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Abstract

The computation of integrals in higher dimensions and on general domains,
when no explicit cubature rules are known, can be ”easily” addressed by
means of the quasi-Monte Carlo method. The method, simple in its for-
mulation, becomes computationally inefficient when the space dimension is
growing and the integration domain is particularly complex. In this paper
we present two new approaches to the quasi-Monte Carlo method for cu-
bature based on nonnegative least squares and approximate Fekete points.
The main idea is to use less points and especially good points for solving the
system of the moments. Good points are here intended as points with good
interpolation properties, due to the strict connection between interpolation
and cubature. Numerical experiments show that, in average, just a tenth of
the points should be used mantaining the same approximation order of the
quasi-Monte Carlo method. The method has been satisfactory applied to 2
and 3-dimensional problems on quite complex domains.

Keywords: cubature, quasi-Monte Carlo method, nonnegative least
squares, approximate Fekete points.
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1. Introduction

Consider the problem of calculating the integral I(f) =

∫
Ω
f(x)dx, Ω ⊂

Rd. We know that if λd(Ω) <∞ (the d dimensional Lebesgue measure of Ω)
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we can turn Ω into a probability space with probability measure dµ(x) =
1

λd(Ω)dx. Then for f ∈ L1(µ) we have

I(f) =

∫
Ω
f(x)dx = λd(Ω)

∫
Ω
fdµ(x) = λd(Ω)E(f)

where E(f) is the expected value of f .
The Monte Carlo (MC) method for numerical integration is obtained by

taking N independent µ-distributed random samples x1, . . . , xN ∈ Ω and,
then approximating the integral as follows

I(f) ≈ λd(Ω)
1

N

N∑
i=1

f(xi) = IN (f). (1)

For the strong law of large numbers, as N →∞ we then know that the r.h.s.
in (1) converges in the Lebesgue measure to the value of the integral.

Differently to the classical Monte Carlo method or Monte Carlo integra-
tion, which is based on sequences of pseudo-random numbers, a quasi-Monte
Carlo (qMC) method is a method for numerical integration that uses the
so-called low-discrepancy sequences (also known as quasi-random sequences
or sub-random sequences). Well known low discrepancy sequences are Hal-
ton (also known as Van de Corput-Halton), Hammersley and the so-called
(t, s)-sequences, such as the Sobol sequence. For the definition and proper-
ties of all these sequences we invite interested readers to refer to the book
[15].

When dealing with a (quasi-)Monte Carlo method of integration we need
to find a large number N of points in order to approximate the value of the
integral. This means a lot of flops and storage, which become unpractical
when the space dimension d grows. How can we avoid this?

In the paper we propose two techniques aimed to reduce the number
of quasi-random nodes, while still keeping the same accuracy of the quasi-
Monte Carlo approach. The new approaches are ”compressed cubature” that
we then apply to quite general domains in space dimensions d = 2, 3.

In the next section we introduce some useful results on low-discrepancy
sequences and their use in cubature, then in Section 3 we describe the new
approaches based on nonnegative least squares (NNLS) and approximate
Fekete points (AFP). In Section 4 we provide an error analysis for the NNLS
case that can be adapted to the case of the AFP when the measure of
stability, ρ (cf. formula (10)), is not too big. In Section 5 we present some
numerical tests supporting the validity of our new approaches. We also point
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out that all the algorithms have been implemented in Matlab for consistency
with previous works done by collaborators at the CAA-research group for the
construction of cubature formulas on various 2 and 3-dimensional domains
(cf. e.g. [27, 30]). To conclude the Introduction, we observe that our
approaches can be extended to any space dimension. The reason why we
have confined ourselves to d = 2, 3 is mainly due to hardware limitations on
which the numerical experiments have been performed.

2. Briefly on low discrepancy sequences

In what follows let Ω = [0, 1]d be the d-dimensional unit cube, f : Ω→ R
a (continuous) function and X = {x1, . . . , xN} be a finite set of points on
Ω.

The discrepancy DN of X is

DN (X) := sup
B∈J

∣∣∣∣#(B,X)

N
− λd(B)

∣∣∣∣
where J is the family of sets of the form

∏d
i=1[ai, bi) = {x ∈ Rd : ai ≤ xi <

bi} and #(B,X) :=
∑N

j=1 χB(xj) (i.e. the number of points xj falling in
B).

The star discrepancy of X,

D∗N := DN (J∗;X) ,

where J∗ is the family of subintervals of Ω of the form
∏d
i=1[0, ai).

As we have already seen in the quasi-Monte Carlo method the set X is
chosen as a low-discrepancy sequence.

In Figure 1 we show the plots of 500 Halton and Sobol points on the
square [−1, 1]2. In Figure 2 we plot the corresponding star discrepancies
in 2 and 3-dimensions for more than 6000 Halton, Sobol and Hammersley
points that show the typical logaritmic decay to infinity. In fact, the exact
lower bound of the star discrepancy D∗N is an open problem but it is believed
that there exist some small positive constant cd such that for any point set X
consisting of N distinct points in the d-dimensional unit-cube, the inequality

D∗N (X) > cd
(logN)d−1

N
,

holds [15]. To generate such sequences on the unit cube one can use the Mat-
lab codes haltonset, sobolset, or those available at the Matlab Central
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Figure 1: 500 Halton (left) and Sobol (right) points on [−1, 1]2

Figure 2: Star discrepancies in dimension 2 and dimension 3 for nearly 7000 points

File Exchange http://www.mathworks.com/matlabcentral/fileexchange/.
Let IN (f) be the cubature rule given by the quasi-Monte Carlo method and

EN (f) :=

∣∣∣∣∫
Ω
f(x)dx− IN (f)

∣∣∣∣ , (2)

the corresponding cubature error. If f : Ω → R is a bounded variation
function, with variation V (f), the Koksma-Hlawka inequality (cf. e.g. [24,
23]) says

EN (f) ≤ V (f)D∗N . (3)

The definition and analysis of the multidimensional bounded variation of a
function, in the sense of Hardy-Krause, is well detailed in the paper [25].

