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Abstract

We introduce the Aldaz-Kounchev-Render operators on a multidimensional
simplex. In the case of the unit simplex of R™ these operators preserve the
functions 1,z7,...,2J,, j a positive integer. The Voronovskaja formula, the
behaviour with respect to the convex function, and the limit of iterates of the
operators are investigated.
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1. Introduction

Starting from the classical Bernstein operators B,, defined on C]0, 1], several
modifications have been considered with the aim to obtain operators preserving
some prescribed functions. J.P. King [16] constructed linear positive operators
which preserve the functions eg and e;. Here and in what follows we use the
notation e;(t) =/, j=0,1..., ¢t €[0,1].

For a fixed j € N and n > j, Aldaz, Kounchev and Render [6] intro-
duced a polynomial operator B, ; : C[0,1] — C]0,1] preserving ey and e;.
The operator is a linear combination of the classical Bernstein basis functions
bni(z) = (3)x*(1 — 2)"* but using

j—1 1/j
k—1
tn k= <H n—l)

=0

for the point evaluations of the function f, i.e.,

B j(fiz) =Y bni(@)f (tnk)- (1.1)
k=0
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The properties of the Aldaz-Kounchev-Render operators were studied in
several papers. The Voronovskaja formula conjectured in [10] was proved in [9].
For other properties the reader is referred to [12], [11], [4].

The Aldaz-Kounchev-Render operators on hypercube were introduced and
studied in [1]. A conjecture concerning the Voronovskaja formula for these
operators was formulated in the same paper and a partial solution was given in
[2].

In this paper we introduce the Aldaz-Kounchev-Render operators B, ; on
a simplex of R™. Their essential property is the preservation of the functions
1, 2], -+, 2J . Section 2 contains the corresponding definitions. In this section
we use barycentric coordinates. For the next sections the cartesian coordinates
are more convenient. A conjecture about the Voronovskaja type formula as well
a partial solution are presented in Section 3. The behaviour of the operators in
relation with convex functions is investigated in Section 4. Section 5 is devoted
to the limit of iterates of Aldaz-Kounchev-Render operators.

Some basic definitions are recalled in what follows.

Let Dy, Dy, - - s Pm € R™ be m + 1 points in general position, i.e., the vectors
Dy — Do, kK =1,...,m, are linearly independent. A point p in the affine hull of

m

Do, P15 - - -, Pm can be uniquely represented as p = Z ugPy, where ug + ug +

k=0
st Uy, =1
The components of U = (ug, U1, .. ., U, ) € R™H are called the barycenter co-
ordinates of p with respect to py,Dy,...,D,,.- The points of the simplex spanned
by Do, P1s- - -5 Py, have nonnegative barycentric coordinates and are character-

ized by this property. Therefore, we can identify this simplex with
Sm = {u = (uo, U1, ..., Um) | ug >0, uop+us + -+ +uy, =1}.
Let Uy, = {Z = (x1,...,%m) |2k >0, 21 + -+ + &, <1} be the unit simplex
in R™,
If f: U, — R, it is quite useful to consider also f as a function on S,,,
writing
flug,uty.ooyum) = f(z1,.. ., Tm) (1.2)

Withu1:xl,...,um:xm,uozl_ul_..._um_

2. Bernstein operators and Aldaz-Kounchev-Render operators

Let i = (ig,i1,. - -,im) € NI be a multiindex with [i| = o441+ +ip =
n. The i-th Bernstein basic polynomial of degree n is defined by

n!_z n! o -
—(77) ‘— 7t — 20,,%1 im
b, ;@) = 5O = ugutt .. uy,

5 N m

20'21' .. .’Lm!

where @ = (ug, U1, ..., Umn) € Sp.



The n-th Bernstein polynomial associated with f € C(Sy,) is defined as
i
= E —_ b -(u
|7v‘7 f (n) ’I’L7Z(u)7

Z:<Zo’h7 Zm)es
n
Let j,n €N, j<n,and i € {0,1,...,n}. Set

o= (e )

7 _ -
; m+1 7 = o
Then Yn,j,i < E Ifi e NO s |Z| =n, let Thjii = (rn,j,OaTn,j,h . 7rn,j,m)a

where

where 7, ;1 == Vn i, l=1,...,m,and rp jo:=1—7Tp 1~ — Thjm-
The n-th Aldaz-Kounchev-Render polynomial associated with f € C(S,,) is

defined by
Bo;f (@ Zf(w) b3 (7).

Proposition 2.1. (i) B, ; mterpolates f at the vertices of Sy,.
(ii) By 1 =1.

