian polynomials associatedXyftithat is
Lp(t) = D7 (X1 (0).
j=0
Let us expres®x-¢ in the same basis as
P
Qure(t) = Y ajlj(t)
j=0
for some co#ficientsaj. From (5.1) it follows that
1
R n—m 2 .
AU ‘aj —90(X’j’,’p)‘ < | Qxre — ¢, < (Z Wk> Ep(¢), j=0,...,p.
k=1
wherew;, j = 0,..., pare the positive weights corresponding to the no%k{%} and then

P
k=0
1
n—m 2
k=1
< —~Ep(90)-

Substituting the previous relation into

P
[Qere®)] < Y oy — (4| 1501+ [exto)| 150
_

j=0
1
n—m 2
k=1

= sup [ Qxe|, <|lp] — — sup Ep(y) + [lp]
lell, =1 ” Jmin /W gl =1

.....

we obtain

[ Qx

which proves the theorenm
Recall that, fixed” = [—1, 1], according to [14], for eacke N andd > 0 we set

< d} |
r
Corollary 5.2. If qu has domain g there exists a constant D depending on d and on the integectktbat
1
n—m 2
(E)
< il | 1+ D2
“min Wi
j=0,....p

d'

Fakr = {(p tp e C[-1,1], s

|Qx- (p+1)7* (5.2)

Proof. From a Jackson’s theorem [15, p. 147] o€ Fqxr it follows
Ep(¢) <D(p+1)*

whereD is a constant depending drand on the integet. =
With these results in mind we can provide an estimate in thif@um norm for the error of the constrained mock-
Chebyshev least-squares.



Theorem 5.3. Let fe Fq,r. Then

(w)

Ee (f) < [ 1+lpf | 1+D —(p+1)7° | [Ep(f) wml, (5.3)
min_\/W;
j=0,...,
Proof. Let us start from the following relations
Ef’x(f) = Hf — Px/f — qu f’\a)m”%
f—Pxf A f—Pxf
- [ o= 6o (12 )
wWm Wm e

/N

f— Py f
oo () o,

m

f—P,, f

Wm

whereEg , ( ) is the uniform norm error made in approximatilﬁg/vith its least-squares polynomial in the

norm ||-H2’wzm. SinceQx- is a projection operator which reproduces the polynombagallowing inequality holds

f—Pxf A N
o (o2 ) < 4+ Q) Bl
Wm
whereE,(f) = er;iprl |f = Q|.,.. Therefore
Es () < (1+[Qx|) Ep(f) eml.,

which applying Corollary 5.2 td gives the thesism
Theorem 5.3 gives a fiicient condition to improve in the uniform norm the accuraéyh® mock-Chebyshev
interpolation through the constrained mock-Chebyshestisquares.

Corollary 5.4. Let f e C™1[-1,1]. If

n—m %
(k—l Wk> p 3 || f (m+1) ||
1+ 1+D————(p+1)~ Ep(f) <

o |10 o) | |8 < oy

then
Ep, (f) < Ep, ()
where B, (f) = |[f — Px

I
Proof. Let us recall that the error in the Lagrange interpolatiomlsa bounded as follows
[

Eeo (D) < D

leomll. -
From Theorem 5.3 we get the thess. A
Finally, the following corollary shows that the operaiy reproduces polynomials of degreem + p.

Corollary 5.5. If f = p, with p. € P™P, then A
Pyf = f

10



Proof. If f = py withr <m

o p() = Popr () P (&)
v = wm(t) " (m+1)!

=0.

If f=pwithm<r<m+p
2 pr(t) — Pxpr(t)
ft) = —————
(t) om®

is a polynomial of degree— (m+ 1). In both case&,(f) = 0 and the right-hand side of (5.3) is zem.

6. Numerical results

We finally carried out a series of numerical tests to compartie uniform norm, the approximation of the con-
strained mock-Chebyshev least-squares and the mock-Ghebjnterpolation. A first set of test functions includes
the following ones (the first three functions were alreadysidered in [16]):

