
Bivariate Lagrange interpolation at the Padua

points: Computational aspects ?

Marco Caliari a, Stefano De Marchi b,∗, Marco Vianello a

aDepartment of Pure and Applied Mathematics, University of Padua (Italy)
bDepartment of Computer Science, University of Verona (Italy)

Abstract

The so-called “Padua points” give a simple, geometric and explicit construction of
bivariate polynomial interpolation in the square. Moreover, the associated Lebesgue
constant has minimal order of growth O(log2 (n)). Here we show four families of
Padua points for interpolation at any even or odd degree n, and we present a stable
and efficient implementation of the corresponding Lagrange interpolation formula,
based on the representation in a suitable orthogonal basis. We also discuss extension
of (non-polynomial) Padua-like interpolation to other domains, as triangles and
ellipses, we give complexity and error estimates, and several numerical tests.

Key words: bivariate polynomial interpolation, square, Padua points, bivariate
Chebyshev orthogonal polynomials, reproducing kernel.

1 Introduction.

Finding “good” nodes is a challenging problem in multivariate polynomial
interpolation. Besides unisolvence, which is by itself a difficult topic (see, e.g.,
[3,12,15]), in order to get stability and convergence one seeks slow growth of
the Lebesgue constant.

In some recent papers, we studied a new set of points for bivariate polynomial
interpolation in the square [−1, 1]2, nicknamed “Padua points”; cf. [11,4,8].
Such points allow to give a simple, geometric and explicit construction of the

? Work supported by the ex-60% funds of the Universities of Padova and Verona,
and by the GNCS-INdAM.
∗ Corresponding author. Address: S.da Le Grazie 15, 37134 Verona (Italy).

Email address: stefano.demarchi@univr.it (Stefano De Marchi).

Preprint submitted to J. Comput. Appl. Math. 23 October 2006

interpolation formula, since the Lagrange polynomials are written in terms
of the reproducing kernel corresponding to the product Chebyshev measure.
Moreover, the Padua points have a Lebesgue constant with minimal order of
growth O(log2 (n)), as it has been rigorously proved in [4] for the upper bound
and in [13,17] for the exact order of growth.

In this paper, we exploit the explicit formula of the Lagrange polynomials to
obtain a stable and efficient representation of the interpolation polynomial at
the Padua points, in terms of a classical orthonormal basis associated with
the product Chebyshev measure.

The paper is organized as follows. In the next section we list four families of
Padua points, which are here displayed together explicitly for the first time,
and we recall the associated interpolation formulas. In section 3 we describe in
detail a stable and efficient implementation of interpolation at Padua points
on rectangles, and we analyze its computational cost and a related a pos-
teriori error estimate. Moreover, we discuss extension to rectangles and to
non-polynomial Padua-like interpolation on domains with different geometric
structures, like triangles and ellipses. Finally, in section 4 we show the behavior
of the interpolation formula on a classical test set.

2 Interpolation at the Padua points.

The Padua points were introduced [11] for even degrees as union of two
Chebyshev-like grids, and their properties in bivariate interpolation studied
numerically. In [4] their Lagrange polynomials have been constructed explic-
itly, using the fact that the points lie on an algebraic curve, the “generating
curve”, and that they provide a cubature formula of high algebraic degree of
exactness. On the other hand, in [8] the problem on interpolation at the Padua
points has been faced in an abstract algebraic setting (polynomial ideal theory
and multivariate orthogonal polynomials).

The points considered in [4], however, are not the original Padua points, but
correspond to a rotation of 90 degrees. In fact, there are 4 families of Padua
points, obtainable one from the other by a suitable rotation of 90, 180 or 270
degrees. Below we list them together for the first time, and for each family we
give the corresponding generating curve as well as the description (for both
even and odd degrees) as union of two Chebyshev-like grids.

We observe that:

• For each family, the Padua points are the self-intersections and boundary
contacts of the generating curve in [−1, 1]2, and they match exactly the

2

dimension of Π2
n the space of polynomials of degree at most n. In particular

there are two points lying on consecutive vertices of the square (the “top”,
“bottom”, “left” and “right” pairs of vertices), other 2n− 1 points lying on
the edegs of the square, the remaining points being self-intersections of the
corresponding generating curve.