Once we know V (f), by the inequality (3), the quality of quasi-Monte
Carlo integration rule depends on the star discrepancy. On the other hand,
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the inequality (3) is not of practical use. As observed in [20] it has some
problems

(i) O(N−1 logd(N)) is smaller than O(N−1/2) when d is small and N is
large;

(ii) for many functions V (f) can be +∞;

(iii) to compute DN , D∗N and V (f) is not always easy, while (3) gives only
an upper bound.

Such drawbacks can be avoided by using a radomized qMC method, for
example by random shift of the sequence X, as detailed in [34] or by the two
new alternatives, presented in this article, aimed to reduce the computation
efford essentially by reducing the number of points considered.

3. The new approaches

In the majority of real applications in which we need to approximate an
integral, the domain of integration could have a quite complicated shape. For
instance, in dimension d = 2, there exist many methods (and the correspond-
ing algorithms) that allow to compute nodes and (positive) weights for the
corresponding cubature rules. As an example for polygonal domains (convex
or not convex), polygauss is a Matlab function that, thanks to Green’s inte-
gration formula, allows to easily determine the cubature nodes and weights
combining the Gauss-Legendre cubature formula with the Green’s formula
(cf. [27]). Other known examples for general 2-dimensional domains, with
piecewise regular boundary, are those that make use again of the Gauss-
Green approach and implemented in the Matlab functions Splinegauss,

ChebfunGauss (cf. [30, 31]). In some of these domains, these formulas
use a number of points greater or equal to the dimension of the underlying
polynomial space, positive weights (for convergence reasons) and algebraic
prefixed precision. Unluckily this is in general not the case! This is the
reason why we are looking for cubature formulas also with some negative
weights, risking instability, but gaining the possibility to work with more
general domains avoiding, on the other hands, to use a lot of points as in
the quasi-Monte Carlo approach.

3.1. Nonnegative Least Squares

This is the purpose of the Matlab function lsqnonneg, based on a vari-
ant of the algorithm developed by Lawson and Hanson in [19]. Readers
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interested to the use of the function lsqnonneg may refer to the Matlab’s
online documention.

NonNegative Least Squares (NNLS) problems are least squares problems
that satisfy linear constraints inequalities (cf. [19, p. 161])

Definition 1. Let A be a m × n matrix and b ∈ Rm a column vector, G a
r × n matrix and h ∈ Rr. A Linear System of Inequalities (LSI) problem
is a least squares problem with linear constraints, that is the optimization
problem

min
x∈Rn

‖Ax− b‖2 (4)

Gx ≥ h .

A special instance of the previous problem, used in curve fitting, consists
in finding a solution with positive components.

Definition 2. Let A be a m × n matrix and b ∈ Rm a column vector. A
NNLS problem is the LSI problem

min
x∈Rn

‖Ax− b‖2 (5)

x ≥ 0 .

As described in [19, p. 161], the algorithm starts with a set of possible
basis vectors and computes the associated dual vector, say λ. It then selects
the basis vector corresponding to the maximum value in λ in order to swap
out of the basis in exchange for another possible candidate. This process
continues until λi ≤ 0, ∀ i.
If in the previous definition we consider

• A = V T , with V the Vandermonde matrix at the sequence X =
{xi, i = 1, . . . , n} for the polynomial basis {pj , j = 1, . . . ,m};

• b being the column vector of size m of the moments, that is

bj =

∫
Ω
pj(x)dµ(x)

for some measure µ on Ω

• G = I, i.e. the identity of order n and h = (0, . . . , 0)T of order n
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then the LSI problem consists in finding the vector x that minimizes ‖V Tx−
b‖2 subject to x ≥ 0. This will give the nonnegative weights x for the cu-
bature at the point set X. Hence, by using lsqnonneg we get the positive
weights (given by the solution of the LSI problem) so that we can approxi-
mate the integrals at the corresponding point set X.

Notice that, from the Kuhn-Tucker theorem, the previous optimization
problem has a solution x with some components that are strictly positive
and some other ones that vanish. Indeed, the residual of the solution of the
NNLS problem, say

ε = ‖c− b‖2, c = {cj} = Ax∗, cj =

n∑
k=1

wkpj(qk) ,

will not be zero in general (as before the pj are a polynomial basis on which
we can write the solution). Then, the nodes qk and the weights w = {wk}
are extracted correspondingly to the nonzero components of x∗.

3.2. Approximate Fekete Points

Another idea for approximating the integral, is by using the so-called
Approximate Fekete Points (AFP) extracted from a suitable discretizion of
the domain known as Weakly Admissible Meshes (WAM) (cf. e.g. [4, 5, 28]).
For the definition and the properties of WAMs we refer to the paper [5].

The AFP are good approximation of the true Fekete points as proved
in [4] and they are determined by a “simple” numerical procedure which
turns out to be equivalent to the QR factorization with column pivoting
of the transposed of the rectangular Vandermonde matrix associated to the
approximation process.

More specifically, consider a WAM {An} of a compact set K ⊂ Rd (or
K ⊂ Cd), say An = {a1, . . . , am}, m ≥ νn = dim(Pdn), and the associated
rectangular Vandermonde-like matrix

V (a;p) = V (a1, . . . , am; p1, . . . , pνn) = [pj(ai)] , 1 ≤ i ≤ m , 1 ≤ j ≤ νn ,
(6)

where a = (ai) is the array of mesh points, and p = (pj) is the array of basis
polynomials for Pdn (both ordered in some manner). The AFP algorithm can
be described in these simple Matlab-like notation

algorithm AFP (Approximate Fekete Points):
W = (V (a,p))t; b = (1, . . . , 1)t ∈ Cνn ;
w = W\b ;
ind = find(w 6= 0); ξ = a(ind)
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For details about the AFP algorithm and its Matlab implementation we
suggest the readers to refer to the papers [28, 4, 5]. Here we simply recall
that at the web page http://www.math.unipd.it/∼marcov/CAAsoft.html
once can find all the necessary scripts for polynomial fitting and interpolation
on WAMs.

