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Abstract

The paper deals with polynomial interpolation, least-square approximation and cubature of functions defined
on the rectangular cylinder, K = D × [−1, 1], with D the unit disk. The nodes used for these processes are
the Approximate Fekete Points (AFP) and the Discrete Leja Points (DLP) extracted from suitable Weakly
Admissible Meshes (WAMs) of the cylinder. ¿From the analysis of the growth of the Lebesgue constants,
approximation and cubature errors, we show that the AFP and the DLP extracted from WAM are good points
for polynomial approximation and numerical integration of functions defined on the cylinder.

Keywords: Approximate Fekete Points, Discrete Leja Points, Admissible mesh, Polynomial interpolation,
Algebraic cubature.

1. Introduction

Finding good points for multivariate polynomial approximation, in particular interpolation, is an open
challenging problem, even in standard two dimensional (simple) domains such as the triangle, the square
or the disk. In higher dimensions the problem becomes often unaffordable, due mainly to computational
constraints, such as elapsed time too long and/or memory allocation. Hence the use of clever techniques for
finding such points should necessarily be adopted and are also welcome.

In this paper we pursue a different approach thanks to the new insight given by the concept of (Weakly)
Admissible Meshes, introduced in [11], which have shown to be a useful tool for obtaining good points for
applications to multivariate approximation and cubature. There is another important issue to take into
account in this setting: the conditioning of the Vandermonde matrix of the linear system that has to be solved
both for finding the good interpolation points and for the construction of the interpolant. If stable (orthogonal)
polynomial bases are available this usually guarantee a better conditioning of the Vandermonde matrix [24]
allowing also a stable computation of the Lebesgue constant associated to the approximation process. Thanks
to the recent works [4, 5], which describe the computation of Approximate Fekete Points (AFP) and Discrete
Leja Points (DLP) on general compact domains K ⊂ Rn, and the stable orthogonal polynomial basis for the
cylinder investigated by J. Wade in [27], we decided to focus on the cylinder. These issues are indeed the main
inspiration of this article.

We need to briefly introduce the two basic ingredients: (Weakly) Admissible Meshes and Approximate
Fekete Points (and Discrete Leja Points). We recall that a set of points that are always good, in theory, is
the set of the so-called Fekete points. They are defined to be those points that maximize the (absolute value
of the) Vandermonde determinant on the given compact set. However, these points are known analytically
only in a few instances (the interval and the complex circle for univariate interpolation, the cube for tensor
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product interpolation), and are very difficult to compute, requiring an expensive and numerically challenging
nonlinear multivariate optimization (cf. [7, 10, 24, 26]).

Admissible Meshes (shortly AM) were introduced by J.-P. Calvi and N. Levenberg in their seminal paper
[11]. They are sets of points, in a given compact domain K ⊂ Rd (or Cd) which are nearly optimal for
least-squares approximation, and contain interpolation points that distribute asymptotically as Fekete points
of the domain. This theory, as claimed above, has given new insight to the (partial) solution of the problem of
extracting good interpolation point in dimension d > 1. In practical applications, a generalization of AM, the
so called Weakly Admissible Mesh (WAM), are often used (cf. e.g. the recent survey [5] or the paper [3]). It
is worth mentioning, that low cardinality and optimal meshes have been constructed on different domains and
dimensions. In one real dimension, we know AM and WAMs on the interval. In the complex plane (weakly)
admissible meshes can be readily constructed for any compact which is a (not necessarily disjoint) union of
compact sets of the following three types (see for details the paper [1]): a segment [a, b] where a and b are
two distinct complex numbers; a circle C(a, r) centered in a of radius r (or a closed disk D̄(a, r)); or a general
compact set bounded by a smooth Jordan curve.

For compacts K ⊂ R2, one can construct (W)AMs for all classical domains such as triangles, squares,
polygons, disk [8, 9]. In particular on the triangle, a new set of optimal Lebesgue Gauss-Lobatto points
have been recently investigated (cf. [10]). These points, computed only numerically, simply minimize the
corresponding Lebesgue constant on the simplex, turn out to be a unisolvent set for polynomial interpolation
on the simplex and it can be conjectured that they are good candidates to be a weakly admissible mesh. In
three dimensional case, apart from tensorial domains and the results here presented, very few is known so
far. There are works in progress that, interested readers, can see at the web page of the CAA research group
between the Universities of Padua and Verona (see http://www.math.unipd.it/∼marcov/CAA.html).

