Polynomials arising in factoring

generalized Vandermonde determinants III :
computation of their roots

Stefano De Marchi
Department of Computer Science, University of Verona, ITALY
E-mail: stefano.demarchi@univr.it

Maria Morandi Cecchi
Department of Pure and Applied Mathematics, University of Padova, ITALY
E-mail: mcecchi@math.unipd.it

Abstract

Determinants of the form
Va(x) = 27|, 4,j=1,...,N

where x = (z1,...,zy) is formed by N distinct points belonging to some inter-
val [a, b] of the real line and the o are ordered integers a1 > ag > --- > ay >0
are known as generalized Vandermonde determinants. These determinants were
considered by Heineman at the end of the 1920s [9]. The paper presents some
results concerning univariate polynomials arising from V,(x), by considering
one of the z; as an unknown. In particular we shall consider the problem of
computing their roots by means of a family of iteration functions having a
symmetric structure which is connected to the structure of our polynomials.

Keywords: Polynomials, determinants, factorization of matrices.

AMS Subject Classification: 11C08,15A23.

1 Introduction

Generalized Vandermonde determinants, shortly GVD, arise in many contexts of ap-
plied mathematics. For instance in the framework of linear difference equations with
constant, coefficients (cf. e.g. [1]) or in two step Runge-Kutta-Nystrom collocation
method for the numerical integration of second order differential equations (cf. e.g.
[13]) or again in the problem of finding generalized Fekete points for an arc of a curve
(cf. [3]). These examples simply show the variety of applications in which GVD arise
and the necessity of finding a method for computing them. The computation of GVD
is almost a known problem and, as we shall see in Section 2.1, every GVD has a

factorization in terms of a classical Vandermonde determinant, that is

VDM (zy,...,zn) = H (@ — ;)

1<i<j<N

where the z; are points belonging to some interval of the real line, and a Schur
functions.

The paper is organized as follows. In Section 2, after some necessary notations,
in the subsection 2.2 we introduce the family of polynomials obtained considering
zy as an unknown. These polynomials can be expressed in a determinantal form as
already seen in [4, 5]. In the present paper we provide a different point of view of
the results in [4, 5] and we give some new characterizations. In Section 3 we study
a family of iteration functions for computing the roots of these polynomials which
turns out to have an underlying symmetric structure which is suitable for handling
our family of polynomials. An implementation by Maple - which is one of the most
powerful symbolic computational package - of these iteration functions will be also
discussed. Finally, in Section 4 we provide some numerical results made with our
Maple procedures.

2 Polynomials from generalized Vandermonde de-
terminants

2.1 Notations

First some useful notations and definitions concerning partitions. A partition is any
(finite or infinite) sequence A = (Aq, A, ..., A, ...) of non-negative integers in de-
creasing order, that is Ay > Ay > --- > Ay > - --. The non-zero)\; are called the parts
of A\. Their number is the length of A and will be denoted by £()).

Definition 2.1 Given a partition A = (A1, ...,), with £(\) < n, the Schur function
sy @S the symmetric function defined as the quotient
_ det (z91"7)

) 1<ij<n 2
det (z}7) g @)

Sx(Z1y .o nyTy)

Since sy is the quotient of two homogeneous skew-symmetric polynomials, then is a
homogeneous symmetric polynomial of degree |A|, where [A| = >~ | A;, the sum of
the parts of A, is termed the weight of A (cf. [12, p. 40]). The denominator is nothing
else than VDM (zy,...,xz,). Thus, letting a; = \j +n —j, x = (z1,...,2,) and
Va(x) = det (2;7) we immediately get

Va(x) = VDM(x) s, - (3)

That is, every GVD is the product of a classical Vandermonde determinant and a
Schur function. As a remark, we remind that Schur functions have many applica-
tions and provide a useful tool to study and to compute generalized Vandermonde
determinants (cf. e.g. [12, 4, 7, 10]).

Definition 2.2 Given a partition), its diagram is the set of points (i,7) € Z? such
that 1 < j < \;. The conjugate of a partition \, is the partition N whose diagram
1s the transpose of the diagram of A obtained by reflection in the main diagonal.

For example, if A = (4,2,1,0), then ' = (3,2,1,1).