Among the applications of the AFP, a natural one is numerical cubature.
In fact, if in the algorithm AFP we take as right-hand side b = m =∫
K p(x) dµ (the moments of the polynomials basis with respect to a given

measure µ), the vector w(ind) gives directly the weights of an algebraic
cubature formula at the corresponding Approximate Fekete Points. As a
remark, when the boundary of K is approximated by polynomial splines,
for dµ = dx the moments can be computed by the formulas developed in
[32].

4. Error analysis

In [29, §2], the authors have provided an error analysis, estimating the
effect of the moments error in integrating a function, at least when the inte-
grand f is defined on the whole domain Ω. Just to give an idea on how this
error analysis has been done, we consider a multivariate discrete measure
ν supported at a finite set X = {Xi} ⊂ Ω ⊂ Rd, i = 1, . . . , N with corre-
spondent (positive) weights ωi. The idea of “measure compression”, which
is essentially our goal, consists in computing an integral by a extracting a
subset of the point set X and the corresponding weights so that∫

Ω
f(X)dν =

N∑
i=1

ωif(Xi) ≈
M∑
j=1

wjf(Yj) , (7)

where Y = {Yj} ⊂ X and M = card({Yj}) ≤ dim(Pdn) < N in such a way
that the cubature formula is (nearly) exact on total-degree polynomials of
degree ≤ n in Rd.

Following [29],∫
Ω
p(S)dν =

∫
X
p(S)dν = 〈c,m〉, ∀ p ∈ Pdn

where the cj are the Fourier coefficients of p in the orthogonal basis, say
Φ = {φ1, . . . , φM} w.r.t. the dλ, the measure of the domain, and mj the
corresponding dν-moments of the Φ. Furthermore

M∑
j=1

wjp(Yj) = 〈c,µ〉
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where the µ are the approximate moments with moment error εmom. Then,
immediately we get∣∣∣∣∣∣
∫

Ω
p(S)dν −

M∑
j=1

wjp(Yj)

∣∣∣∣∣∣ = |〈c,m− µ〉| ≤ ‖c‖2‖m− µ‖2 ≤ ‖p‖L2
dλ(Ω)εmom .

Theorem 1. For f ∈ C(Ω), let RM (f) :=

∣∣∣∣∣∣
∫

Ω
f(S)dν −

M∑
j=1

wjf(Yj)

∣∣∣∣∣∣ be the

cubature error using the “compressed” point set Y instead of X. We get

RM (f) ≤ C En(f ; Ω) + ‖f‖L2
dλ(Ω) εmom, ∀ f ∈ C(Ω) , (8)

Proof. Let p∗n be the polynomial of best approximation of f of degree
not greater than n in Ω. Then

RM (f) =

∣∣∣∣∣∣
∫

Ω
f(S)dν −

M∑
j=1

wjf(Yj)

∣∣∣∣∣∣ ≤
∣∣∣∣∫

Ω
f(S)dν −

∫
Ω
p∗n(S)dν

∣∣∣∣
+

∣∣∣∣∣∣
∫

Ω
p∗n(S)dν −

M∑
j=1

wjp
∗
n(Yj)

∣∣∣∣∣∣+

∣∣∣∣∣∣
M∑
j=1

wjp
∗
n(Yj)−

M∑
j=1

wjf(Yj)dν

∣∣∣∣∣∣
≤

ν(Ω) +
M∑
j=1

|wj |

En(f ; Ω) + ‖p∗n‖L2
dλ(Ω)εmom ,

where En(f ; Ω) = ‖f−p∗n‖L2
dλ(Ω) is the best polynomial approximation error.

To conclude, it is enough using the inequality

‖p∗n‖L2
dλ(Ω) ≤ ‖p∗n−f‖L2

dλ(Ω) +‖f‖L2
dλ(Ω) ≤

√
λ(Ω)‖p∗n−f‖L∞(Ω) +‖f‖L2

dλ(Ω)

getting

RM (f) ≤ C En(f ; Ω) + ‖f‖L2
dλ(Ω) εmom, ∀ f ∈ C(Ω) ,

with

C = ν(Ω) +
M∑
j=1

|wj |
√
λ(Ω)εmom . (9)

This conclude the proof. �
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Due to the assumed positivity of the weights, the constant C in (9) can

be written as follows C = ν(Ω) + ρ
∣∣∣∑M

j=1wj

∣∣∣√λ(Ω)εmom with

ρ =

∑
i |wi|

|
∑

iwi|
∈ [1,+∞) , (10)

that measures how many cubature weights of negative sign are present
among all the weights. This quantity can be consider as a measure of stabil-
ity of the method: if it assumes the value 1, then there is complete stability
and so the capability of computing the integrals, with the prescribed pre-
cision, but with much less points (big values indicate a worsening of the
process).

Therefore the cubature error depends on the moment error εmom and the
stability constant ρ. Hence, the inequality (8) gives practical information
on the error growth with NNLS (where ρ = 1) while with AFP it will be of
practical use when the ratio ρ is not too big.

5. Numerical tests

We present some examples of cubature in 2 and 3 dimensional domains.
The domains we consider could be either convex and non-convex, discretized
with Halton points (i.e. using low-discrepancy sequences), but can obviously
be discretized with other low-discrepancy set of points, with random points
or grids. Halton points on a given convex or union of convex can also be
considered as a superset of a WAM for the domain. Then, by the properties
P3 and P4 of WAMs, they are a “WAM” from which we can extract the
corresponding AFP.