Recently, A. Kroó in [18] has introduced the notion of optimal (admissible) polynomial meshes in Rd,
that is meshes An ⊂ K with cardinality of O(nd). In particular, he proved that graph domains bounded by
polynomial graphs, convex polytopes and star like sets with C2 boundary possess optimal admissible meshes.
Finally, in the very recent papers [18, 21], the authors have provided new techniques for finding admissible
meshes with low cardinality, by means of analytical transformations of domains.

The extremal sets of our interest, as described above, are the Approximate Fekete Points (AFP) and
Discrete Leja Points (DLP). As discussed in [4, 24], AFP and DLP can be easily computed by using basic
tools of numerical linear algebra. In practice, (Weakly) Admissible Meshes and Discrete Extremal Sets allow
us to replace a continuous compact set by a discrete version, that is “just as good” for all practical purposes.

In this paper, we focus on AFP and DLP extracted from Weakly Admissible Meshes of the rectangular
cylinder K = D× [−1, 1], with D the unit disk. These points are then used for computing interpolants, least-
square approximants and cubatures of functions defined on the cylinder. Once again, the main reason why
we confined ouselves to the rectangular cylinder is the availability of a good polynomial basis for interpolation
and cubature (see below formula (3.6)). We essentially provide AFP and DLP of the rectangular cylinder that,
to our knowledge, have never been investigated so far.

The paper is organized as follows. In section 2 after the definition of (Weakly) Admissible Meshes and a
list of their most relevant properties, we introduce two WAMs of the cylinder. These WAMs are then used in
section 3 for computing the AFP and DLP by two greedy algorithms, based on the QR and LU factorization
of the corresponding Vandermonde matrix made by using a stable polynomial basis. In section 4 we discuss
how these points can be used for interpolation, least-squares approximation and cubature of functions defined
on the cylinder. Finally in section 5 we present some numerical experiments that show the quality of the AFP
and DLP on interpolation, least-squares approximation and cubature on a set of five (classical) test functions.

2. Weakly Admissible Meshes: definitions, properties and construction

Given a polynomial determining compact set K ⊂ Rd or K ⊂ Cd (i.e., polynomials vanishing there are
identically zero), a Weakly Admissible Mesh (WAM) is defined in [11] to be a sequence of discrete subsets
An ⊂ K such that

‖p‖K ≤ C(An)‖p‖An
, ∀p ∈ Pdn(K) (2.1)

Pdn(K) being the set of d-variate polynomials of degree at most n on K, where both card(An) ≥ N :=
dim(Pdn(K)) and C(An) grow at most polynomially with n as n → ∞, i.e. card(An) ≤ c ns, for some fixed
s ∈ N depending only on K. When C(An) is bounded from above, independently of n by some constant C, we
speak of an Admissible Mesh (AM). Hence, concerning the cardinality of the mesh, for an AM the card(An)
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grows polynomially in n while for a WAM C(An) · card(An) grows polynomially in n. This weaker condition
suggested the name WAM to these meshes (cf. [11, p. 87]).

We use the notation ‖f‖K = supx∈K |f(x)| for f a bounded function on the compact K.
WAMs enjoy the following ten properties (already enumerated in [3] and proved in [11]):

P1: C(An) is invariant under affine mapping
P2: any sequence of unisolvent interpolation sets whose Lebesgue constant grows at most polynomially with
n is a WAM, C(An) being the Lebesgue constant itself
P3: any sequence of supersets of a WAM whose cardinalities grow polynomially with n is a WAM with the
same constant C(An)
P4: a finite union of WAMs is a WAM for the corresponding union of compacts, C(An) being the maximum
of the corresponding constants
P5: a finite cartesian product of WAMs is a WAM for the corresponding product of compacts, C(An) being
the product of the corresponding constants
P6: in Cd a WAM of the boundary ∂K is a WAM of K (by the maximum principle)
P7: given a polynomial mapping πs of degree s, then πs(Ans) is a WAM for πs(K) with constants C(Ans)
(cf. [3, Prop.2])
P8: any K satisfying a Markov polynomial inequality like ‖∇p‖K ≤Mnr‖p‖K has an AM with O(nrd) points
(cf. [11, Thm.5])
P9: least-squares polynomial approximation of f ∈ C(K): the least-squares polynomial LAn

f on a WAM is
such that

‖f − LAn
f‖K / C(An)

√
card(An) min {‖f − p‖K , p ∈ Pdn(K)}

this result can be found in [11, Thm. 1] but also in a different form in the previous paper [13, Thm. 2.1].
P10: Fekete points: the Lebesgue constant of Fekete points extracted from a WAM can be bounded like
Λn ≤ NC(An) (that is the elementary classical bound of the continuum Fekete points times a factor C(An));
moreover, their asymptotic distribution is the same of the continuum Fekete points, in the sense that the
corresponding discrete probability measures converge weak-∗ to the pluripotential equilibrium measure of K
(cf. [3, Thm.1]). Pluripotential theory has been widely studied by M. Klimek in the monograph [16], to which
interested readers should refer for more details. Moreover, on weighted pluripotential theory a good survey
are the recent lecture notes by N. Levenberg [17].