(iii) Let f € C(Sm), f(ug,u1,... Um) = u{ for a certain 1 € {1,...,m}.
Then B, ;f = f.
Proof. (i) Indeed, let w € S, such that w; = 1 for a certain [ € {0,1,...,m}.
Then bn’;(ﬂ) =1 iff ¢ = n. It follows that ,, j; = Y jn = 1, and so T, ;=1

Summing-up, we see that B, ; f(u) = f(u).
(iii) To simplify the notation we give the proof for I = 1. If u; = 1, we have
B, ;f(uw) = u according to (i). So let 0 < uy < 1. Then

”Jf Zr’ﬂjlnl Z,Yn]zl nz
Zzlzl—l (21—]+1) n!

10,11 Tm
(n—1)...(n—7+1) dglis!...0p! 07t

m

i1 —1)... (1 —j+1) n! i —i
= 1_ n—i
ZO =1 1) alm—npa w)
i1

o Z (n—i1)! wul? .. uim
100! i | — —iy ”
iotia b Timen—iy (012 dm! (1)
1 _
The second sum is equal to m (ug +ug + -+ +1uy)" " = 1. The
—u1
first sum is equal to u] according to [6, Proposition 11]. So we have

By f(@) = uj = f(a).



3. Voronovskaja type formulas

In studying the approximation properties of a sequence of positive linear
operators, Voronovskaja formula is an essential tool. In this section we present
results in this sense by using cartesian coordinates. In this framework the Bern-
stein operators and Aldaz-Kounchev-Render operators are described as

Buf@ = Y prinin@f <“ ) im) , (3.1)

. , n n
i1t tim <n

Bn,jf(f) = Z Prjir,..im (f)f (’Yn,j,ilv s 7’7’n7j,im) ) (32)

i1t +im<n
where
n!

i (i — = i)

i1 i Nedig— =i
et (l—zp—. o —xpy)" m

Pnjiv,..jim (§> = i1'

T = (xla ce axm) €Un, f€ C(Um)

Let C?(U,,) be the set of the functions f € C(U,,) having on int(U,,)
continuous partial derivatives of order < 2, which can be continuously extended
to U,,.

Conjecture 3.1. Let f € C*(Uy,). Then, for x € int(Uy,),

lim n(B,;f(z) — f(z))

n—oo

-2 Y wmi(l—w)fa(@) =2 Y manfl, (@)= (G -1 (1-a)f, (@)
2
=1

1<i<k<m =1

Let Dy, ; := {@: (Y1, Ym) | yx > 0, y{ +otyl < 1}. Note that U,,, =
Dm71 C Dmyj.

In what follows we will give a result related to Conjecture 3.1. In order to
simplify the notation we consider the case m = 2, j = 2.

Theorem 3.1. Let f € C(Da2) such that the function
(u,v) € U2 — f(\/aa \/6)
is in C?(Us). Then, for (x,y) € int(Us),

lim n(B2f(z,y) — f(x,y))

= D o) — o) + X )
-2, L—y /
- 2 fa:(xay) - ?fy(x,y) (33)



Proof. A key ingredient is the identity

i(i — 1) i L oifi
n(n—l)_<n> _n—ln(n_ )
Let g € C?(Us) be defined by g(u,v) := f(y/u,/v), (u,v) € Us. Then

lim n [Bya(g(s*,t%); (2,9)) = Balg(s*,£°); (2, 9))]

- limniJ;npn,i,k(xay) lg <;E;_11)) fbéfb—g) -7 ((:1)2 (5)2”
- = Ly + Lo,
where

1 i /i iN? (k)2
Ly = pocl Gl ) 0 N el B (e
1 nlgr;onzpmww{ a0 (G) )
i+k<n
1 k [k z k
—(==1)d — —
n1n<n gy( n n >}

= lim By, (s(s — 1)g, (s, t) + D, (s*,t%); (x,y))
= (xQ ) (l‘ 7y2)+(y _y) ( Y )7

2
L2:v}51§o2n7 > Puik(zy) {( (—1>> 9oz (&m)

i+k<n

+2% (; - 1) S (i - 1) gr,(&m) + (:z <fl - 1))29@’2(5’”)}

for suitable (&, n) furnished by Taylor’s formula.
The absolute value of the above sum is dominated by

_|_

max{[|g72 lloo 1192y lloos lgy2 o} X

2 . 9
5 masteon [ (2 (20)) w2t (2o 2 (S0) (5 (2)) ]
i+k<n nn n\n n\n
which tends to

max{]| gz lloo, 197y lloos 1932 oo} [(2(x = 1)) + 2ay(z = 1)y — 1) + (y(y — 1))?],

and so Ly = 0. We conclude that

lim n [Bya(g(s*,£%); (,9)) — Bulg(s>, £2); (2,1))]

n—oo

= (z* —2)g,(«*, %) + (v* — v)g, (=%, v°). (3.4)



Now g(s%,t*) = f(s,1), fi(x,y) = 2xg, (2% %), fi(x,y) = 2yg,(z*,y?), and
(3.4) shows that

lim n [angf(‘f, y) - an(.T, y)]

n—o0
= S DAy) + 56— Vi), (@) €intTs).  (35)
On the other hand, it is well known that
lim n(Bf(z,y) — f(@.y)) (3)
= 2D gy — ) + P ), () € int(0)
(3.7)
From (3.5) and (3.7) we get (3.3), and the proof is finished. O

4. Aldaz-Kounchev-Render operators and convex functions

The behaviour of positive linear operators with respect to the convex func-
tions is an important topic of study. This section is devoted to such problems
in the framework of Bernstein operators and Aldaz-Kounchev-Render operators
on the simplex.