fi(t) = /|t
fa(t) = Tést?’
te[-11].
fa(t) = 15t pome
fa(t) =tlt],

The functionf; is Holder continuous with exponent?, the functionfs is a modification off, obtained by introducing
the exponential 10'° in order to squaslif, on x andy axes, the functiory is of classC. The errors are computed as
the maximum absolute value of theféirence between the approximant and the exact function &11€§uispaced
points in[—1,1]. Let us rename wittp the degree of the simultaneous regression polyno@jal In Table 1p
ranges fromp = 28 top = 100. We denote witlp* the degree of the simultaneous regression which, accotding
the theory explained above, gives good approximation inutfiorm norm. Table 1 allows to compare the two errors
of interest in the case of+ 1 = 1001 equispaced interpolation nodes. At the top of the tablgreen, is highlighted
the errorEg, (fi) in correspondence of the degrpt. In red is highlighted the minimum possible erigg, (f;) in
the rangg[1,n — m — 1]. At the bottom, in blue, is represented the ey, (fi). As we can see, the constrained
mock-Chebyshev least-squares improve the accuracy opgir@@mation of the mock-Chebyshev interpolation. We
note that in correspondence of the degp&ave obtain an improvement of the accuracy of approximationréMn
detail, for f; there is an interval fop in which the approximation obtained with our method is lrett@n the one
coming from the mock-Chebyshev interpolation. In this dageimprovement involves only the déeients. When
the function to be approximated is the Runge function, opraximation is everywhere more accurate foranging
from 1 to 100. In particular, there is a range foin which we get 2 digits of precision more than the mock-Clsiigy
interpolation ang* lies in this range. Fofs our approximation is, up to a certain value, better but atrtteessame of
the approximation obtained with the mock-Chebyshev ikton and then gets little worse. In the casd pthere
is an interval forp in which we get 1 digits of precision more than the mock-Clséley interpolation.

We have done further tests using the Runge function and tlosviag ones:

— 1 _
fe()—m(m N5 te[-11],
_ 1
f7(t) - t4+(%)2,

11



p Es, (f1) Ep, (T2) Ep, (f3) Ep, (f2)
28 7.072658@— 002 Q7493852 — 009 99994994 — 001  5430852& — 005
29 78915088 002 85899644 — 009 Q999476@ — 001  5430852& — 005
33 77268582 — 002 62480174 — 009 Q999427@ — 001  A887907@ — 005
34 77268642002 62483426 — 009  Q999427F— 001 46554802 — 005
35 7759367 —002 76886832 — 009 Q999437& — 001 46554852 — 005
36 77593662 — 002 76886782 — 009 Q999437%— 001  4851324% — 005
37 7666743B— 002 58468658 — 009 9.9994084— 001  4851290% — 005
38 76667394— 002 5847033 — 009 Q9994082 — 001 50626752 — 005
47 7502664%— 002 7256330B— 009 9999383& — 001 7866267 — 005
48 75926558 — 002 7.256687%— 009 99993834 — 001  8310688& — 005
49 7608147B—002 8011841 —009 99993892— 001  8310658@ — 005
59 08058844 — 002 Q782609&— 009 99993832 — 001 12059132 — 004
60 98061132 — 002 9782901@ — 009 9.099383%— 001  1234235@ — 004
61  1051460&—001 11889342 — 008 Q999392@ — 001 12342492 — 004
99  35158374— 001 2997837@— 008 3030457@ + 000 3899318% — 004
100 3515773B— 001 2997731E— 008 30304058+ 000 40022642 — 004

EPX/ ( f1)

EPX/ ( f2)

EPX/ ( f3)

Ep,, ()

8.756958& — 002

89863528 — 007

9999665@ — 001

1509557& — 004

Table 1: Comparison betwedtp, (fi) andEp,, (fi) for n = 1000. In this casen = 70, p* = 28.

which, as the Runge function, are analytic in the intefwal, 1]. The functionfs has poles at- v/1 + 0.5, while
the functionfs has poles a + i and—1 + i and the functiorf; has poles a% + is_\l/z and—s—\l/z + is_\l/z'
Figure 3 compares the errors fé. The error in the constrained mock-Chebyshev least-squsréor every 30<

n < 3530, smaller than the error in the mock-Chebyshev intetfmol. The numben = 3530 is due to the fact that
the constrained mock-Chebyshev least-squares methddeacder 10'° onn 4 1 = 3531 equispaced nodes. The
accuracy of the mock-Chebyshev interpolation on the samefsdes is of order 102. Figure 4 shows how the
errors vary for the functioris when 20< n < 292. Also in this case the approximation provided by the tansed
mock-Chebyshev least-squares is more accurate than thprovieled by the mock-Chebyshev interpolation and
again when the accuracy of the former is of order fhe accuracy of the latter is of order 18. Figure 5 shows

the errors behaviour for the functidg when 40< n < 924 and the results are similar than in the previous cases.
Finally, Figure 6 compares the errors fir In this case, the maximum order of precision that can behehby the
constrained mock-Chebyshev method is %0

The remaining part of the present Section is devoted to tirgeoison of the constrained mock-Chebyshev method
with some Radial Basis Functions, Hermite Function int&on (cf. [17]) and Floater-Hormann barycentric inter-
polation. A diference between these techniques and the constrained nhetkshev least-squares is the structure
of the approximation. Indeed, only the constrained mockifyishev least-squares is based on polynomials, while the
other approximants belong to other classes of functions.