The functions we considered in the 2-dimensional domains are test func-
tions used in many problems and applications (cf. e.g. [9, 13]):

f1(x, y) =
3

4
e−

1
4

((9x−2)2+(9y−2)2) +
3

4
e−

1
49

(9x+1)2− 1
10

(9y+1)

+
1

2
e−

1
4

((9x−7)2+(9y−3)2) − 1

5
e−(9x−4)2−(9y−7)2

(11)

f2(x, y) =
√

(x− 0.5)2 + (y − 0.5)2 (12)

f3(x, y) = cos(30(x+ y)). (13)

The first one is the well-known Franke test function. The function f2 has
a singularity at (0.5, 0.5), while the functions f3 is infinitely differentiable
with many ripples making the computation of its integral quite difficult.
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For the 3-dimensional domains, we considered the following test func-
tions (as already has been done in, e.g. [13, 14])

g1(x, y, z) =
3

4
e−

1
4

((9x−2)2+(9y−2)2+(9z−2)2)

+
3

4
e−

1
49

(9x+1)2− 1
10

(9y+1)− 1
10

(9z+1)

+
1

2
e−

1
4

((9x−7)2+(9y−3)2+(9z−5)2)

− 1

5
e−(9x−4)2−(9y−7)2−(9z−5)2

(14)

g2(x, y, z) =
√

(x− 0.4)2 + (y − 0.4)2 + (z − 0.4)2 (15)

g3(x, y, z) = cos(4(x+ y + z)) (16)

which are similar to those considered in the 2-dimensional case.
All experiments have been performed on a laptop equipped with an Intel

Core 2, 3.00 GHz processor, with 4GB of RAM by Matlab 7.10.0. Here we
present only some experiments among the many more done in the Master’s
thesis of the first author [1].

5.1. Experiments in R2

To show that the cubature compression is working, we start with two
simple convex domains: the square [0, 1]2 and the unit disk x2 + y2 ≤ 1.
Notice that for these two domains cubature formulas with prescribed ex-
actness are well-known (cf. e.g. [21, 6] and references therein). Both have
been discretized with 104, 2 · 104 and 5 · 104 Halton points. In Tables 1–3 we
display the relative errors obtained with the qMC method, the nonnegative
least-squares (NNLS) and the extracted AFP for n = 10, 20, 30. The val-
ues of the integrals of the functions f1, f2, f3 have been computed with the
Matlab function dblquad giving the values (rounded to 4 decimal digits):
0.4070, 0.3826, 2.9 · 10−4 respectively. For the functions f1, f2 the validity of
our new approaches is clearly confirmed by a decrease of the error with n.
As we noticed, the function f3 oscillates which makes difficult an accurate
approximation, that is why errors are in general bigger.

In Figure 3 we display the extracted AFP for n = 30 from the discretiza-
tion of the square with 5·104 Halton points (not displayed). The distribution
of the points reminds the arc-cosine distribution typical of nearly-optimal
point sets [9]: indeed the AFP have asymptotically the same distribution of
the true Fekete points, as proved in [4].

The results for the disk are in Tables 4–6 while in Figure 3) we show the
corresponding AFP for n = 30. In this example, for almost all functions we
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Figure 3: AFP on the square [0, 1]2 and the unit disk centered in the origin for n = 30
extracted from 5 104 Halton points

see that both methods do not need to increase either N or n. In fact for the
N = 104 and n = 10 we have almost the same results both with NNLS and
AFP.

It is quite easy to observe that both methods compress the cubature,
even if in average the AFP approach seems to perform better, even if the
gain in precision is not sensible. For instance, Tables 4 and 5 show columns
with the same values, because the differences are evident from the 4-th digit.
In both these two tests, except for the function f3, it is therefore reasonable
to use the smallest n, i.e. n = 10.

method N = 10000 N = 20000 N = 50000

qMC 3.1e-04 1.3e-04 6.8e-05

n = 10 NNLS 3.4e-03 6.3e-03 1.4e-03
AFP 3.4e-03 2.9e-03 9.3e-04

n = 20 NNLS 5.0e-04 5.4e-04 3.2e-05
AFP 5.1e-04 2.0e-04 6.1e-05

n = 30 NNLS 3.1e-04 1.3e-04 6.4e-05
AFP 3.1e-04 1.3e-04 6.9e-05

Table 1: Relative errors for f1 on the square [0, 1]2.

We present two other experiments on two more complicated domains.
The first one considers the domain whose shape is a lens (shown in Fig-

ure 4), consisting of the intersection of two disks with centers and radii
C1 = (0, 0), r1 = 5 and C2 = (4, 0), r2 = 3, respectively. The initial
grids used to extract “good points” are composed by Halton points. The
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method N = 10000 N = 20000 N = 50000

qMC 4.4e-06 2.3e-05 9.1e-06

n = 10 NNLS 5.4e-03 2.3e-03 3.2e-03
AFP 2.2e-03 4.4e-03 3.7e-03

n = 20 NNLS 5.6e-04 4.7e-04 2.8e-04
AFP 3.9e-04 4.6e-04 5.2e-04

n = 30 NNLS 7.8e-05 1.4e-04 1.8e-04
AFP 1.2e-04 1.7e-04 1.3e-04

Table 2: Relative errors for f2 on the square [0, 1]2.

method N = 10000 N = 20000 N = 50000

qMC 3.7e-01 1.3e+0 4.0e-01

n = 10 NNLS 2.2e+02 2.7e+02 9.7e+02
AFP 2.4e+01 1.6e+02 1.7e+02

n = 20 NNLS 8.3e+01 2.5e+02 6.1e+02
AFP 2.2e+01 4.8e+01 4.1e+01

n = 30 NNLS 2.1e+01 1.5e+01 3.3e+00
AFP 1.4e+00 4.0e+00 1.3e+00

Table 3: Relative errors for f3 on the square [0, 1]2.

method N = 10000 N = 20000 N = 50000

qMC 7.4e-01 7.4e-01 7.4e-01

n = 10 NNLS 7.3e-01 7.3e-01 7.4e-01
AFP 7.4e-01 7.4e-01 7.4e-01

n = 20 NNLS 7.4e-01 7.4e-01 7.4e-01
AFP 7.4e-01 7.4e-01 7.4e-01

n = 30 NNLS 7.4e-01 7.4e-01 7.4e-01
AFP 7.4e-01 7.4e-01 7.4e-01

Table 4: Relative errors for f1 on the unit disk.

