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Abstract

In this article, we use Fourier cosine transform in order to introduce a new family of infinitely
smooth positive definite radial basis functions from completely monotone functions. These bases
are represented in terms of positive Borel measures and their Fourier transforms are also given.
The proposed theory is used for reconstructing the well-known Matérn RBF and presenting a
new positive definite RBF. Numerical results show an accurate reconstruction of the Franke’s
function and also mitigating the Runge phenomenon as a key error mechanism.
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1. Introduction

Given a continuous function f mapping from the Euclidean space Rd to the real numbers R,
a common objective is to approximate this function through interpolation at specified points or
centers X = {xj}nj=1. This involves using finite-dimensional linear spaces of simpler functions.
An effective and widely adopted method involves interpolation using linear combinations of shifts
of radial basis functions (RBFs) ϕ(r), where r = ∥x∥2 , x ∈ Rd [4, 14, 39]. The interpolation
expression takes the form

s(x) =
n∑

j=1

λjϕ(∥x− xj∥),

where the unknown coefficients are achieved by enforcing interpolation conditions

s(xj) = fj , j = 1, . . . , n.

This results in a square linear system of size n× n given by

Aλ = f,

where A = [ϕ(∥xi − xj∥)]1≤i,j≤n , is referred to as the system matrix.
Numerous researchers have extensively explored the theory of RBFs (refer to, for example,

[5, 16, 19, 23, 38, 39, 40, 41]). As a result, over the past few decades, RBFs have found widespread
applications in various fields such as multivariate function approximation, neural networks, and
the solution of differential and integral equations (see, for instance, [8, 9, 21, 22, 29, 30, 34]).
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The immediate concern arises regarding the uniqueness of the solution to this interpolation
problem. Researchers such as Micchelli [19], Powell [27], and the collaboration of Buhmann and
Micchelli [6], as well as others outlined in the book [4], have addressed this particular question.

A class of functions for which the interpolation problem is uniquely solvable for any distinct
set of points, is the class of positive definite (PD) RBFs.

Definition 1.1. A radial basis function ϕ ∈ C([0,∞)) is called positive (semi)-definite on Rd if
and only if for any finite set of distinct points {xj}nj=1 ⊂ Rd, the matrix A = [ϕ(∥xi − xj∥)]1≤i,j≤n ,
is positive (semi)-definite.

Examples of PD RBFs are Gaussian ϕ(r) = exp(− r2

2c2
), and Inverse multiquadrics ϕ(r) =

(1 + r2

c2
)
−β

, β > 0, where c is a positive factor called shape parameter. Choosing the scale or
shape parameter of RBFs is a well-documented but still an open problem in kernel-based methods.
It is common to tune it according to the applications, and it plays a crucial role both for the
accuracy and stability of the method [2]. Changing the shape parameter c from a large value to a
small one reshapes the Gaussian function from a flat profile to a peaked one. For the longest time,
people in the approximation theory and numerical analysis community went mostly with ad-hoc
choices of the shape parameter or ignored its effect by treating it as a constant. Much more
systematic approaches have been suggested in the statistics literature for a long time (see, e.g.,
[37] and many other references). In the radial basis community many researchers seek a scheme
to find an optimal value for it, but research is on-going [7, 13, 17, 18, 24, 28, 36]. An extended
discussion of a “good” shape parameter choice was also included in [9]. Recently, Heidari et al.
devised a direct relation between the shape parameter of RBFs and their curvature at each point
[17]. They used the fundamental theory of plane curves in order to recover univariate functions
from scattered data, by enforcing the exact and approximate solutions have the same curvature
at the point where they meet. This led to introducing curvature-based scaled RBFs with shape
parameters depending on the function values and approximate curvature values of the function
to be approximated.

PD RBFs have also become notably influential in numerous applications, including but not
limited to numerical solution of partial differential equations (PDEs), computer experiments,
machine learning, rapid prototyping, and computer graphics. The prevalence of PD RBFs in these
diverse fields is emphasized by their effectiveness in addressing challenges and providing solutions
in areas where accurate modeling, interpolation, and computational efficiency are crucial. For
further details and a comprehensive overview of their applications, refer to [10] and the references
cited there in. The fundamental work of Bochner [1], and subsequently Schoenberg [33], on the
characterization of positive definite radial functions in terms of completely monotone functions,
has played an important role in the development of both the theory and application of PD RBFs.

Recently, Buhmann et al. concentrated on examining the relationships between monotonicity
properties and the positive definiteness of functions defined on the Euclidean space Rd [3]. They
introduced an innovative technique for constructing PD RBFs from multiply monotone functions.