Constrained mock-Chebyshev method vs RBF interpolation

Givenn pointséy, . .. &, in [—1, 1] (called centers) and the corresponding valfies a given functionf on them,
an RBF interpolant foff takes the form

S(t) = > aig(|t — &)
i=1

12
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Figure 3: Comparison betwedp, (f2) () (lower curve) Figure 4: Comparison betwedtp, (f5) () (lower curve)
andEp,, (f2) (e) (upper curve) for 306< n < 3530. When andEp,, (fs) (e) (upper curve) for 20< n < 292. When
n = 3530, de¢Px f2) = m+ p* = 131+ 53. n =292, degPx fs) = m+ p* = 37+ 15.
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Figure 5: Comparison betwedtp, (fs) (x) (lower curve) Figure 6: Comparison betwedtp, (f7) (x) (lower curve)
andEp, (fs) (») (upper curve) for 40< n < 924. When andEp,, (f7) (e) (upper curve) for 20< n < 7843. When
n = 923, dedPx fg) = m+ p* = 67+ 27. n = 7843, degPx f7) = m+ p* = 196+ 80.

whereg(r) is a function defined for > 0. TheJ; are determined, as usual, by imposing the interpolatioditions
S(¢j) = fj, j = 1,....,n. Popular choices fap(r) are

e ¢(r) = [r|*™*, Monomials (MN),
o ¢(r) = (1—r)%(1+ 4r), Wendland (W2),

Inverse Multiquadric (IMQ),

° () = \/ﬁ
o ¢(r) = exp(—(er)?), Gaussian (G),

¢ is known ashape parametesince ag — 0 RBFs become flater, whike— o0 makes the RBFs spiky. The first two
are parameter-free and piecewise smooth, while inversggquatirics and gaussians are infinitely smooth and depend
on e. Although we will numerically compare the constrained m@tkebyshev method with the RBF interpolants
associated to every choice ¢fisted above, from a theoretical point of view we focus otemtion on the Gaussian
RBFs (GRBFs). In [18] it has been proved that, when 0, smooth RBF interpolants converges on the polynomial
interpolants on the same nodes. This means that, in suchlarfiatase, as the polynomial interpolation also the
RBF approximation on uniform grids fers of the Runge phenomenon. Furthermore, in [19] the astimred that

the GRBFs on equally spaced nodes and fixed parameter diwbigeinterpolating functions that have poles in the
Runge region of polynomial interpolation. A way to avoid fRenge phenomenon when interpolating with GRBF is
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to vary the shape parameter with Indeed, as suggested in [20], if we define= s%, fora = O (%) the Runge

phenomenon disappears. Such a choice has a drawback smce; ao, the condition number of the interpolation
matrix increases exponentially. Hence, the GRBFs can ti#tfedRunge Phenomenon just as the constrained mock-
Chebyshev least-squares, but being ill-conditioned tlagybe used only on few nodes. lll-conditioning, mainly due
to the basis of translates, can be reduced significantly ings$able bases, as discussed in [21].

107+

10" 1 10° |

10

10" -

1079}

10]

L L L L L L L L L 10~
200 400 600 800 1000 1200 1400 1600 1800 2000

L L L L
100 200 300 400 500 600

Figure 7: Comparison betwedip, (f2) (+) and the errors
obtained in approximatindz with (from top to bottom)
W2 (=), MN (), G (v), and IMQ (x) RBF interpolants
for 20 < n < 2000.

Figure 8: Comparison betwedfp_(fs) () and the error
obtained in approximatinds with tﬁe Hermite function in-
terpolant ) for 40 < n < 600.
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Figure 9: Comparison betwedtp, (f7) () (upper curve),
and the error in the Floater-Hormann barycentric interpo-
lation () (lower curve) for 20< n < 7843.

Figure 7 shows that, in approximating the Runge funcfigrihe constrained mock-Chebyshev least-squares are,
for initial values ofn, less accurate than the RBFs interpolants, whiley iasreases, they become more accurate. To
have an idea of the discrepancy, while the constrained ndwbyshev least-squares reach order*2@see Figure
3), the order of the RBFs interpolants for langeanges from 107 to 10~°. In performing this numerical test, for
every fixedn, we have determined the shape parameter of IMQ and GRBFg ih&rso calledrial & Error technique
which consists in varying into a fixed (discrete) range and choosing the "optimal” paater as the one that produces
the minimum error. Unfortunately this method requires afo€EPU time for finding the "optimal” shape parameter.
Other techniques are also available, as those describ2d,ich. 17], but for our purposes the Trial & Error is a good
way to estimate the optimal

Constrained mock-Chebyshev method vs Hermite functierpiofiation
For a given functiorf the Hermite function interpolant ampointsé, . . . & in [—1, 1] can be expressed in the first

14



barycentric form as
H = (0 3, 2 1(6). 0 = ed(~(n— 1/2log ) [Tt -£). = (%ie)

wherey is a free parameter (optimal choices are 1 or slightly smjallks stated in [17], the computational cost of
the previous formula i©(n?) which means that the Hermite function interpolation is gfegahan the GRBF interpo-
lation. Furthermore, in the same paper the authors give noatevidence that the Hermite function interpolation is
substantially more accurate than the GRBF interpolatiaweéVer, as RBFs, also this kind of interpolation is strongly
ill-conditioned and therefore its use must be limited to aimaim of about 250 interpolation points. Figure 8 shows
how the ill-conditioning limits to 108 the best attainable accuracy in approximatiggith the Hermite interpolant,
while the constrained mock-Chebyshev least-squares ayelese to machine precision (see Figure 5).