Examples of WAMs can be found in [4, 5]. Here, we simply recall some one dimensional and two dimensional
WAMs.

1. The set
Cn = {cos(kπ/n), k = 0, . . . , n}

of n + 1 Chebyshev-Lobatto points for the interval I = [−1, 1], is a one-dimensional WAM of degree n
with C(An) = O(log n) and card(Cn) = n+ 1. This follows from property P2.

2. The set Padn, n ≥ 0 of the Padua points of degree n of the square Q = [−1, 1]2 is the set defined as
follows (cf. [2])

Padn = {xk,j = (ξk, ηj), 0 ≤ k ≤ n, 1 ≤ j ≤ bn2 c+ 1}, (2.2)

where

ξk = cos
kπ

n
, ηj =


cos 2j−1

n+1 π, k even

cos 2j−2
n+1 π, k odd

(2.3)

Notice that here we refer to the first family of Padua points. Padn is then a two-dimensional WAM with
C(Padn) = O(log2 n) and card(Padn) = (n+ 1)(n+ 2)/2. This is a consequence of property P2 since,
as shown in [2], the Padua points are a unisolvent set for polynomial interpolation in the square with
minimal order of growth of their Lebesgue constant, i.e. O(log2 n).

3. The sequence of polar symmetric grids An = {(ri cos θj , ri sin θj)} with the radii and angles defined as
follows

{(ri, θj)}ij = {cos(iπ/n), 0 ≤ i ≤ n} ×
{

jπ

n+ 1
, 0 ≤ j ≤ n

}
(2.4)
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are WAMs for the closed unit disk D = {x : ‖x‖2 ≤ 1}, with constant C(An) = O(log2 n) and cardinality
card(An) = (n + 1)2 for odd n and card(An) = n2 + n + 1 for even n (cf. [8, Prop. 1]). Moreover,
since these WAMs contain the Chebyshev-Lobatto points of the vertical diameter θ = π/2 only for n odd
(whereas it always contains the Chebyshev-Lobatto points of the horizontal diameter θ = 0), and thus
is not invariant under rotations by an angle π/2. Hence in order to have a WAMs on the disk invariant
by rotations of π/2, we have to modify the choice of radii and angles in (2.4) as follows

{(ri, θj)}ij = {cos(iπ/n), 0 ≤ i ≤ n} ×
{

jπ

n+ 2
, 0 ≤ j ≤ n+ 1

}
, n even (2.5)

In this way the obtained WAM is now invariant with card(An) = (n+ 1)2 also for n even.

2.1. Three dimensional WAMs of the cylinder

We restrict ourselves to the rectangular cylinder with unitary radius and height the interval [-1,1], that is
K = D × [−1, 1], where as above, D is the closed unit disk.

We considered two meshes: the first one uses a symmetric polar grid in the disk D and Chebyshev-Lobatto
points along [−1, 1]; the second one uses Padua points on the (x, z) plane and equispaced points along the
circumference of D.

2.1.1. The first mesh: WAM1

We consider the set
An = {(ri cos θj , ri sin θj , zk)}

with −1 ≤ ri ≤ 1, 0 ≤ i ≤ n and 0 ≤ θj ≤ π, 0 ≤ j ≤ n that is

{(ri, θj , zk)}i,j,k =

{
cos

(
iπ

n

)
, 0 ≤ i ≤ n

}
×

{
jπ
n+2 , 0 ≤ j ≤ n+ 1, n even
jπ
n+1 , 0 ≤ j ≤ n, n odd

}

×
{

cos

(
kπ

n

)
, 0 ≤ k ≤ n

}
The cardinality of An, both for n even and n odd, is (n+ 1)3. Indeed, let us consider first the case of n even.
The points on the disk, subtracting the repetitions of the center, which are n+ 2− 1, are (n+ 1)2. All these
points are then multiplied by the corresponding n+ 1 Chebyshev-Lobatto points along the third axis z, giving
the claimed cardinality.
When n is odd, there are no coincident points, thus we have (2n+ 2)(n+ 1)/2 = (n+ 1)2 points on the disk.
Then, considering the n+ 1 Chebyshev-Lobatto points along the third axis, we get the claimed results.
Finally, the set An so defined, is a WAM since it is the cartesian product of a two dimensional WAM (the
points on the disk) and the one dimensional WAM of the Chebyshev-Lobatto points. The property P5 gives
the constant C(An) = O(log3 n) (see Figure 3 for the case n = 5).