Proposition 4.1. Let f € C(D,, ;) such that g : U,, = R, g(t1,...,tm) ==
f (V... ¥/tn) is a conver function. Then

B f(®) = [(Z), T € Upn.

Proof. Due to the continuity, it suffices to prove this for x € int(U,,). So, let
z € int(Upy,) be fixed. Set s := a7, k=1,...,m. Then (s1,...,8m) € int(Up,)
and consequently there exist ag, a1, ..., a, € R such that

g(t1, .. tm) > ag+aity + - + amtm, t € Up,

9(81,--,8m) =ao+a181 + -+ amSm.
It follows that

f(\ﬂ/ﬂw--y\/jtm)Za0+a1t1+"'+amtm>¥EUm7
F (/51,5 ¥/5m) = ap+a151 + - + QS

Setting t; = yi, k=1,...,m, we get

f(y17~'~7ym) > ag +a1y{ + e +amyzn7 RS Dm,j

f(xlv"'vmm):a()'f'alx'{-’-”'—{—amx%r
Now By i f(Y1s- -+, Ym) > ao +ary] + -+ + amyl,, and in particular

Buif(1, . &m) > ao + @12 4+ -+ amad, = f(x1,. .., Tm).



To present the next result, which involves the Voronovskaja operator, let
m=2j>1,

Uz ={(s,t)|s20,t >0, s+t <1},
Dyj={(z,9)|x>0,y>0,27 +y <1}.

Let g € C*(Us), f € C*(Ds,;), f(z,y) = g(@?,y?). Suppose that g is convex.
Define, for (z,y) € Da;

Vi(z,y) =x(1—x)fi(z,y) +y(1 —y)f2(x,y) — 22y f,, (2, y)
— ([ -DA—2)fo(z,y) = (G — D1 —y) f(z,9).

1
Remark that §V is the Voronovskaja operator for the sequence (B, ;), when
m = 2.
Set s = a7, t =y/. Then f(x,y) = g(s,t) = g(2?,37). We have

folmy) = G2’ gl (@7 y7), [l (e y) = 3227y T gl (e o),
[ (2,y) = 7222 g0 (27, y7) + § (5 — Dal 2gl (2, 7).
Therefore,
Vi(z,y) =211 —2)gh@ ¢)+ vy (1 —y)gp(a?y)) — 207y gl (27, 47).

Theorem 4.1. Suppose that the function f wverifies the above hypothesis. If
(z,y) € Ua, then V f(z,y) > 0.

Proof. Let x = s'/7, y =t/ so that
Vf(z,y) =" (1 = s19) gl (s, ) + 6271 (1= £1/7)gfh(5,1) — 2stgly (s, ).

Since g is convex, we have g, >0, g» > 0, g’>g;5 > ;’tz, for (s,t) € Us. Now

V F(a.y) > 20/ (st)2- 15 (1= s13) (L~ 11/3)] gl (s, )] — 2tgly (s, ).

It remains to prove that

\/(st)%l/j(l — sy (1 — /7)) > st.
This reduces to 1 — s'/9 — /7 > 0, ie., x +y < 1, which is true because

(z,y) € Us. O

Let f € C(Dmj), 9 € C(Up), g(t1,... tm) = f(Jt1,..., tm). We write
g<zTify <mzp, k=1,...,m.

Theorem 4.2. If g is convezr and f(g) < f(T) whenevery,Z € Uy, § < T, then

an(f) > Bn,jf(f) > f(f)7 T c U7n~ (41)



Proof. In (3.1) and (3.2) we have 7, j;, < Z—k, k=1,...,m. Thus
n

Z‘1 Zm
WY S i 4.2
P2 2 fOnginre i) (1.2

and this proves the first inequality in (4.1). For the second inequality see Propo-
sition 4.1. O

Example 4.1. The function f(T) = exp(:cji + -4 2), T € U,y,, satisfies the
hypothesis of Theorem 4.2. For it the approzimation provided by By, ; is better
than that provided by B,,.

For n = 10 and j = 2 Figures 1 and 2 illustrate the inequalities
f < Biyaf <Biof.