• The Padua points are nodes of a cubature formula which is exact for all
polynomials in a suitable subspace of Π2

2n, containing Π2
2n−1; cf. [4]. Given

a Padua point, say ξ, the corresponding cubature weight is

wξ =
1

n(n + 1)
·

1/2 if ξ is a vertex point

1 if ξ is an edge point

2 if ξ is an interior point

(1)

• The first family is that of the original Padua points, the other correspond
to successive rotations of 90 degrees, clockwise for even degrees and coun-
teclockwise for odd degrees.

In order to describe the four families and the corresponding interpolation
formulas, we need the following notation

zd
j = cos

jπ

d
, j = 0, . . . , d ; Pads

n = {ξ = (ξ1, ξ2)} = As ∪ Bs ,

N = card (Pads
n) = dim

(

Π2
n

)

=
(n + 1)(n + 2)

2
, s = 1, 2, 3, 4 , (2)

and we recall that the reproducing kernel of Π2
n([−1, 1]2) corresponding to the

inner product generated by the product Chebyshev measure can be written as

Kn(x, y) =
n∑

k=0

k∑

j=0

T̂j(x1)T̂k−j(x2)T̂j(y1)T̂k−j(y2) , (3)

where T̂p is the normalized Chebyshev polynomials of degree p (i.e., T̂0 = 1,

T̂p =
√

2Tp, Tp(·) = cos(p arccos(·)) being the usual Chebyshev polynomial of
degree p); see, e.g., [14].

First family: Pad1
n

generating curve: Tn(x) + Tn+1(y) = 0
parametrization: γ1(t) = [− cos((n + 1)t),− cos(nt)], 0 ≤ t ≤ π

• n even, n = 2m (see Fig. 1-left)

{

A1
even = {(zn

2i+1, z
n+1
2j), 0 ≤ i ≤ m − 1, 0 ≤ j ≤ m}

B1
even = {(zn

2i, z
n+1
2j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m} (4a)

These correspond to the points defined in [11, formula (9)] (in that formula
there is a misprint, n − 1 has to be replaced by n + 1).

3

• n odd, n = 2m + 1 (see Fig. 1-right)

{

A1
odd = {(zn

2i+1, z
n+1
2j), 0 ≤ i ≤ m, 0 ≤ j ≤ m + 1}

B1
odd = {(zn

2i, z
n+1
2j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m} (4b)

• Lagrange interpolant:

LPad1
n

f(x) =
∑

ξ∈Pad1
n

f(ξ) wξ (Kn(x, ξ) − Tn(x1)Tn(ξ1)) . (4c)

Second family: Pad2
n

generating curve: Tn+1(x) + Tn(y) = 0
parametrization: γ2(t) = [− cos(nt),− cos((n + 1)t)], 0 ≤ t ≤ π

• n even, n = 2m

{

A2
even = {(zn+1

2i+1, z
n
2j), 0 ≤ i ≤ m, 0 ≤ j ≤ m}

B2
even = {(zn+1

2i , zn
2j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m − 1} (5a)

• n odd, n = 2m + 1

{

A2
odd = {(zn+1

2i+1, z
n
2j), 0 ≤ i ≤ m, 0 ≤ j ≤ m + 1}

B2
odd = {(zn+1

2i , zn
2j+1), 0 ≤ i ≤ m + 1, 0 ≤ j ≤ m} (5b)

• Lagrange interpolant:

LPad2
n

f(x) =
∑

ξ∈Pad2
n

f(ξ) wξ (Kn(x, ξ) − Tn(x2)Tn(ξ2)) . (5c)

Third family: Pad3
n

generating curve: Tn(x) − Tn+1(y) = 0
parametrization: γ3(t) = [cos((n + 1)t), cos(nt)], 0 ≤ t ≤ π

• n even, n = 2m

{

A3
even = {(zn

2i, z
n+1
2j), 0 ≤ i ≤ m, 0 ≤ j ≤ m}

B3
even = {(zn

2i+1, z
n+1
2j+1), 0 ≤ i ≤ m − 1, 0 ≤ j ≤ m} (6a)

• n odd, n = 2m + 1

{

A3
odd = {(zn

2i, z
n+1
2j), 0 ≤ i ≤ m, 0 ≤ j ≤ m + 1}

B3
odd = {(zn

2i+1, z
n+1
2j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m} (6b)

• Lagrange interpolant:

LPad3
n

f(x) =
∑

ξ∈Pad3
n

f(ξ) wξ (Kn(x, ξ) − Tn(x1)Tn(ξ1)) . (6c)

Fourth family: Pad4
n

generating curve: Tn+1(x) − Tn(y) = 0
parametrization: γ4(t) = [cos(nt),− cos((n + 1)t)], 0 ≤ t ≤ π

4

• n even, n = 2m

{

A4
even = {(zn+1

2i , zn
2j), 0 ≤ i ≤ m, 0 ≤ j ≤ m}

B4
even = {(zn+1

2i+1, z
n
2j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m − 1} (7a)

• n odd, n = 2m + 1

{

A4
odd = {(zn+1

2i , zn
2j), 0 ≤ i ≤ m + 1, 0 ≤ j ≤ m}

B4
odd = {(zn+1

2i+1, z
n
2j+1), 0 ≤ i ≤ m, 0 ≤ j ≤ m} (7b)

• Lagrange interpolant:

LPad4
n

f(x) =
∑

ξ∈Pad4
n

f(ξ) wξ (Kn(x, ξ) − Tn(x2)Tn(ξ2)) . (7c)

Remark 1 (Convergence rate). The Lebesgue constant of interpolation at
the Padua points has optimal order of growth ΛPads

n

= ‖LPads

n

‖ = O(log2 (n)),
s = 1, 2, 3, 4, as it has been rigorously proved in [8,13,17]. In view of the mul-
tivariate extension of Jackson’s theorem (cf., e.g., [1] and references therein),
we have that for f ∈ Cp([−1, 1]2), 0 < p < ∞,

‖f − LPads

n

f‖∞ ≤
(

1 + ΛPads

n

)

En(f) ≤ c(f ; p) log2 (n) n−p , (8)

where c is a suitable constant (with n), dependent on f and p.

-1

-0,5

0

0,5

1

-1 -0,5 0 0,5 1

-1

-0,5

0

0,5

1

-1 -0,5 0 0,5 1

-1

-0,5

0

0,5

1

-1 -0,5 0 0,5 1

-1

-0,5

0

0,5

1

-1 -0,5 0 0,5 1

Fig. 1. The first family of Padua points with the generating curves for n = 12 (left,
91 points) and n = 13 (right, 105 points), also as union of two Chebyshev-like grids,
A (empty bullets) and B (full bullets).

3 Implementation.

In view of the explicit representations above, the computational core of inter-
polation at the Padua points is given by an efficient treatment of the repro-

5

ducing kernel. In [18,19], an elegant compact trigonometric formula for such a
kernel was given, which has been the key for bounding rigorously the Lebesgue
constant in [4].

Unfortunately, such a formula turns out to be severely ill-conditioned, and has
to be stabilized. This has been done in [6] in the context of interpolation at
the Xu points (cf. [19]). Applied in the present framework to the interpola-
tion formulas (4c)-(7c), this method leads to a pointwise evaluation cost for
the interpolant at the Padua points of the order of 24csinN ≈ 12csinn

2 flops
for degrees n up to the hundreds, csin denoting the average cost of the sine
function.

On the other hand, in view of (3) there is another natural way of writing and
computing the interpolant at the Padua points, i.e. via its representation in
the basis {T̂j(x1)T̂k−j(x2)}, 0 ≤ j ≤ k ≤ n, which is orthonormal with respect
to the product Chebyshev measure. In fact, considering for simplicity only the
family Pad1

n, in view of (3) and (4c) we have that

LPad1
n

f(x) =
n∑

k=0

k∑

j=0

cj,k−jT̂j(x1)T̂k−j(x2) , (9)

where

cj,k−j = cj,k−j(f) =
∑

ξ∈Pad1
n

f(ξ) wξ T̂j(ξ1)T̂k−j(ξ2) , (k, j) 6= (n, n) ,

cn,0 = cn,0(f) =
1

2

∑

ξ∈Pad1
n

f(ξ) wξ T̂n(ξ1) . (10)

Clearly, for f ∈ Π2
n these are exactly the Fourier(-Chebyshev) coefficients, i.e.

cj,k−j(f) = ϕj,k−j(f) =
1

π2

∫

[−1,1]2
f(x1, x2) T̂j(x1)T̂k−j(x2)

dx1 dx2
√

1 − x2
1

√

1 − x2
2

,

∀f ∈ Π2
n , and ∀(k, j) , 0 ≤ j ≤ k ≤ n . (11)

Concerning the other families of Padua points, the construction is completely
analogous. We only observe that the coefficient to be halved is again cn,0 for
the third family Pad3

n, while it is c0,n for the second and the fourth, Pad2
n and

Pad4
n.