In this paper, we utilize the Fourier cosine transform to propose a novel set of indefinitely
smooth PD RBFs. These functions are derived from completely monotone functions, building
upon the fundamental contribution by Schoenber [33].

The outline of the paper is as follows. We start in Section 2 by summarizing the known results
connecting monotonicity and positive definiteness. We then present the method of finding PD
RBFs from the Fourier cosine transform of the squared of the completely monotone functions.
An exact representation for the d-variate Fourier transform of the proposed class of RBFs is also
given. In Section 3, the proposed theory is used for obtaining two PD RBFs. The first one is
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the common Matérn RBF and the second one is a new PD RBF. In Section 4, the numerical
experiments are presented. The last section summarizes the conclusion and some further works.

2. Construction

We first introduce a class of functions that is very closely related to PD RBFs and leads to
a simple characterization of such functions.

Definition 2.1. A function g is called completely monotone (CM) on (0,∞) if it satisfies g ∈
C∞(0,∞) and (−1)lg(l)(t) ≥ 0, for all l ∈ N0, t > 0. If in addition g ∈ C[0,∞) then g is called
CM on [0,∞).

The following connection between PD RBFs and CM functions was first pointed out by
Schoenberg in 1938 [33].

Theorem 2.1 (Schoenberg). A non-constant function g : [0,∞) → R is CM on [0,∞) if and
only if ϕ(r) = g(r2) is PD on every Rd.

The following Theorem is our main result: we provide a technique that allows us to construct
a new class of PD RBFs starting from a CM function g and considering the Fourier cosine
transform of f(x) = g(x2) .

Theorem 2.2. Let g be a CM function on [0,∞) and f ∈ L1((0,∞)) with f(x) = g(x2). Then
the Fourier cosine transform of f , called

ϕ(r) = Fcs(r) =

√
2

π

∫ ∞

0
cos(rx)f(x)dx, r ≥ 0, (1)

is a bounded, infinitely smooth, and PD RBF on every Rd.

Proof. It is clear that ϕ is a bounded and infinitely smooth RBF. Since g is CM on [0,∞), it is
the Laplace transform of a nonnegative finite Borel measure ν, i.e. it is of the form

g(x) =

∫ ∞

0
e−sxdν(s). (2)

Then

ϕ(r) =

√
2

π

∫ ∞

0
cos(rx)

∫ ∞

0
e−sx2

dν(s)dx

=

√
2

π

∫ ∞

0

∫ ∞

0
e−sx2

cos(rx)dxdν(s).

Now by using the Fourier cosine transform of the function e−sx2 (see the formula (12.34.16) from
[15]), we have

ϕ(r) =
1√
2

∫ ∞

0

e−
r2

4s

√
s
dν(s). (3)

So ϕ(r) = h(r2), where

h(r) =
1√
2

∫ ∞

0

e−
r
4s

√
s
dν(s).
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Since

(−1)lh(l)(r) =
1√
2

∫ ∞

0

e−
r
4s

√
s (4s)l

dν(s) ≥ 0, for all l ∈ N0 and all r > 0,

h is CM on [0,∞) and the positive definiteness is proved according to the Schoenberg theorem.

Remark 2.1. The condition that the function g has to be CM is weaker than f being CM, because
complete monotonicity of f implies complete monotonicity of g(·) = f(

√
·) [20].

2.1. Fourier analysis of the new bases
It is a well-known fact that Fourier analysis plays a major role in the study of RBFs (see

e.g. [9, 39]). It appears in the characterization of RBFs, rigorous convergence order estimates
and interpolation error analysis, specifying the native spaces corresponding to RBFs, stability
analysis, and many other places. At first, we will take a look at the Fourier transform of a radial
function, which is radial as well [39].

Theorem 2.3. Suppose Φ ∈ L1(Rd)
⋂
C(Rd) is radial, i.e. Φ(x) = ϕ(∥x∥2), x ∈ Rd. Then its

Fourier transform Φ̂ is also radial, i.e Φ̂(w) = Fdϕ(∥w∥2), with

Fdϕ(r) = r−
(d−2)

2

∫ ∞

0
ϕ(t)t

d
2J (d−2)

2

(rt)dt,

where Jν(x) is the Bessel function of the first kind of order ν.

In the following, we compute the Fourier transform of the suggested class of PD RBFs.