2.1.2. The second mesh: WAM2

This discretization is obtained by taking the Padua points Padn on the plane (r, z), rotated n times along
z-axis by a constant angle θ = π/(n + 1). In this way, along the bottom circumference of the cylinder, we
obtain 2n+ 2 equispaced points. This is due to the fact that the points with coordinates (−1, 0) and (1, 0) are
Padua points. In details, the mesh is the set

An = {(ri cos θj , ri sin θj , zk)}

with −1 ≤ ri ≤ 1, 0 ≤ i ≤ n and 0 ≤ θj ≤ π, 0 ≤ j ≤ n, that is

{(ri, θj , zk)}i,j,k =

{
cos

(
iπ

n

)
, 0 ≤ i ≤ n

}
×
{
jπ

n
, 0 ≤ j ≤ n+ 1

}
×

{
cos

(
kπ

n+ 1

)
, 0 ≤ k ≤ n+ 1

k odd when i is even
k even when i is odd

}
.

This mesh has cardinality O
(
n3

2

)
. In fact, when n is even, the points are (n+1)(n+2)

2 (n + 1) from which we

have to subtract the repetitions (n2 +1)n, corresponding to the n
2 +1 Padua points with abscissa x = 0 counted
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n times. Then, the points so generated are (n2 + n + 1) (n+2)
2 . On the contrary, when n is odd, there are no

intersections and so the total number of points is (n+1)2(n+2)
2 (see Figure 3 for the case n = 5, 6).

We now prove that this mesh is indeed a WAM. To this aim, consider a generic polynomial of degree at
most n defined on the cylinder p(x, y, z) = p(r cos θ, r sin θ, z) := q(θ, r, z). For a fixed angle θ̄, q is a polynomial
of degree at most n in r, z, while it is a trigonometric polynomial in θ of degree at most n for fixed values of
(r, z). Since on the generic rectangle (r, z) we have considered the set of Padua points of degree n which is a
WAM, say A1, hence, we can write

|q(θ̄, r, z)| ≤ c1(n)‖q(θ̄, ·, ·)‖A1
,

where c1(n) does not depend on θ̄ and c1(n) = O(log2 n). Let |q(θ̄, r∗, z∗)| be this maximum. Considering now
the equispaced angles, θk = 2kπ/(2n + 2), 0 ≤ k ≤ 2n + 1 i.e. the 2n + 2 equispaced points in [0, 2π[ which
are also a WAM (cf. [8]), say A2, then

|q(θ̄, r∗, z∗)| ≤ c2(n)‖q(·, r∗, z∗)‖A2

where c2(n) = O(log n).
Passing to the maximum also on the left side, we have

max
(x,y,z)∈K

|p(x, y, z)| = ‖p‖K ≤ c1(n)c2(n)‖q‖An

that is ‖p‖K ≤ C(n)‖p‖An
, where C(n) is indeed C(An) = O(log3 n), showing that this discretization is a

WAM for the solid cylinder K.

Figure 1: Left: Padua points for n = 5 on the (r, z)-plane. We used different markers for the two Chebyshev meshes of the Padua
points. Right: Projections on the disk of WAM2 points (obtained by n+ 1 rotations of Padua points around the z axis). Notice
that the points indicated with the small triangles are on different levels. See also Figure 3.

3. Computation of AFP and DLP

As discussed in [4], the computation the AFP and DLP, can be done by a few basic linear algebra operations,
corresponding to the LU factorization with row pivoting of the Vandermonde matrix for the DLP, and to the
QR factorization with column pivoting of the transposed Vandermonde matrix for the AFP (cf. [24]). For the
sake of completeness, we recall these two Matlab-like scripts used in [24, 4] for computing the AFP and DLP,
respectively.

algorithm AFP (Approximate Fekete Points):
• W = (V (a,p))t; b = (1, . . . , 1)t ∈ CN ; w = W\b ; ind = find(w 6= 0); ξ = a(ind)

algorithm DLP (Discrete Leja Points):
• V = V (a,p); [L,U,σ] = LU(V, “vector”); ind = σ(1, . . . , N); ξ = a(ind)
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Figure 2: Left: Padua points for n = 6 on the (r, z)-plane. We used different markers for the two Chebyshev meshes of the Padua
points. Right: Projections on the disk of WAM2 points (obtained by n+ 1 rotations of Padua points around the z axis). Notice
that the points indicated with the small triangles are on a different levels.