exact moments have been computed using nodes and weights provided by
the Matlab function gqlens, which uses subperiodic trigonometric gaus-
sian formulas studied in [12] (the corresponding code can be found here
www.math.unipd.it/∼marcov/CAAsoft.html). The qMC moments have
been computed by starting from an initial grid of 6 · 105 Halton points. In
Figure 4 we show the nodes determined by gqlens, NNLS and the AFP. It is
worth noticing that the nodes obtained with the lsqnonneg and the AFP
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method N = 10000 N = 20000 N = 50000

qMC 6.7e-01 6.7e-01 6.7e-01

n = 10 NNLS 6.7e-01 6.7e-01 6.7e-01
AFP 6.7e-01 6.7e-01 6.7e-01

n = 20 NNLS 6.7e-01 6.7e-01 6.7e-01
AFP 6.7e-01 6.7e-01 6.7e-01

n = 30 NNLS 6.7e-01 6.7e-01 6.7e-01
AFP 6.7e-01 6.7e-01 6.7e-01

Table 5: Relative errors for f2 on the unit disk.

method N = 10000 N = 20000 N = 50000

qMC 8.3e-03 9.1e-03 6.7e-03

n = 10 NNLS 3.3e+00 3.7e+00 1.2e+01
AFP 1.0e+02 4.2e+00 5.8e+00

n = 20 NNLS 5.1e+00 9.9e-03 3.5e-01
AFP 4.0e+00 2.9e+00 2.3e-01

n = 30 NNLS 5.2e+00 4.7e+00 3.8e+00
AFP 4.2e-01 1.1e+00 4.8e-01

Table 6: Relative errors for f3 on the unit disk

Figure 4: The lens approximated with N = 2 · 105 Halton points and n = 10 (i.e. 66
points).The points with gqlens are indicated with (+), the ones with lsqnonneg with
exact moments with (∆) and the AFP (◦) .

accumulate along the boundary of the lens. In Table 7 we show, the num-
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ber n of the points extracted with different methods and the corresponding
N (number of points of the discretizion). Notice that gqlens uses slightly
more nodes than the AFP, while lsqnonneg uses almost the same number
of nodes as the AFP, except for the case in which the moments are exact
(see the cases n = 20, 30).

We also computed the quantity ρ (cf. (10)) which give information on
the stability as detailed above. In Table 8 we present the values of the

method N = 10000 N = 20000 N = 50000

n = 10

gqlens 72 (1.00) 72 (1.00) 72 (1.00)
qMC 786 15179 37968
NNLS exact m. 66 66 66
NNLS qMC m. 66 66 66
AFP exact m. 66 (1.01) 66 (1.02) 66 (1.02)
AFP qMC m. 66 (1.01) 66 (1.02) 66 (1.02)

n = 20

gqlens 242 (1.00) 242 (1.00) 242 (1.00)
qMC 7586 15179 37968
NNLS exact m. 214 212 210
NNLS qMC m. 231 231 231
AFP exact m. 231 (1.02) 231 (1.02) 231 (1.03)
AFP qMC m. 231 (1.02) 231 (1.02) 231 (1.03)

n = 30

gqlens 512 (1.00) 512 (1.00) 512 (1.00)
qMC 7586 15179 37968
NNLS exact m. 423 417 416
NNLS qMC m. 496 496 495
AFP exact m. 496 (1.06) 496 (1.01) 496 (1.01)
AFP qMC m. 496 (1.18) 496 (1.02) 496 (1.02)

Table 7: Nodes on the lens extracted by gqlens, qMC, lsqnonneg with exact moments
and approximated ones by qMC and the AFP, again with exact moments or approximated
by qMC. In parentheses the ratio (10).

integrals of the functions f1, f2, f3 at different values of n by using gqlens

starting from 5 · 104 Halton points to discretize the domain. The values of
the integrals of f3 show significant differences at different n due, as noticed,
to the oscillating behaviour of the function on the domain. We then expect
that the corresponding relative errors will be quite big as well. In Tables
9–11 we provide the relative errors compared with the values of the integrals
of Table 8.

As expected the errors f3 are the biggest. For the functions f1 and f2 the
errors are small and in agreement with the Koksma-Hlawka theorem. We
notice that in all cases the integration with qMC shows little improvements
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f1

n = 10 5.2e-02

f2

n = 10 5.5e+01

f3

n = 10 -5.3e-01

n = 20 5.4e-02 n = 20 5.5e+01 n = 20 5.2e-02

n = 30 5.3e-02 n = 30 5.5e+01 n = 30 1.6e+00

Table 8: Values of the integrals on the lens obtained with gqlens for the functions f1, f2, f3

at n = 10, 20, 30.

method N = 10000 N = 20000 N = 50000

n = 10

qMC 2.9e-06 1.2e-02 2.0e-02
NNLS exact m. 5.6e-02 5.1e-02 3.0e-02
NNLS qMC m. 5.1e-02 1.6e-01 6.8e-02
AFP exact m. 3.3e-03 2.7e-02 1.8e-02
AFP qMC m. 3.6e-03 2.7e-02 1.8e-02

n = 20

qMC 3.3e-02 2.2e-02 1.4e-02
NNLS exact m. 8.1e-03 8.5e-03 8.5e-04
NNLS qMC m. 2.7e-02 3.8e-03 3.9e-02
AFP exact m. 1.0e-02 3.2e-02 6.0e-02
AFP qMC m. 1.0e-02 3.2e-02 6.0e-02

n = 30

qMC 2.6e-02 1.5e-02 7.6e-03
NNLS exact m. 4.5e-03 2.0e-03 3.3e-03
NNLS qMC m. 2.8e-02 1.3e-02 1.9e-02
AFP exact m. 2.6e-02 3.0e-04 1.6e-03
AFP qMC m. 3.8e-02 2.4e-03 1.4e-03

Table 9: Relative errors for f1 on the lens, using qMC on Halton points. Errors are related
to the results of Table 8 computed with gqlens.

on varying the cardinality N . In particular, by using the compression given
by the NNLS and AFP with exact moments, the errors decrease with n,
especially for the function f2. Both the methods, when the moments are
approximated with qMC, improve with N and n, slowly for f1 and faster
for f2. Actually for f1 all methods behave in the same way. For f2 the best
results are those obtained with NNLS and AFP with exact moments.