0

0
0.2
0.4 0.
0605 T To'g 06 04
»-

Y~

2

Figure 1: Graph of Bigf — Bio,2f Figure 2: Graph of Big2f — f

Theorem 4.3. Let f € C(U,,) be convex and f(y) > f(T), whenevery, T € Uy,
y <Z. Then

By,jf(@) = Bof(T) > f(T), T € Un. (4.3)

Proof. The first inequality follows from (4.2). Since Bernstein operators preserve
the affine functions and f is convex, the second inequality is also valid. O

Example 4.2. The function f(T) = exp(—x1 — - — ), T € Uy, satisfies the
hypothesis of Theorem 4.3. For it the approximation provided by B, is better
than that provided by B, ;.

For n = 2 and j = 2 Figures 3 and 4 illustrate the inequalities
[ < Baf < Basf.
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Figure 3: Graph of Baof — Baf Figure 4: Graph of By f — f

5. Limit of iterates of Aldaz-Kounchev-Render operators

The iterates of a Markov operator (i.e., a positive linear operator preserving
the constant functions) are investigated in many papers. There are several
methods for determining the limits of such iterates, see, e.g., [5], [7], [8], [13],
[14], [15], [17], [18], [19] and the references therein.

Let g = (0,0....,0), 77 = (1,0,...,0),..., Ty, = (0,...,0,1) be the vertices
of the simplex U,,.

Theorem 5.1. For each f € C(Uy,), one has

lim BY . f(Z) = f(0o)(1 — 2] — - — 2),) + f@)2] + - + f(@m)z),, (5.1)

p—roo
uniformly for T € Uy,.
First proof. Given ayg,...,a, € R, let

X :={feCUn)|fr) =ar, k=0,1,...,m}.

Endowed with the metric d(f, g) := || f —9lloo, C(Uy,) is a complete metric space
and X is a closed linear subspace, so that (X, d) is also a complete metric space.
Let f € X and k € {0,1,...,m}. Then B, ;f(tx) = f(Tx) = ax, and so
B, ;f € X. We can consider the operator By, ; : X — X.
Let = € U,,. By the power means inequality we have

a4+l (l—z— - —xy)" L/
m+1
cntectamt(lom = —an) 1
a m+1 S om+ 1
which leads to
1



If f,g € X, then

Bui @) = Bugo@)| = | 3 (1 (Fz) = 9 (Fusz) ) bui®

=
< Z ’f (?n,jﬁ) ) (Fn,j,{)

where the last sum runs over all i with |i| = n, except for the case where Thji
is a vertex of U,,, when f and g coincide. Now we have from (5.2) and (5.3),

b, 5(T), (5.3)

1By (@) = Bugg @) < If = glloo (1= 5 — - — 2, — (1= g — - — )"
< (1= g ) 1 - ol (5.4
Therefore,
A(Bo i f, B jg) < (1 - <m+11)1) a(f,g),

which shows that B, ; : X — X is a contraction on the complete metric space
X. According to Banach’s fixed point theorem, B, ; has a unique fixed point
¢ € X and for each f € X,

lim B f = ¢.

p—o0

It is easy to see that the unique fixed point of B, ; is in fact the function
o@ =ag(l—a] —- —al ) +axl +--+amzl, T€Upn.

It follows that for each f € X,

T BEJ(@) = f@)(1 =l = =) + S+ f ),
uniformly for T € U,,. Since in the definition of X, ay,...,a,, were arbitrary,

we conclude that (5.1) holds for each f € C(U,,), and the first proof is finished.

Second proof. We use notation and results from [5]. Let S = B,, j. The associ-
ated matrix M has the form

M= ( Il/><l/ ‘ OVX(S—U+1) ) , (55)
R(s—l/+1)><1/ ‘ Q(s—u+1)><(s—u+1)

with v = m + 1. According to [5, Theorem 2.1], there exists

Tf := pli_}n(r)lO B, if, f€CUn). (5.6)

Corollary 2.1 from [5] tells us that



where ¢y, are fixed points of By, j, v >0, ¢o + -+ + ¢@p, = 1.

for

Let go(7) =1 — o] =+ —ahy, 1(F) =7l ., gm(T) = .
These are fixed points of B,, j, and Corollary 2.1 from [5] shows that

9i = Q0P + a1 + -+ GimPm, 1 =0,...,n,

some a;;, € R. Now Tg;(7;) = ¢;(v;) = 4 (since Tg; interpolates g; on the

extreme points) and also

ie.,

Tgi(@1) =Y 6i(Tk)px (W1) = i(01)-
k=0

It follows that o;(7;) = d;;. Now
dit = 9i(T1) = aiopo(Tr) + -+ + Aimem (T1) = aq,

ay = 0; and so g; = ;. Combined with (5.6) and (5.7), this leads to (5.1)

and this concludes the second proof.
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