The Fourier-Chebyshev representation (9)-(10) is more suitable for computa-
tion than that discussed above, which relies on the stabilized compact formula
for the reproducing kernel. Moreover, it admits a natural matrix formulation,
which allows to design a simple and effective Matlab implementation (since
Matlab bottlenecks like recurrences and iteration loops are avoided), cf. [9],
or to use conveniently machine-specific optimized BLAS (Basic Linear Alge-
bra Subprograms) even in a Fortran (or C) implementation, cf. [10]. Another

6

useful feature of the Fourier-Chebyshev representation is the possibility of es-
timating a posteriori the interpolation error by the size of some coefficients,
as we shall see below.

3.1 Matrix formulation.

For s = 1, 2, 3, 4, consider the matrices

D = D(Pads
n, f) = diag ([wξf(ξ), ξ ∈ Pads

n]) ∈ R
N×N , (12a)

Θi = Ti(Pads
n) =

· · · T̂0(ξi) · · ·
...

...
...

· · · T̂n(ξi) · · ·

︸ ︷︷ ︸

ξ∈Pads

n

∈ R
(n+1)×N , i = 1, 2 , (12b)

C0 = C0(Pads
n, f) =

c0,0 c0,1 · · · · · · c0,n

c1,0 c1,1 · · · c1,n−1 0
...

... . .
.

. .
. ...

cn−1,0 cn−1,1 0 · · · 0

cn,0 0 · · · 0 0

∈ R
(n+1)×(n+1) (12c)

the latter being the upper-left triangular part of

B = B(Pads
n, f) = Θ1 D Θ t

2 ∈ R
(n+1)×(n+1) (13)

with the modification c0,n = b0,n, cn,0 = bn,0/2 for the first and the third family,
and c0,n = b0,n/2, cn,0 = bn,0 for the second and the fourth family. Then it is
easy to see that, setting

τi(x) = [T̂0(xi), . . . , T̂n(xi)]
t (column vector) , i = 1, 2 , (14)

the interpolant at the Padua points can be computed in the form (9) as

LPads

n

f(x) = (τ1(x))t C0 τ2(x) . (15)

Even with an array of M target points, say X, the interpolant can be computed
by matrix operations, avoiding at all iteration loops (which is essential in

7

Matlab). In fact, setting

Ti(X) =

· · · T̂0(xi) · · ·
...

...
...

· · · T̂n(xi) · · ·

︸ ︷︷ ︸

x∈X

∈ R
(n+1)×M , i = 1, 2 ,

we have that

LPads

n

f(X) = [LPads

n

f(x)]x∈X = diagonal of (T1(X))t C0 T2(X) . (16)

Remark 2 (Beyond the square). Clearly, we can immediately extend inter-
polation at the Padua points to a function defined on a generic rectangle

R(a, b) = [a1, b1] × [a2, b2], via the affine mapping σ : [−1, 1]2 → R(a, b),
σi(t1, t2) = (bi − ai)ti/2 + (bi + ai)/2, i = 1, 2. Indeed, the interpolation for-
mula becomes simply

LPads

n

f(x) = (τ1(σ
−1(x)))t C0(Pads

n, f ◦ σ) τ2(σ
−1(x)) . (17)

It is also possible to construct non-polynomial interpolation formulas at Padua-
like points on bivariate domains with different geometric structures (such as
triangles, generalized rectangles, generalized sectors) by means of suitable (as
smooth as possible) surjective transformations of the square (cf. [5]). For ex-
ample, for the triangle T (u, v, w) with vertices u = (u1, u2), v = (v1, v2)
and w = (w1, w2) it is possible to use the Proriol (also known as Duffy) map
σ : [−1, 1]2 → T (u, v, w), σi(t1, t2) = (vi −ui)(1+ t1)(1− t2)/4+(wi−ui)(1+
t2)/2 + ui, i = 1, 2, and for the ellipse E(c, α, β) centered at c = (c1, c2) with
x1-semiaxis α and x2-semiaxis β, it is convenient to use the starlike-polar
map σ : [−1, 1]2 → E(c, α, β), σ1(t1, t2) = c1 − αt2 sin (πt1/2) , σ2(t1, t2) =
c2 + βt2 cos (πt1/2). Then we have an interpolation formula like (17), where,
since σ is surjective but non-invertible, we denote by σ−1(x) a suitable choice
(when necessary) in the inverse image of x through σ (e.g., σ−1(w) = (1, 1) for
the triangle, σ−1(c) = (0, 0) for the ellipse). Observe that the starlike-polar
map for the ellipse distributes the interpolation points more symmetrically
with respect to the usual polar coordinates, and shows a better interpolation
error (cf. [5]).