Of importance is the Jacobi-Trudi identity for Schur functions (cf. [12, formula

(3.4), p. 41)):
sy = det(hx;—ivj) 1<4,5<n, (4)

where the h, are the complete elementary symmetric functions of the variables in-
volved. From Definition 2.2 we get an equivalent form of the Jacobi-Trudi identity.
That is, for any partition A of n,

sy = det (exg—iﬂ)lgi,jgn ’ ©

with A’ the conjugate partition and the e, representing the elementary symmetric
functions. Notice that it is commonly assumed that e, = 0 for p < 0 and p > n.

Taking the sequence of non-negative integers, 0 < p; < o < ... < Uy, and a set
of n distinct points, x4, ..., Z,, in the determinant

Vim(Xx) = |fo |1§i,j§n d (6)

where the subindex n recall the length of x, then collecting the common factors it
can be rewritten as
Vit_1n(X) = K ‘x;nj ‘151-,3-571) (M)
n
where /-i:Hxé“ and mj =p; —p1, j=1,...,n.

=1

2.2 The family of polynomials arising from GVD

From the identity (7), we may consider univariate polynomials Q(z) := Vin, 1in—1(2)
obtained by taking z = x,. The polynomial Q(x) has the obvious determinantal form

|

Qr) = (8)
Lozt T
1 2™ ... gMn-1

The next theorem, whose proof could be found in [4, Th. 2.2], provides a interesting
factorization of Q(z).

Theorem 2.1 Let o = (my,—1,Mp—9,...,m1,0) andd = (n—1,n—2,...,1,0) be the
partitions of length n associated to the determinant (8). Let A = oo — 6 and X' be its
conjugate partition. Then,

Q(z) =VDM(zy,...,2,-1) (f[(.T - :cz)) Py(z) 9)

i=1

where M = \i. If Ay > n then

(—1)’\’1_1@\'1—1 | (—1)’\'16,\,1 ... (_1)/\’1+M—1e/\,1+]v[_1
|
Py (z) = , : | , : ,
(=) Mey _y | (=1 MHeyn g (=1) ey
(10)

Moreover, if Ay < n then X' has n — A1 zeros.

Example 1 Let us consider the polynomial:

Q) = Vipla) = | 1 2 a3

By the Theorem 2.1, Vyo(z) = VDM (21, 22) (z—21)(x—122) Py(z). Since a = (4, 1, 0),
d=(2,1,0), A =(2,0,0) and X' = (1,1,0), then the determinantal form for P,(z) is:

€0 —€1 €2
Pyz)=| —e_1 e —e
1 x 2
or equivalently
1 —(z1+ x9) 1o
Py(z) =10 1 —(z1 +22) | = 2%+ 2(21 + T20) + 22 + 25 + 1120
1 x x?

Notice that in this case the polynomial is monic and the constant is hy. This is indeed
a general general situation: when A\ = (M, 0("’1)) (where 0%) says that 0 appears k
times in the sequence), Py(x) is monic with constant term corresponding to hs (cf.
[5, Th. 2.2]). Notice that since \; = 2 < 3 = n then X' has some zeros, as required
by the Theorem 2.1.

Remarks.

e Since Q(z) has the determinantal form (10), the points z; required, must be
exactly n — 1.

e The matrix in (10) shows an interesting property coming from its construction:
the constant term of Py (z) is the M x M upper-right minor which corresponds
to the Schur function s, for the points x1,...,2xs—1,0 and the same sequence
A. In fact, by using the Jacobi-Trudi identity (5) the Schur function for the
sequence A of length M and the points x1,..., 21,0 is det (eA'i—i+J')1<ij<M
with the usual property that e, = 0, p < 0, p > M, which is the uppef—fiéht
minor.

e Theorem 2.1 obviously states that in order to know the factorization of Q(z),
one has to find the coefficients of Py(x). In [4] we presented an algorithm for
computing the coefficients of Py/(z) based on the Theorem 2.1 and that al-
gorithm can easily implemented by algebraic-symbolic manipulation packages.
An implementation of this algorithm, by using Maple©, is listed in the Ap-
pendix. The Maple procedure pmx(m,e,b,1,M) computes firstly the matrix
whose determinant is Py/(z) and then the coefficients of Pp(z). The required
inputs are: m is the number of components in e; e is the array of the points,
i.e. [r1,...,7p 1]; b the array of the monomial basis z%, i = 1,..., M (the
procedure does not require z°!); 1 is the array of the sequence) and M is the
degree of the polynomial, Py (z) and x the independent variable. This is the
procedure used for computing all the polynomials in the examples presented in
the paper.