We consider now the non-convex domain, illustrated in Figure 5, ob-
tained by overlapping the disk with center C = (0, 0) and radius r = 3, the
square [0, 4] × [0, 4] and the closed polygon with vertices V1 = (1, 1), V2 =
(6, 2), V3 = (7, 4), V4 = (10, 3), V5 = (9, 6), V6 = (6, 7), V7 = (4, 5), V8 =
(1, 6), V9 = V1. For this domain we do not know,indeed does not exist, a
cubature formula exact on the polynomials neither a way to compute the
exact moments. The methods we compare are the ones that compute the
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method N = 10000 N = 20000 N = 50000

n = 10

qMC 6.3e-04 1.4e-04 2.6e-04
NNLS exact m. 3.4e-05 3.1e-05 7.4e-05
NNLS qMC m. 6.6e-04 1.6e-04 2.2e-04
AFP exact m. 5.1e-05 1.4e-05 3.0e-06
AFP qMC m. 1.0e-04 3.5e-05 5.2e-05

n = 20

qMC 6.4e-04 1.5e-04 2.5e-04
NNLS exact m. 1.2e-06 3.3e-07 4.0e-07
NNLS qMC m. 6.4e-04 1.5e-04 2.5e-04
AFP exact m. 1.9e-07 2.4e-06 1.0e-06
AFP qMC m. 4.8e-05 5.1e-05 5.0e-05

n = 30

qMC 6.4e-04 1.5e-04 2.5e-04
NNLS exact m. 1.1e-08 2.8e-08 2.9e-07
NNLS qMC m. 6.4e-04 1.5e-04 2.5e-04
AFP exact m. 4.5e-08 8.8e-09 1.1e-08
AFP qMC m. 4.9e-05 4.9e-05 4.9e-05

Table 10: Relative errors for f2 on the lens, using qMC on Halton points. Errors are
related to the results of Table 8 computed with gqlens.

method N = 10000 N = 20000 N = 50000

n = 10

qMC 8.5e-01 6.9e-01 8.8e-01
NNLS exact m. 4.5e+00 4.2e+00 1.9e+00
NNLS qMC m. 4.8e-01 7.8e-01 7.3e+00
AFP exact m. 1.6e+00 3.3e+00 3.1e+00
AFP qMC m. 1.6e+00 3.3e+00 3.1e+00

n = 20

qMC 2.5e+00 4.1e+00 2.2e+00
NNLS exact m. 2.5e+01 2.6e+00 1.0e+01
NNLS qMC m. 5.5e+00 1.1e+01 3.0e+01
AFP exact m. 4.4e+01 2.6e+01 2.6e+01
AFP qMC m. 4.4e+01 2.6e+01 2.6e+01

n = 30

qMC 1.0e+00 1.1e+00 1.0e+00
NNLS exact m. 1.3e+00 1.2e+00 4.1e-01
NNLS qMC m. 1.7e+00 1.5e+00 7.2e-01
AFP exact m. 1.7e+00 2.2e+00 1.3e+00
AFP qMC m. 1.5e+00 2.0e+00 1.2e+00

Table 11: Relative errors for f3 on the lens, using qMC on Halton points. Errors are
related to the results of Table 8 computed with gqlens.

moments by qMC, the NNLS and the one that use the AFP with moments
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approximated with qMC. The relative errors have been computed with re-
spect to the first one (that computes the moments with the qMC). The qMC
moments were computed using 6 · 106 Halton points.

In Figure 5 we show the points extracted by lsqnoneneg and the AFP
for n = 10 from a set of N = 50 104 Halton points (see also Table 12 for
different values of N and n). In Table 13 we show the integrals of the
functions f1, f2, f3 computed with the qMC method. Finally in Tables 14–
16 we display the corresponding relative errors at different N and n. At first
glance, the errors computed with the AFP for n = 30 are not satisfactory,
essentially because of the ratio ρ, as displayed in Table 12, that shows quite
big values. This is an heuristic explaination of the important role of such a
ratio in the comprehension of the approximation given by this approach. For
n = 10, 20 the results with NNLS are almost equivalent with those obtained
with the AFP.

In Table 17 we show the cputime for generating the Halton sequence in
the qMC method (qMC tot), for extracting the positive weights with NNLS
(NNLS tot) and the time for extracting the AFP (AFP tot). Moreover, in
the same Table, we report the cputime for computing the integrals with the
qMC, NNLS and AFP. To reduce the construction time for the NNLS and
AFP is not so easy and it is not yet clear to us what can be a suitable way
to solve this problem.

Figure 5: The composed domain approximated with N = 2 ·105 Halton points and n = 10
(i.e. 66 points). The points selected with lsqnonneg are: with exact moments qMC with
(∆) and the AFP (◦) .
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method N = 10000 N = 20000 N = 50000

n = 10
qMC 4658 9331 23323
NNLS 66 66 66
AFP 66 (1.02) 66 (1.02) 66 (1.03)

n = 20
qMC 4658 9331 23323
NNLS 231 231 231
AFP 231 (1.73) 231 (1.43) 231 (1.35)

n = 30
qMC 4658 9331 23323
NNLS 496 496 496
AFP 496 (2317.28) 496 (1844.71) 496 (3670.71)

Table 12: For the composite domain of Fig. 5, varying the number N of Halton points,
we show the points extracted by lsqnonneg and the AFP at different n. We also show
the ratio ρ (in brackets).

f1

N = 10000 1.5e+01
N = 20000 1.5e+01
N = 50000 1.5e+01

f2

N = 10000 2.5e+02
N = 20000 2.5e+02
N = 50000 2.5e+02

f3

N = 10000 1.5e+00
N = 20000 1.6e+00
N = 50000 3.7e-01

Table 13: The integrals of f1, f2, f3, computed with the qMC method with Halton points
covering the rectangle that contains the composite domain.