Remark 3 (Computational cost). First, we observe that a simple analysis of
the matrix-like interpolation algorithm gives the following complexity esti-
mates for construction (excluding evaluation of the function f at the Padua
points), and evaluation at a set of M target points:

• construction: cost of (12b) + cost of (12c) ≈ 2cTnN + 2(n + 1)2N flops
• evaluation: M× (cost of (14) + cost of (15)) ≈ M(2cTn + 4(n + 1)2) flops

8

where N is the number of Padua points (cf. (2)), and cT denotes the aver-
age evaluation cost of a single Chebyshev polynomial via its trigonometric
representation (suitable in Matlab), or via the three-term recurrence (suit-
able in Fortran: here, cT ≈ 2). This complexity estimate shows that on a
large number of evaluation points, say M � N , the present implementation
is more convenient than that based on the stabilized Xu formula for the re-
producing kernel (cf. [6]), whose cost is of the order of 24csinNM flops, since
2cTn + 4(n + 1)2 � 24csinN already for relatively small values of n.

Remark 4 (Error estimate). An important feature in the practical use of
polynomial interpolation is the possibility of having a reliable and if possible
“a posteriori” estimate of the interpolation error. To this aim, representation
of the interpolant in a suitable orthogonal basis is useful. This is the reason,
for example, why in their recent paper on the univariate Chebfun system [2],
Battles and Trefethen switch from the barycentric Lagrange form of the inter-
polant (suitable for computation) to its representation in the Chebyshev or-
thogonal basis (suitable for estimating the error). Here, the Fourier-Chebyshev
representation (9)-(11) is suitable for both purposes. In fact, consider cj,k−j

and ϕj,k−j as linear functionals on C([−1, 1]2, ‖ · ‖∞). Then, in view of (11)
and the fact that the {wξ} are weights of a cubature formula exact on con-
stants, denoting by p∗n the best uniform polynomial approximation of degree
n to f ∈ C([−1, 1]2),

|cj,k−j(f) − ϕj,k−j(f)| ≤ (‖cj,k−j‖ + ‖ϕj,k−j‖) ‖f − p∗n‖∞

≤ 2

∑

ξ∈Pads

n

wξ +
1

π2

∫

[−1,1]2

dx1 dx2
√

1 − x2
1

√

1 − x2
2

 ‖f − p∗n‖∞ = 4En(f) , (18)

for every (k, j), 0 ≤ j ≤ k ≤ n. Moreover, indicating by Snf the truncated
Fourier-Chebyshev expansion of f , Snf(x) =

∑n
k=0

∑k
j=0 ϕj,k−j(f)T̂j(x1)T̂k−j(x2),

and observing that LPads

n

and Sn are both projection operators on Π2
n, we have

‖LPads

n

f −Snf‖∞ ≤ (‖LPads

n

‖+‖Sn‖) ‖f −p∗n‖∞ = O
(

log2 (n) En(f)
)

. (19)

The growth estimate ‖LPads

n

‖ = O(log2 (n)) has been proved in [4], whereas
the fact that ‖Sn‖ = O(log2 (n)) is within the much more general results of
[17]. We can now give the following a posteriori error estimate, by the chain
of estimates

‖f − LPads

n

f‖∞ ≈ ‖f − Snf‖∞ ≤ 2
∞∑

k=n+1

k∑

j=0

|ϕj,k−j(f)|

≈ 2
n∑

k=n−2

k∑

j=0

|ϕj,k−j(f)| ≈ 2
n∑

k=n−2

k∑

j=0

|cj,k−j(f)| . (20)

The passage from the first to the second row in (20), though empirical, is rem-
iniscent of popular error estimates for one-dimensional Chebyshev expansions,