Theorem 2.4. The d-variate Fourier transform of ϕ(r) in (1) is given by

Fdϕ(r) = 2
(d−1)

2

∫ ∞

0
s

(d−1)
2 e−r2sdν(s). (4)

Proof. According to (3) and the Theorem 2.3, we have

Fdϕ(r) = r−
(d−2)

2

∫ ∞

0

 1√
2

∫ ∞

0

e−
t2

4s

√
s
dν(s)

t
d
2J (d−2)

2

(rt)dt,

Fubini’s theorem yields,

Fdϕ(r) =
1√
2
r−

(d−2)
2

∫ ∞

0

1√
s

(∫ ∞

0
e−

t2

4s t
d
2J (d−2)

2

(rt)dt

)
dν(s).

Now, we use the formula (see (6.631.4) from [15])∫ ∞

0
tν+1e−αt2Jν(bt)dt =

bν

(2α)ν+1
exp

(
− b2

4α

)
,

and letting ν = d−2
2 , α = 1

4s , b = r. Then

Fdϕ(r) =
1√
2
r−

(d−2)
2

∫ ∞

0

1√
s

(
(2s)

d
2 r

(d−2)
2 e−r2s

)
dν(s) = 2

(d−1)
2

∫ ∞

0
s

(d−1)
2 e−r2sdν(s).
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3. Examples of positive definite functions

In this section, we give two examples of basis functions constructed using the results of Section
2. It should be noted that some other common and new RBFs can be obtained from this theory.

Example 1. Consider the function g(x) = (x+ 1)−ν− 1
2 , ν > 0, which is CM. Then according

to Theorem 2.2, the function

ϕ(r) =

√
2

π

∫ ∞

0
cos(rx)

(
x2 + 1

)−ν− 1
2 dx,

is PD for all d. It has the representation (see 12.34.9 from [15])

ϕ(r) =
1

2ν−
1
2Γ

(
ν + 1

2

)rνKν(r),

where Kν is the modified Bessel function of the second kind of order ν [32]. It is the Matérn
kernel frequently used in statistics and probability theory, In order to compute its d-variate Fourier
transform by (4), we first compute the inverse Laplace transform of the function g as (see 12.13.26
from [15])

L−1
(
(x+ 1)−ν− 1

2

)
=

1

Γ
(
ν + 1

2

)sν− 1
2 e−s,

which means that

dν(s) =
1

Γ
(
ν + 1

2

)sν− 1
2 e−sds. (5)

By substituting (5) in (4), we get

Fdϕ(r) =
2

(d−1)
2

Γ
(
ν + 1

2

) ∫ ∞

0
sν+

d
2
−1e−(r2+1)sds. (6)

Now by considering the Mellin transform of the function e−axp as (see 3.14 from [25])∫ ∞

0
xz−1e−axp

dx =
1

p
a
− z

pΓ

(
z

p

)
,

and letting z = ν + d
2 , a = r2 + 1, p = 1, the equation (6) leads to

Fdϕ(r) =
2

(d−1)
2 Γ

(
ν + d

2

)
Γ
(
ν + 1

2

) (
r2 + 1

)−(ν+ d
2 ) .

Therefore the following common result yields

Fd

(
rν−

d
2Kν− d

2
(r)

)
= 2ν−1Γ(ν)

(
r2 + 1

)−ν
.

Example 2. Consider the function g(x) = x−
1
4 e−c

√
x, c > 0 which is the multiplication of two

CM functions and hence it is CM. Then according to the Theorem 2.2, the function

ϕ(r) =

√
2

π

∫ ∞

0
cos(rx)x−

1
2 e−cxdx,
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is PD for all d. It has the representation (see 12.34.15 from [15])

ϕ(r) =

√
(c2 + r2)

1
2 + c

c2 + r2
.

In order to compute its d-variate Fourier transform by (4), we first compute the inverse Laplace
transform of the function g as (see 5.94 from [26])

L−1
(
x−

1
4 e−c

√
x
)
=

2−
1
4

√
π
s−

3
4 e−

c2

8sD 1
2

(
c√
2s

)
, (7)

where Dα(x) is the parabolic cylinder function which is in the simple case α = 1
2 as

D 1
2
(x) =

√
x3

8π

(
K 1

4

(
x2

4

)
+K 3

4

(
x2

4

))
. (8)

More details about this function can be found in [35]. According to (7)

dν(s) =
2−

1
4

√
π
s−

3
4 e−

c2

8sD 1
2

(
c√
2s

)
ds. (9)

By substituting (9) in (4), we get

Fdϕ(r) =
2

(d−1)
2 2−

1
4

√
π

∫ ∞

0
s(

d
2
− 5

4)e−r2se−
c2

8sD 1
2

(
c√
2s

)
ds. (10)

Since there is no explicit solution for (10), we consider the following common cases:

i) d=1.
According to (10), we have

F1ϕ(r) =
2−

1
4

√
π

∫ ∞

0
s−

3
4 e−r2se−

c2

8sD 1
2

(
c√
2s

)
ds.