It is clear that the form of the sequence «, is fundamental in understanding
the form of Pps(x). In the next two claims we show that special forms of «, and
consequently A or X', give special forms for Py (x).

Corollary 2.1 Lettingmu,_i=n—1t, t=2,...,n—2, Mp_1 =Mp_o+M+1= M+
(n — 1) for some positive M and o = (My_1, My_g, ..., m1,0). Then A = (M,0"=1)
and Py(z) is a monic polynomial of exact degree M.

Proof. See [4]. O
Corollary 2.2 If X = (1M 0"=1) then Py(x) is monic.

Proof. Since the conjugate partition of X' is again A, hence the conjugate of \' =
(140 on=M)y "is X = (M,0=V) and by the previous theorem we conclude. O

Example 2 This example is a special instance of the third example cited in §1. Let
us take the basis of bivariate polynomials of degree n > 3 restricted to the curve
y = x3. The resulting space consists of univariate polynomials of degree 3n where
the only missing power is 3n — 1, i.e. 3"~! is not in the basis, and its dimension
is 3n. Since, A = X = (1,06"Y) then M = 1. The corresponding polynomial
Pi(z) =2 — AV = 2 — Y is indeed monic of degree 1.

The next Corollary states when a monic Py (z) reduces to the constant 1.

Corollary 2.3 Letting o = (n—1,n—2,...,1,0), so that A = (0"). Then Py(z)
18 the constant 1.

Proof. From Theorem 2.1 the polynomial has degree M = A; = 0 and it is monic,
hence Py = 1. O

3 On the computation of the roots of Py (z)

From the fundamental Theorem of Algebra and some of its consequences, we know
that every polynomial p(z) of degree n > 0 has at least one zero. Moreover, every
polynomial p(x) of degree n > 0 can be expressed as the product of n linear factors.
Hence, p(x) has exactly n zeros not necessarily distinct. Imaginary zeros of polyno-
mials with real coefficients, if they exist, occur in conjugate pairs and a polynomial
of odd degree with real coefficients always has at least one real zero. Finally, every
polynomial has an associated discriminant, which is a polynomial function of its co-
efficients, that only discriminates the case of a multiple roots. But as is well-known,
polynomial equations of degree higher than 4, have no algebraic solution and in this
case iteration functions should be found in order to approximate the roots.

In [11], the authors studied a family of high order methods for finding roots of
polynomial referred as Basic family (which goes back to Schrider’s formulas dated
1870) and derived an interesting connection with symmetric functions. Attracted by
that paper, we applied these formulas to find the real roots of Py (z) and we also
investigated on some connections with our previous results. First we need to recall
some notation given in [11].

Hence, for a given polynomial p(x) of degree n, define do(z) = 1 and for m >
1, m € N, let us consider the determinant of the following upper Hessenberg matrix

(g (m=1)(gp (m) (g

p’(l‘) p# U p(mflg!) £ m'()

. . (m~—1) T

pla) ple) - e

dm(z) = 0 plx) - : . (11)
: : p’(z)
: : ,2

0 0 - ple) P

Then, for each m > 2, the rational function

dm,Q(.I)
bp(z) =2 —p(x , 12
(@) =~ pla) 7210 (12
defines an iterative algorithm zx1 = by (zx), £ = 0,1,2,.... Moreover, starting

from an appropriate initial guess zy, the sequence {zj}r>o converges with order m to
simple roots of p(x) (cf. e.g. [11]).