9

based on the size of the last two or three coefficients (cf., e.g., [2]). Here, we re-
sort indeed to the coefficients corresponding to the last three degrees k, namely
k = n − 2, n − 1, n. Notice that the first and the last approximation in (20)
are justified by (8) and (19), and (18), respectively. The latter, in particular,
seems to give an overestimate of the final error by an order of O(nEn(f)). In
practice, however, as in the one-dimensional case it happens that (20) tends to
be an overestimate for smooth functions, and an underestimate for functions of
low regularity (due to fast/slow decay of the Fourier-Chebyshev coefficients).
The behavior of this error estimate has been satisfactory in almost all our
numerical test (see the next section).

4 Numerical tests.

In Table 1 we show the errors of interpolation at the first family of Padua
points in the max-norm normalized to the max deviation of the function from
its mean, at a sequence of degrees, n = 10, 20, . . . , 60, on a well-known suite
of 10 test functions used in [16]. The corresponding “true” errors have been
computed on a 100× 100 uniform control grid. In the table we report also (in
parenthesis) the a posteriori empirical error estimate given by the last term
of (20), normalized as above. The tests have been done by the Fortran code
in [10].

The last four functions are considered more challenging for the testing of in-
terpolation methods at scattered points, due to their multiple features and
abrupt transitions. Here, we can see that only F10, and much less severely
F2, are really “difficult” for interpolation at the Padua points. In all the
other cases the approximation behavior of the interpolation polynomial is
quite satisfactory. It is interesting to observe that with the oscillating func-
tion F7(x1, x2) = 2 cos (10x1) sin(10x2)+sin(10x1x2), the error starts decaying
rapidly as soon as the degree n allows to recover the oscillations. On the other
hand, the troubles with F10 are natural, since it has a gradient discontinuity
in the center of the square, whereas the Padua points cluster at the boundary.
As for the empirical error estimates, we can see that they tend to overesti-
mate (at least far from machine precision), except for F2 and F10, where they
underestimate systematically the true errors. In general, we can consider the
behavior of the (normalized) a posteriori estimate (20) satisfactory. We stress
also that our implementation of interpolation at the Padua points is very sta-
ble. Indeed, we could interpolate at much higher degrees without drawbacks.
For example, we can take n = 300 (N = 45451 Padua points), obtaining an
error of 9E-12 for the test function F2.

In Table 2 we have reported the CPU times corresponding to our implementa-

10

Table 1
“True” and estimated (in parenthesis) normalized errors of interpolation at the
Padua points for the test set in [16].

n F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

10 9E-2 4E-1 8E-3 4E-4 4E-2 1E-4 3E-1 1E-1 3E-1 5E-1

(1E-1) (3E-1) (3E-2) (9E-3) (1E-1) (9E-4) (5E-1) (2E-1) (5E-1) (4E-1)

20 7E-3 6E-2 1E-5 7E-10 6E-5 4E-8 8E-6 3E-3 7E-3 1E-1

(1E-2) (4E-2) (4E-5) (5E-8) (4E-4) (2E-7) (9E-5) (6E-3) (2E-2) (3E-2)

30 1E-4 1E-2 2E-8 2E-14 1E-8 2E-11 7E-13 2E-5 4E-5 6E-2

(4E-4) (6E-3) (7E-8) (2E-14) (1E-7) (1E-10) (1E-11) (7E-5) (1E-4) (9E-3)

40 3E-6 2E-3 2E-11 4E-14 4E-13 6E-14 4E-14 6E-8 1E-7 4E-2

(6E-6) (1E-3) (1E-10) (5E-15) (9E-12) (7E-14) (4E-15) (3E-7) (3E-7) (4E-3)

50 1E-8 4E-4 1E-13 6E-14 1E-15 1E-13 7E-14 5E-11 2E-10 3E-2

(4E-8) (2E-4) (2E-13) (6E-15) (6E-16) (1E-14) (5E-15) (3E-10) (6E-10) (3E-3)

60 4E-11 6E-5 2E-13 7E-14 1E-15 1E-13 1E-13 6E-14 2E-13 2E-2

(1E-10) (3E-5) (1E-14) (8E-15) (6E-16) (1E-14) (7E-15) (2E-13) (7E-13) (2E-3)

tions in Matlab and Fortran, with optimized BLAS (oBLAS for short) libraries.
The tests have been made on a AMD Athlon 2800+ processor machine with
2Gb RAM. The resulting interpolation method is very fast. Notice that, due to
optimized linear algebra, in both implementations the times scale differently
(and more favourably) than what would be predictable by the flops counting
in Remark 3.