Now by considering the following formula (see 7.728 from [15])∫ ∞

0
(2t)−

ν
2 e−pte−

q2

8t Dν−1

(
q√
2t

)
dt =

√
π

2
p

1
2
ν−1e−q

√
p,

and letting ν = 3
2 , p = r2, q = c, we get

F1ϕ(r) =
e−cr

√
r
.

ii) d = 2 & d = 3
By substituting (8) in (10), we get

Fdϕ(r) =
2

d
2
−3

√
c3

π

∫ ∞

0
s(

d
2
−2)e−

c2

8s

(
K 1

4

(
c2

8s

)
+K 3

4

(
c2

8s

))
e−r2sds. (11)
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Then for d = 2, we have

F2ϕ(r) =

√
c3

4π

∫ ∞

0
s−1e−

c2

8s

(
K 1

4

(
c2

8s

)
+K 3

4

(
c2

8s

))
e−r2sds. (12)

Now by considering the following formula (see 15.58 from [26])∫ ∞

0
t−1e−

b
tKν

(
b

t

)
e−ptdt = 2

(
Kν

(√
2bp

))2
,

and letting b = c2

8 , p = r2, we have

F2ϕ(r) =

√
c3

2π

((
K 1

4

(cr
2

))2
+
(
K 3

4

(cr
2

))2
)
.

Moreover, by substituting d = 3 in (11), we have

F3ϕ(r) =
2

−3
2

√
c3

π

∫ ∞

0
s−

1
2 e−

c2

8s

(
K 1

4

(
c2

8s

)
+K 3

4

(
c2

8s

))
e−r2sds.

Now by considering the following formula (see 15.56 from [26])∫ ∞

0
t−

1
2 e−

b
tKν

(
b

t

)
e−ptdt = 2

√
π

p
K2ν

(√
8bp

)
,

and letting b = c2

8 , p = r2, we have

F3ϕ(r) =

√
c3

2π

1

r

(
K 1

2
(cr) +K 3

2
(cr)

)
. (13)

4. Numerical Results

We now provide some examples in order to demonstrate the efficiency and superiority of our
new PD RBF

ϕ(r) =

√
(c2 + r2)

1
2 + c

c2 + r2
, (14)

discussed in Example 2. We take different number of uniform center points

xj = a+ (j − 1)
b− a

n− 1
, j = 1, . . . , n

and non-uniform Chebyshev-Gauss-Lobatto center points

xj =
(a+ b)

2
− (b− a)

2
cos

(
π(j − 1)

n− 1

)
, j = 1, . . . , n

in [a, b]. We use the maximum absolute error norm

L∞ = max
1≤i≤m

|fi − f̄i|,
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where f and f̄ represent the exact and approximate solutions, respectively. The optimal shape
parameter c is found by trial end error. The numerical experiments have been carried out with
Matlab on an Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz, 2.11 GHz. In figure 1, we have
plotted ϕ centered at xj = 0 for different values of the shape parameter c.
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1.5
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2.5
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(|
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|)

c=4

c=1

c=0.25

Figure 1: plots of ϕ(r) for different values of the shape RBF parameter c.

4.1. Test problem 1
In the first test problem, consider the function (cf. [11])

f1(x) =
sinh(x)

1 + cosh(x)
, x ∈ [−3, 3].

The exact and approximate solutions of f1 and relative errors using the proposed PD RBF
interpolation method with c = 4.5 for n = 400 uniform center points and m = 200 uniform
evaluation points are given in Figures 2-(a) and 2-(b), respectively. The L∞ error norms using
the proposed RBF and classical Guassian and Inverse Multiquadric (β = 1

2) RBFs interpolation
methods with different number of uniform and non-uniform center points, and m = 350 uniform
evaluation points are reported in Tables 1 and 2, respectively. It can be noted from Tables
1-2, that the new PD RBF leads to more accurate results than the classical RBF interpolation
methods. The results in Tables 1-2 are also in agreement with the ones given in [12] which
evaluates the Gaussian RBF interpolants in a stable way for large values of the shape parameter
c. But that approach works for certain values of n and c, and encounters limitations at large
values of n due to the computational cost.
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Figure 2: Exact and approximate solutions of f1 (a), Relative errors (b) with the proposed PD RBF interpolation
method for n = 400 uniform center points; Test problem 1.