method N = 10000 N = 20000 N = 50000

n = 10
NNLS 4.5e-02 1.7e-01 4.1e-02
AFP 2.4e-02 9.1e-02 5.7e-02

n = 20
NNLS 2.3e-02 8.0e-03 8.4e-03
AFP 1.0e-02 1.0e-03 3.0e-02

n = 30
NNLS 4.0e-03 1.0e-02 9.7e-03
AFP 4.7e+00 2.8e-01 7.7e+00

Table 14: Relative errors for f1 on the composite domain of Fig. 5.
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method N = 10000 N = 20000 N = 50000

n = 10
NNLS 2.5e-03 1.6e-03 3.1e-03
AFP 8.6e-06 3.4e-05 1.7e-04

n = 20
NNLS 4.4e-04 3.6e-05 3.1e-04
AFP 3.0e-04 9.3e-04 9.2e-04

n = 30
NNLS 4.7e-05 7.0e-07 1.2e-04
AFP 4.2e-01 1.2e-01 3.8e-01

Table 15: Relative errors for f2 on the composite domain of Fig. 5.

method N = 10000 N = 20000 N = 50000

n = 10
NNLS 2.2e+00 2.3e-01 3.5e+00
AFP 4.0e+00 3.8e+00 9.5e+00

n = 20
NNLS 2.1e-01 3.4e+00 1.7e+01
AFP 1.8e+00 4.4e-01 3.9e+00

n = 30
NNLS 2.4e+00 2.2e+00 3.4e+00
AFP 6.2e+02 8.6e+02 1.2e+04

Table 16: Relative errors for f3 on the composite domain of Fig. 5.

5.2. Experiments in R3

We consider the domain consisting of the union of the cube [0, 0.75]3

with the sphere centered in C = (0.5, 0.5, 0.5) and radius r = 0.5 (see Figure
6). The moments qMC have been computed from a set of 1.5 · 105 Halton
points. In Figure 7 we show the points extracted by lsqnonneg and the
corresponding AFP. Both sets are well distributed in the domain except
small clusterings close to the boundary of the domain. The test functions
we considered are those given in (14)–(16). The results have been done
taking a discretization of the domains with N = 104, 2 · 104 and 5 · 104

Halton points and for n ≤ 9 (the small values of n depend on hardware
limitations).

In Table 19 we report the number of points extracted on varying N
and n. Once again we recall that the AFP extracted are as many as the
dimension of the 3-variate space of polynomials of degree n, i.e. ηn, while
those determined by lsqnonneg sometimes are a little less (see for example
the case n = 9 and N = 5 · 104).

In Table 18 we show the values of the integrals of the functions obtained
with the qMC at different sets of Halton points. The integrals have been
computed by considering the parallelepiped surrounding the domain (its
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f1 f2 f3

n = 10

qMC tot 1.2e-01 1.5e-01 1.3e-01
NNLS tot 2.3e-01 3.1e-01 2.7e-01
AFP tot 4.3e-01 4.2e-01 4.0e-01
qMC 2.1e-05 4.1e-05 1.8e-05
NNLS 6.0e-06 9.0e-06 6.0e-06
AFP 9.0e-06 5.0e-06 5.0e-06

n = 20

qMC tot 1.4e-01 1.4e-01 1.2e-01
NNLS tot 3.4e+00 2.8e+00 2.7e+00
AFP tot 2.7e+00 2.7e+00 3.1e+00
qMC 5.0e-05 2.8e-05 2.0e-05
NNLS 1.0e-05 1.1e-05 8.0e-06
AFP 8.0e-06 5.0e-06 7.0e-06

n = 30

qMC tot 1.2e-01 1.3e-01 1.1e-01
NNLS tot 1.7e+01 1.7e+01 1.6e+01
AFP tot 9.2e+00 1.0e+01 9.9e+00
qMC 3.0e-05 3.3e-05 1.7e-05
NNLS 9.0e-06 1.1e-05 1.1e-05
AFP 9.0e-06 9.0e-06 8.0e-06

Table 17: Cputime (in seconds) to compute the integrals on the composite domain of Fig.
5 starting from N = 2 · 104 Halton points.

convex-hull) and taking the points falling into the domain. As we can see,
with an approximation with 2 decimal digits, their values do not change
with N .

In Tables 20–22 we show the relative errors of the cubature with the
points determined by lsqnonneg and the AFP. In almost all examples, the
approximation provided is quite good and the errors show a decreasing be-
havior. Moreover, errors computed with the lsqnonneg and the AFP are
similar for all N .

In Table 23 we show the cputime for generating the Halton sequence in
the qMC method (qMC tot), for extracting the positive weights with NNLS
(NNLS tot) and the time for extracting the AFP (AFP tot). Moreover, in
the same Table, we report the cputimes for computing the integrals with the
qMC, NNLS and AFP. As it is clear, the more time spent in the construc-
tion is significantly gained in the computation of the integrals. This is the
advange of the compression. As observed above, to reduce the construction
time for the NNLS and AFP is not so easy and it is not yet clear to us which
can be a suitable way to solve this problem.
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Figure 6: The 3-dimensional composite domain union of a cube and a sphere

Figure 7: The points extracted by lsqnonneg and AFP (◦) for n = 5 from N = 105 Halton
points.

g1

N = 10000 1.7e-01
N = 20000 1.7e-01
N = 50000 1.7e-01

g2

N = 10000 2.7e-01
N = 20000 2.7e-01
N = 50000 2.7e-01

g3

N = 10000 4.4e-02
N = 20000 4.4e-02
N = 50000 4.4e-02

Table 18: Integrals of the functions g1, g2, g3 on the composite domain of Fig. 6 using the
qMC method at different sets of Halton points.
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method N = 10000 N = 20000 N = 50000

n = 5
qMC 6436 12882 32212
NNLS qMC m. 56 56 56
AFP qMC m. 56 (1.26) 56 (1.20) 56 (1.47)

n = 7
qMC 6436 12882 32212
NNLS qMC m. 120 120 120
AFP qMC m. 120 (1.32) 120 (1.22) 120 (1.48)

n = 9
qMC 6436 12882 32212
NNLS qMC m. 220 220 218
AFP qMC m. 220 (1.26) 220 (1.42) 220 (1.27)

Table 19: For the composite domain of Fig. 6, varying the number N of Halton points,
we show the points extracted by lsqnonneg, the AFP at different n. We also show the
ratio ρ (in brackets).