Table 2
CPU times (in seconds) for construction of the interpolation polynomial at the
Padua points (excluding evaluation of f) and evaluation at M = 10000 target
points, by Matlab and Fortran (with optimized BLAS) implementations.

n = 10 n = 20 n = 30 n = 40 n = 50 n = 60

MATLAB

constr. 0.0025 0.0045 0.0110 0.0282 0.0556 0.0955

eval. 0.1465 0.2523 0.3721 0.5022 0.6346 0.7676

FORTRAN-oBLAS

constr. 0.0010 0.0050 0.0110 0.0200 0.0350 0.0550

eval. 0.0050 0.0140 0.0240 0.0360 0.0510 0.0670

References

[1] T. Bagby, L. Bos and N. Levenberg, Multivariate simultaneous approximation,
Constr. Approx. 18 (2002) 569–577.

[2] Z. Battles and L.N. Trefethen, An extension of MATLAB to continuous
functions and operators, SIAM J. Sci. Comput. 25 (2004) 1743–1770.

[3] B. Bojanov and Y. Xu, On polynomial interpolation of two variables, J. Approx.
Theory 120 (2003) 267–282.

11

[4] L. Bos, M. Caliari, S. De Marchi, M. Vianello and Y. Xu, Bivariate Lagrange
interpolation at the Padua points: The generating curve approach, J. Approx.
Theory, in press (available online 15 May 2006).

[5] L. Bos, M. Caliari, S. De Marchi and M. Vianello, Bivariate interpolation at
Xu points: results, extensions and applications, Electron. Trans. Numer. Anal.
25 (2006) 1–16.

[6] L. Bos, M. Caliari, S. De Marchi and M. Vianello, A numerical study of the Xu
polynomial interpolation formula, Computing 76 (2005) 311–324.

[7] L. Bos, S. De Marchi and M. Vianello, On the Lebesgue constant for the Xu
interpolation formula, J. Approx. Theory 141 (2006), 134–141.

[8] L. Bos, S. De Marchi, M. Vianello and Y. Xu, Bivariate Lagrange interpolation
at the Padua points: The ideal theory approach, 2006, submitted.

[9] M. Caliari, S. De Marchi, R. Montagna and M. Vianello, XuPad2D: a Matlab
code for hyperinterpolation/interpolation at Xu/Padua points on rectangles,
available at: http://www.math.unipd.it/∼marcov/software.html.

[10] M. Caliari, S. De Marchi and M. Vianello, Padua2D: a Fortran
code for bivariate Lagrange interpolation at Padua points, available at:
http://www.math.unipd.it/∼marcov/software.html.

[11] M. Caliari, S. De Marchi and M. Vianello, Bivariate polynomial interpolation
on the square at new nodal sets, Appl. Math. Comput. 165 (2005) 261–274.

[12] J.M. Carnicer, M. Gasca and T. Sauer, Interpolation lattices in several variables,
Numer. Math. 102 (2006) 559–581.

[13] B. Della Vecchia, G. Mastroianni and P. Vertesi, Exact order of the Lebesgue
constants for bivariate Lagrange interpolation at certain node systems, 2006, to
appear.

[14] C.F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables,
Encyclopedia of Mathematics and its Applications, vol. 81, Cambridge
University Press, Cambridge, 2001.

[15] M. Gasca and T. Sauer, Polynomial interpolation in several variables, Adv.
Comput. Math. 12 (2000) 377–410.

[16] R.J. Renka and R. Brown, Algorithm 792: Accuracy tests of ACM algorithms
for interpolation of scattered data in the plane, ACM Trans. Math. Software 25
(1999) 79–93.

[17] P. Vertesi, On multivariate projection operators, 2006, to appear.

[18] Y. Xu, Christoffel functions and Fourier series for multivariate orthogonal
polynomials, J. Approx. Theory 82 (1995) 205–239.

[19] Y. Xu, Lagrange interpolation on Chebyshev points of two variables, J. Approx.
Theory 87 (1996) 220–238.

12