Table 1: Comparison of approximation accuracy of the proposed PD RBF and classical Gaussian and Inverse
Multiquadric RBFs interpolation methods for uniform center points; Test problem 1.

PD RBF (14) Gaussian RBF Inverse Multiquadric RBF
(c = 4.5) (c = 1) (c = 0.8)

n L∞ L∞ L∞

80 6.6× 10−9 1.4× 10−6 8.8× 10−7

100 2.3× 10−8 5.2× 10−7 1.5× 10−7

200 1.8× 10−9 6.6× 10−6 2.7× 10−8

300 1.7× 10−9 2.3× 10−5 8.6× 10−8

Table 2: Comparison of approximation accuracy of the proposed PD RBF and classical Gaussian and Inverse
Multiquadric RBFs interpolation methods for non-uniform center points; Test problem 1.

PD RBF (14) Gaussian RBF Inverse Multiquadric RBF
(c = 4.5) (c = 0.5) (c = 0.6)

n L∞ L∞ L∞

80 2.6× 10−9 5.9× 10−7 5.8× 10−8

100 8.1× 10−10 5.1× 10−6 4.7× 10−8

200 2.7× 10−9 2.1× 10−6 1.4× 10−7

300 1.9× 10−10 1.3× 10−6 4.5× 10−8

4.2. Test problem 2
In this experiment, consider an oscillatory function (cf. [31])

f2(x) = sin(50πx)e
(
100(x− 1

2)
2
)
, x ∈ [0, 1].

The exact and approximate solutions of f2 and relative errors using the proposed PD RBF
interpolation method with c = 1 for n = 200 uniform center points and m = 300 uniform
evaluation points are given in Figures 2-(a) and 2-(b), respectively. It should be noted that the
numerical errors are really smaller than those reported in [31] for the Gaussian RBF interpolation
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method with constant, random, linearly, and exponentially varying shape parameters which are
of at most 10−3.
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Figure 3: Exact and approximate solutions of f2 (a), Relative errors (b) with the proposed PD RBF interpolation
method for n = 200 uniform center points; Test problem 2.

4.3. Test problem 3 (Runge function)

Let us consider the Runge function on [−1, 1], that is f3(x) =
1

1 + 25x2
. The exact and

approximate solutions of f3 and relative errors using the proposed PD RBF interpolation method
for c = 0.1, n = 400 uniform center points, and m = 200 uniform evaluation points are given in
Figures 4-(a) and 4-(b), respectively. We see that no Runge-type oscillations arise. In order to
show the efficiency of our PD RBF, we multiply 25 by the large number 109, and work with

f4(x) =
1

1 + 25× 109 × x2
.

The exact and approximate solutions of f4 using the proposed PD RBF interpolation method
with c = 0.1 for n = 101 uniform center points is given in Figure 5. As we can see in the Figure
5, this change leads a sharp gradient at the points x = 0. Now, we plot the Relative errors using
the proposed PD RBF (c = 0.1) and classical Inverse Multiquadric RBF (c = 0.08) interpolation
methods for n = 200 non-uniform center points and m = 300 uniform evaluation points in Figure
6. This figure reveals superiority of the proposed RBF.
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Figure 4: Exact and approximate solutions of f3 (a), Relative errors (b) with the proposed PD RBF interpolation
method for c = 0.1 and n = 400 uniform center points; Test problem 3.
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Figure 5: Exact and approximate solutions of f4 with the proposed PD RBF interpolation method for c = 0.1
and n = 101 uniform center points; Test problem 3.

4.4. Test problem 4
Consider the interpolation of Franke’s function on [0, 1]2. We plot the exact and approximate

Franke’s function in Figures 7(a)-7(b) and point-wise error distributions in Figures 7(c)-7(d) for
c = 0.3, n = 441 uniform center points and m = 2601 uniform evaluation points.
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Figure 6: Relative errors: proposed PD RBF (a), Inverse Multiquadric RBF (b), for n = 200 non-uniform center
points; Test problem 3.

(a) (b)

(c) (d)

Figure 7: Exact (a) and approximate (b) Franke’s function; Relative (c) and absolute (d) errors distributions,
with n = 441, c = 0.3.

5. Conclusion

The Fourier cosine transform is used in order to obtain a new class of infinitely smooth positive
definite RBFs from completely monotone functions, which are represented in terms of positive
Borel measures. The proposed theory is used for reconstructing the well-known Matérn RBF
and presenting a new positive definite RBF. Numerical results show an accurate reconstruction
of functions in which the Runge phenomenon is substantially mitigated.
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