method N = 10000 N = 20000 N = 50000

n = 5
NNLS qMC m. 4.21e-02 1.01e-02 2.53e-02
AFP qMC m. 2.07e-02 2.98e-02 1.99e-02

n = 7
NNLS qMC m. 1.53e-03 1.98e-02 2.80e-03
AFP qMC m. 3.50e-03 1.46e-02 2.64e-02

n = 9
NNLS qMC m. 5.37e-03 4.32e-04 5.50e-03
AFP qMC m. 2.95e-03 7.73e-04 2.19e-03

Table 20: Relative errors for g1 on the composite domain of Fig. 6. Errors are computed
with respect to the qMC method.

method N = 10000 N = 20000 N = 50000

n = 5
NNLS qMC m. 1.16e-03 8.14e-03 5.25e-03
AFP qMC m. 3.53e-03 4.20e-03 6.30e-03

n = 7
NNLS qMC m. 2.13e-04 2.11e-03 3.44e-03
AFP qMC m. 4.54e-04 1.15e-03 1.16e-03

n = 9
NNLS qMC m. 1.16e-03 3.93e-04 5.38e-04
AFP qMC m. 1.65e-03 9.84e-05 1.20e-04

Table 21: Relative errors for g2 on the composite domain of Fig. 6. Errors are computed
with respect to the qMC method.
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method N = 10000 N = 20000 N = 50000

n = 5
NNLS qMC m. 3.05e-01 1.62e-01 6.51e-02
AFP qMC m. 1.34e-01 2.73e-01 1.02e-03

n = 7
NNLS qMC m. 1.42e-02 4.76e-03 2.63e-03
AFP qMC m. 4.36e-03 1.16e-02 1.19e-03

n = 9
NNLS qMC m. 4.30e-04 4.09e-05 2.28e-05
AFP qMC m. 3.14e-03 2.07e-03 1.07e-03

Table 22: Relative errors for g3 on the composite domain of Fig. 6. Errors are computed
with respect to the qMC method.

g1 g2 g3

n = 5

qMC tot 4.8e-02 3.7e-02 3.8e-02
NNLS tot 3.5e-01 2.7e-01 2.6e-01
AFP tot 8.1e+00 8.4e+00 8.1e+00
qMC 4.8e-05 2.6e-05 2.9e-05
NNLS 6.0e-06 8.0e-06 7.0e-06
AFP 1.0e-05 7.0e-06 7.0e-06

n = 7

qMC tot 4.5e-02 3.5e-02 5.3e-02
NNLS tot 1.3e+00 1.1e+00 1.2e+00
AFP tot 2.2e+01 2.1e+01 2.2e+01
qMC 2.5e-05 2.0e-05 1.8e-05
NNLS 9.0e-06 8.0e-06 8.0e-06
AFP 5.0e-06 6.0e-06 6.0e-06

n = 9

qMC tot 4.1e-02 3.5e-02 3.5e-02
NNLS tot 3.8e+00 3.7e+00 3.6e+00
AFP tot 5.1e+01 5.1e+01 5.1e+01
qMC 2.1e-05 1.9e-05 1.8e-05
NNLS 9.0e-06 7.0e-06 6.0e-06
AFP 6.0e-06 5.0e-06 5.0e-06

Table 23: Cputime (in seconds) to compute the integrals on the composite domain of
Figure 6 starting from N = 2 · 104 Halton points.

We have done many other experiments in [1, Ch. 6] for classical domains,
such as the unit cube, the cone (centered at the origin), the pyramid with
square basis [−0.5, 0.5] × [−0.5, 0.5]. Here we have presented the more in-
teresting case where the domain is the union of two classical domains (cube
and sphere).

We observe that the methods behave differently depending on n and N .
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For instance

• the tensor-product Gauss-Chebyshev points, used for the cube, de-
pends only on n, and the number of nodes produced is always O(n3);

• the cubature given by the Matlab function 3dWAM, used for (general-
ized) cones and pyramids in [14], depends only on n.

• the cubature with qMC depends only on N , i.e. the cardinality of the
Halton points;

• the cubature based on NNLS depends both on n and N ;

• the AFP depend both on n and N . However, while the integrals using
the AFP depend both on n and N , the number of the nodes correspond
to the dimension of the polynomial space.

Finally, since the exact moments are not known either for the cone, the
pyramid and the composite domain here presented, we have used the qMC
for approximating the integrals in lsqnonneg or, alternatively, the cubature
weights were computed by the same function that extracts the AFP from
a discretizion of the domain. In the case of the cone and the pyramid we
actually know suitable WAMs (cf. [14]).

6. Conclusions and future works

The cubature on points extracted in a clever way from a set of N quasi-
random sequences, that is those obtained from nonnegative least squares (by
using the Matlab function lsqnonneg) and the approximate Fekete points
(by using the Matlab function dexsets), provide a general compression tech-
nique w.r.t. the quasi-Monte Carlo method. The method is quite flexible,
in the sense that it applies to every space dimension and the number of
points used to approximate the integrals is much less than those required
by the classical quasi-Monte Carlo method. In fact, in general it uses only a
number of points less or equal to the dimension of the polynomial space of
degree, say νn, with νn � N . Both approaches can be applied once and for
all for a big degree, say n∗,and than use the extracted points for computing
the integrals for all n ≤ n∗. Both approaches have shown a better behavior
w.r.t quasi-Monte Carlo method, when the moments are exact except for
functions with high variation within the integration domain. But this is
also the case for the classical quasi-Monte Carlo method.
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There are still open problems that we would like to address. The first
consists in a new and faster way of finding AFP. This is indeed the bottleneck
of the approach based on AFP. We are not sure if there will be a faster way
to extract the AFP, but we are still convinced on the need of an optimal
starting mesh, not simply a weakly admissible one. Optimal meshes are
those whose cardinality grows like O(nd) and, so far, are known only on
some particular 2-dimensional domains (cf. [26, 18]). Another aspect to
investigate more deeply is the error analysis especially for the AFP case.
For the NNLS the recent error analysis provided in [29] and reported in §4,
inequality (8), gives an overestimate for the cubature error. For the case of
the moments approximated by AFP there is still room for such an analysis.

In any case, the new approaches presented in this work are promising,
that is why it is worth to continue to investigate on them.
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