Constrained mock-Chebyshev method vs Floater-Hormaerpalation

A Floater-Hormann interpolant is a rational global appneant obtained blending local interpolating polynomials.
More precisely, givem + 1 distinct points—1 = xg < X2 < ... < X, = 1 and fixed an integeat such that 0< d < n,
a Floater-Hormann barycentric interpolant focan be written as

n—d n—d
RO = Y, m(Om(®)/ Y ()
i=0 i=0
wherep;(t) is the polynomial of degree at maswhich interpolates in x;, ..., X+, 1 =0,...,n —d, while

e (1)
(U s T

This is a stable technique as confirmed by the study of thedglreconstant in [23]. Looking at Figure 9, it is evident
that, in approximantind-, the Floater-Hormann interpolant reaches *on few nodes, but then stabilizes without
gaining anymore precision. Such a limit seems to be relatfietsmoothness of the function and to the location of its
poles within the Runge region. The error in the Floater-Hammbarycentric interpolation has been calculated using
the Chebfun algorithms which for each valuenathoose the "best” blending parameter [24].

From previous comparisons we can conclude that the consttanock-Chebyshev least-squares are a competitive
polynomial strategyfor defeat the Runge phenomenon. In this context, we ¢anmathat this method currently
provides the best we can expect from polynomials.

7. Algorithm
Let us recall that, fixegh as in (4.4), the polynomiddy is given by
Px(t) = Px:(t) + Qx» (wm(t)
where the polynomiaDy~ is the solution of the following least-squares problem
min[f — Px — Qumf
We can express the previous minimum problem in matrix-fosrfolows

min |Ac— b3 (7.1)

ceRpP+1
whereA = [wm(><i’fn7m) x ()(i’fan)i‘l]i:l ’’’’ W misarealin—m) x (p+ 1) matrix,c = [cy,...,Cps1]" is the vector
j=1,..p+1
~ T
of codficients ofQx» andb = [PX/(Xlll,nfm) — (X - P (X _mnem) — f(xﬁ_mn_m)] . Thus, the polynomial
Py can be computed using the following algorithm:

15



Algorithm 1 Constrained mock-Chebyshev least-squares
Input: X,, the set oh + 1 equispaced nodes jr-1, 1] and the evaluations df at X,

1. Determine the subs¥, of X, whose elements are the nearest torthe 1 Chebyshev-Lobatto nodes and its
complemenX”__:

. Compute the polynomidy: of degreemwhich interpolates on X/ ;

. Compute the polynomiaby,;

. Form the matrix;

5. Solve miRcge+: |AC— bllg;

A WN

Output: Px = Py + Qxrwm.

For the sake of better readability, in Algorithm 1 we have spcified that, when we deal with the computation
of a polynomial (cf. Steps 2-3), we refer to its evaluationsaogiven array. To improve the performance of this
algorithm we implemented Step 2 using the barycentric fdantef. [25]). Such a formula is stable (cf. [26]) and its
computational cost i©(m?) = O(n). The evaluations ofx» andwy, are performed using the Horner algorithm. Let
us observe that Step 5 is the most expensive one. @i full rank, if we solve (7.1) with the Householder QR
factorization (which is a stable method) we neéd-2m)(p+1)?—2(p+1)3/3 flops (cf. [27]). Recalling that botim
andp are proportional to\/n, solving (7.1) require®(n?) flops. Thus, the cost of the constrained mock-Chebyshev
least-squares iB(n?).

8. Conclusion and per spective

In this work, we have combined the mock-Chebyshev intetjmravith a simultaneous regression, to defeat the
Runge Phenomenon for analytic functions with singulasitiese to the intervdl-1, 1]. We have determined a degree
for the simultaneous regression and #isient condition under which for such a degree the error ottivestrained
mock-Chebyshev method is, in the uniform norm, less tharether of the mock-Chebyshev interpolation. The
proposed examples confirms that, in the uniform norm, thestcaimed mock-Chebyshev least-squares has better
accuracy than the mock-Chebyshev interpolation. It mighinberesting to extend this idea to the multivariate case
on domains whose optimal distribution of nodes is known[@8]).
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