The determinant d,,,(z) can be written also in terms of complete elementary func-

tions as follows. Let z;, i = 1,...,n be the n complex roots of the polynomial p(z)
of degree n and define r;, = 1/(z — 2;), ¢ = 1,...,n. Then, by means of [11, Lemma
3.1]
(k)
P ksx) =p(x)ek(ri,...,rn), 1 <k<n, (13)

where ey, is the kth elementary symmetric function. By [11, Theorem 3.2], d,,(z) can
be also rewritten in terms of the mth complete elementary function

A (2) = p(x)™ b (11, ...,) - (14)

Hence, by substituting (14) in (12), we get also the connection between the b,,
and the complete symmetric functions which shows the symmetric structure of the
Basic family:
hm o1, .. 70)

hm_1(T1,---,7'n)) (15)

b (z) =2 —
For the complete elementary functions, which are particular Schur functions, we
know that hy(ri,...,7,) := 8¢ 0m-1y(T1, ..., 7). Then, the ratio

hm—l(’rla .. .,Tn)
hm_Q(Tl, .. .,’/’n)

in (15), can be expressed by using the factorization given in the Theorem 2.1. That is,
letting a = (p, 0" V) + (n—1,...,1,0), then hy(r1,...,7) - VDM(r1,..., 1) = V.
Moreover, recalling that (cf. [4, p. 278, formula (19)])

hp = det (e)*—i-f-j)a 1<ij<n,

where * = (1), we can express h, as a determinant of an upper Hessenberg matrix
whose elements are the elementary symmetric functions e;.

In conclusion, we have proved that h,,_o and h,,_; are indeed related to the
determinant (11) through the equalities (13).

4 Numerical experiments

By assumption, the distinct points z1, ..., z, 1 belonging to some interval [a, b] are
the roots of the polynomial Q(z) = V;,, ,;n—1(z). We present here some experiments
we have done by using the Maple procedures we have implemented (see the Appendix).
Supported by many numerical experiments, we observed that the roots of Py (z)
seems to distribute as follows.

Conjecture

1. If M is even, they are pairwise complex.

7

y —2 1
/ F—100
/ X
// —27
/
/

Figure 1: Left: Py(z) when z; = 1.5, o = 1.9. Right: Ps(z) when z; =0, z5 =1 for
Example 3.

2. If M is odd, there exist (M — 1)/2 pairwise complex conjugate roots and one
real ¢ not belonging to [min{z;}, max{x;}|.

In both cases the real roots do not (obviously) coincide with the points x;, ¢ =
1,...,n—1.

Remarks.

e When M is even the argument is obvious. In fact, the x; are exactly the real
roots of Q(z) = Vi,.u(z) in [a,b] (which all do not appear in the polynomial
Py(x)). So, the only roots of Pys(x) should be pairwise complex. Moreover,
the factorization induced by our results, for even M > 2, can be seen as a
constructive way for generating a family of polynomials having (only) complex
roots.

e When M is odd, we have only verified numerically that distribution. The only
common situation is that at least one root is outside the interval [min{z;}, max{z;}|.

Example 3 Letting a = (5,3,0) so that A = (3,2,0) and M = (2,2,1) and suppose
z; € [0,2]. Thus, from the Theorem 2.1

—e€1 ()] 0 0

1 —e e 0
B = ¢ ¢ | —ey
1 x x2 2z

Since the points z; lye on [0, 2], the roots of Ps(z) should be one real not belonging
to [0, 2] and two conjugate complex. We tried many different choices of x;, z5 and in
all cases the conjecture was verified.

300000 -
200000 A

100000 - /

5 / —a 2 0 — 2 " 4 6
/
/

—100000 -

Figure 2: The polynomial Ps(z) of Example 4.

In Figure 1 we show the plots of P;(z) for two different choices of x1, x5 € [0, 2].
The corresponding roots are: —2.3681, —0.5159 ¢ 1.0357 and —1, 0, 0, respectively.

Another example for a bigger M.

Example 4 Suppose o = (10,5,4,1,0) so that A = (6,2,2,0,0) and \' = (3,3,1,1,1,1).
In Table 1 we summarize some choices of z;, 7 = 1,2, 3,4 and the roots corresponding
to Ps(z). Notice that in this example the interval [a, b] corresponds to the interval
[min{|z;[}, max{|z;[}].

If « =(9,5,3,1,0), so that X' = (3,2,1,1,1), when 27 = =3, 29 = —2, 23 =
1, z4 = 5, the roots of Ps(x) in [—3, 5] are 0.75,3.28 plus two complex conjugate that
is —0.001 +76.15. We observe that there is another root in —5.026 which is outside
the interval [—3, 5| delimited by the points z; (see Figure 2).

points roots
;=1 1=1,...,4 | 1.0567 £17 5.3969
—4.8931 £13.2355
—1.1656 £ 1.3515
Ty =—2,29 =—1 | £1.0299 £ 1.7515
3 =124 =2 0. £20.9928
0.7521 £40.5032
—0.1744 £40.8276
—0.0569 £70.1273

— _2 — 1
T1= —3:2= —3

£E3:0,l'4:

| |

Table 1: The roots of Ps(z) for different choices of the z;’s for Example 4.

In Tables 2 and 3, we show the behavior of the Newton’s method and the Basic
family for the computation of the real roots of the polynomials P; and Ps discussed in

9

the previous two examples. In both Tables, the results presented have been obtained
by running the two iterative methods and using as stopping criterion the test on
the relative error between two approximations with a tolerance of 1078, In Table 2,
the root 0.0 is double and in order to preserve the order of convergence of the two
methods, we applied b, to p(x)/p'(x), instead of p(x), whose roots are all simple and
the same as those of p(x).

Initial guess | root Newton | Basic family
g =-1.0 | —2.368 50 11

xg = —0.8 -1.0 5 3

xo = 1.0 0.0 5 4

Table 2: Number of iterations for the Newton’s method and the Basic family for
computing the real roots of P3(z) = 8.71x% 4 29.61422 + 32.946x + 27.6165 which cor-
responds to the choice z; = 1.5 and x, = 1.9; and Ps(z) = z* + z? which corresponds
to the choice z; = 0. and z, = 1.0.

Initial guess | root Newton | Basic family
29 =0.5 0.752 3 2
g = 3.0 3.277 4 3
xg =—4.0 | —5.026 6 2

Table 3: Number of iterations for the Newton’s method and the Basic family for
computing the real roots of P5(z) = 30z° 4+ 30z* + 600z + 150022 — 20160z + 14040,
which corresponds to the choice 1 = =3, 1o = =2, 3 = —1, 1, = 5.

Final remarks. From the Example 4, we observe that a small change in the com-
ponents of o, makes a strong influence on the distribution of the roots of P;. This
suggests that the conditioning of the problem of finding the roots of Py, depends also
on the sequence «. As a second observation, we point out that when all the x; are
integers, the coefficients of Py(x) are integers numbers growing in size with M (i.e.
they have a lot of digits). In this latter case, a suitable software for computing these
roots is MPSolve 2.0 (cf. [2]).

Acknowledgments. This work has been supported by the ex 60% funds of the
University of Verona, year 2005 and the MIUR project Prin 2003 ” Modelli Numerici
per applicazioni avanzate in meccanica dei fluidi ed elettromagnetismo”.

References

[1] R. Abu-Saris and W. Ahmad. Generalized Exponential Vandermonde Determinant
and Hermite Multi-point Discrete Boundary Value Problem, SIAM J. Matriz Anal.
Appl., 25(4), 921-929 (2004).

10

[2]

[9]

[10]

[11]

[12]

[13]

[14]

5

D. A. Bini and G. Fiorentino. MPSolve: Numerical Computation
of Polynomials Roots: v 2.0. FRISCO report 1998, available at
http://www.dm.unipi.it/pages/bini/public_html/ric.html.

L. Bos and S. De Marchi. Fekete points for bivariate polynomials restricted to y = =™,
East J. Approz. 6(2), 189-200 (2000).

S. De Marchi. Polynomials arising in factoring Generalized Vandermonde determinants:
an algorithms for computing their coefficients, Math. Comput. Modelling, 34, 271-281
(2001).

S. De Marchi. Polynomials arising in factoring Generalized Vandermonde determinants
IT: an condition for monicity, Appl. Math. Lett., 15(5), 627-632 (2002).

S. De Marchi and C. Roveredo. On blossoming in integer Miintz spaces. Int. Math. J.,
5(1), 61-66 (2004).

T. Ernst. Generalized Vandermonde determinants, U.U.D.M Tech. Report nr. 6
(2000),www.math.uu.se/~thomas/.

R. P. Flowe and G. A. Harris. A note on generalized Vandermonde determinants,
SIAM J. Matriz Anal. Appl., 14(4), 1146-1151 (1993).

E. R. Heineman. Generalized Vandermonde determinants, Proc. Royal Society Edim-
burgh, 464-476 (1929).

R. C. King. Generalized Vandermonde determinants and Schur functions, Proc. AMS,
48(1), 53-56 (1975).

Y. Jin and B. Kalantari. Symmetric functions and root-finding algorithms, Adv. in
Appl. Math. 34, 156-174 (2005).

I. G. Macdonald. Symmetric functions and Hall polynomials, Oxford Univ. Press,
Oxford OX2 6DP (England), Second Ed. (1995).

S. Martucci and B. Paternoster. Vandermonde-type matrices in two step collocation
methods for special second order ordinary differential equations. In Computational
Science 1CCS2004, Lecture Notes in Computer Science 3039, Part IV, pp. 416-425,
Springer-Verlag, 2004.

S. Yang, H. Wu, Q. Zhang. Generalization of Vandermonde determinants, Lin. Alg.
Appl., 36, 201-204 (2001).

Appendix

Our first Maple procedure, builds the determinant (10). Inputs: m is the number of com-
ponents in e; e is the array of the points, i.e. [z1,...,2p—1]; b the array of the monomial
basis z’, i = 1,..., M (the procedure does not require z°!); 1 is the array of the sequence
A and M is the degree of the polynomial, Py/(z) and x the independent variable.

pmx :=proc (m,e,b,1,M,x)
local a,i,p,x,j,cl,s;

11

global dd,c;
description "Built the determinant corresponding to the polynomial P_M(x)":
with(linalg);

a:=array(l..M+1,1..M+1);
p:=1;

for i from 1 to m do
p:=p*(e[il-x);

od:

cl:=collect (expand(p,b),x);
with(PolynomialTools) ;
c:=CoefficientVector(cl,x);

for i from 1 to M do

for j from 1 to M+1 do
s:=1[i]-i+j-1;
if (s=0) then ali,jl:=1;
elif (s>m) or (s<0) then

ali,jl:=0;

else
ali,jl:=c[m-s+1];
end if
od:
od:

for i from 1 to M+1 do
a[M+1, i]:=x"(i-1);
od;

description "Now we print, for a check, the determinant and its factorization":
print(det(a));
dd:=convert (collect (expand(det(a)),x),polynom); end;

The second Maple procedure, that we call dm, builds the determinant D,, required in
the construction of the Schrioder’s family of formulas for computing zeros of polynomials.
Inputs: pol is the polynomial, m is the order up to which we wish to compute dm, 0 < m <
degree(pol).

dm:=proc(pol,m)
local dd,d1,k,i,j,s;
global dm,c,x;

description "here we build the determinant that implements the
Shroeder’s family of formulas for

computing zeros of polynomials;

pol is the polynomial,

12

m is the order up to which we wish to compute
dm (notice that m can be degree(pol))":

with(linalg): dd:=array(l..m,1..m);
if (m=0) then
di:=1;
elif (m=1) then
dl:=diff(pol,x);
else
for i from 1 to m do
for j from 1 to m do
g:=j-i+1;
if (s=0) then
dd[i,j] :=pol;
elif (s<0) then
dd[i,j]:=0;
else
dd[i,j]:=diff(pol,x$s)/s!;
end if;
end do;
end do;
dl:=det(dd) ;
end if;
end proc;

The third Maple procedure, that we call itera, simply implements the Schroder’s
iteration or the Basic family. Inputs: p, the polynomial and xstart the initial guess.

itera:=proc(p,xstart)
description "this is the Schroeder’s iteration"
local x0,x1,k;
global x,y,dm;
x0:=xstart;
x1:=eval (x-p*dm(p,degree(p)-2)/dm(p,degree(p)-1) ,x=x0) ;

k:=1;
while (abs(x1-x0)>10"(-8)*abs(x0)) and (k <= 100) do
x0:=x1;
x1:=eval(x-p*dm(p,degree(p)-2) /dm(p,degree(p)-1) ,x=x0) ;
k:=k+1;
end do;
y:=x1;

printf("Iterations = %g \n",k-1);
printf ("x1 = %f \n",x1);
end proc;

Remarks. The Newton’s method is obtained by using itera and setting degree (p)=2.
In the case of multiple roots, we applied both methods to p(z)/p'(z) instead of p(z) in order
to preserve the convergence order.

13