In Figures 4–5, we show the AFP and DLP extracted from the WAM1 and WAM2 for n = 5.

In the above scripts, V (a,p) indicates the Vandermonde matrix at the WAM a using the polynomial basis p,
that is the matrix whose elements are pj(ai), 1 ≤ j ≤ N, 1 ≤ i ≤ card(An). The extracted AFP and DLP
are then stored in the vector ξ.

Remark 1. In both algorithms, the selected points (as opposed to the continuum Fekete points) depend on
the choice of the polynomial basis. But in the second algorithm, which is based on the notion of determinant
(as described in [4, §6.1]), the selected points also depend on the ordering of the basis. In the univariate case
with the standard monomial basis, it is not difficult to recognize that the selected points are indeed the Leja
points extracted from the mesh (cf. [1, 23] and references therein).

Remark 2. When the conditioning of the Vandermonde matrices is too high, and this happens when the
polynomial basis is ill-conditioned, the algorithms can still be used provided that a preliminary iterated
orthogonalization, that is a change to a discrete orthogonal basis, is performed (cf. [3, 4, 24]). This procedure
however only mitigates the effect of a bad choice of the polynomial basis. Consequently, whenever is possible,
is desirable to use a well-conditioned polynomial basis.

A suitable basis for the forementioned rectangular cylinder K, is the set of polynomials introduced by J. Wade
in [27]:

Cj,k,i(x, y, z) := Uk(θj,k;x, y)T̃i−k(z), i = 0, . . . , n, k = 0, . . . , i, j = 0, . . . , k (3.6)

where

• θj,k = jπ
k+1 ;

• Uk(θj,k;x, y) = Uk(x cos(θj,k) + y sin(θj,k)) is the Chebyshev polynomial of the second kind which is an
orthonormal basis for the disk w.r.t. the measure ω(x, y) = 1

π ;

• T̃j(z) is the j-th orthonormal Chebyshev polynomial of the first kind, i.e. T̃j(z) =
√

2Tj(z), w.r.t. the

measure ω(z) = (1− z2)−
1
2 .
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Figure 3: Above: the first WAM for n = 5 having 216 points. Below left: the second WAM for n = 5 having 126 points. Below
right: the second WAM for n = 6 having 172 points.
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Figure 4: WAM1 of the cylinder for n = 5 and the corresponding extracted points. Left: 56 Approximate Fekete Points. Right:
56 Discrete Leja Points.

Figure 5: WAM2 of the cylinder for n = 5 and the corresponding extracted points. Left: 56 Approximate Fekete Points. Right:
56 Discrete Leja Points.
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4. Approximation and cubature on the cylinder

4.1. Interpolation and least-square approximation

The interpolation polynomial qn(x) of degree n of a real continuous function f defined on the compact
K ⊂ R3, can be written in Lagrange form as

qn(x) =

N∑
j=1

f(aj)lj(x), x ∈ K (4.7)

where N = dim(P3
n), aj are the AFP or the DLP extracted from the WAMs and lj indicates the jth elementary

Lagrange polynomial of degree n. Let l = (l1(x), . . . , lN (x)) be the (row) vector of all the elementary Lagrange
polynomials at a point x, p the vector of the basis (3.6) and a = (a1, . . . ,aN ), then we can compute l by
solving the linear system

lt = W pt, W = (V (a,p)−1)t .

The interpolation operator Ln : C(K)→ P3
n, with C(K) equipped with the sup norm, that maps every f ∈ C(K)

into the corresponding polynomial q =
∑N
i=1 li(·)f(xi) ∈ P3

n in Lagrange form, is a projection having norm

‖Ln‖∞ = max
x∈K

N∑
j=1

|lj(x)| := Λn (4.8)

where Λn is the well-known Lebesgue constant. When the interpolation points are the true Fekete points, the
Lebesgue constant satisfies the upper bound

Λn = max
x∈K
‖W pt‖1 ≤ N

since ‖lj‖ ≤ 1.
Thanks to property P10 of WAMs we can say more. Indeed, when the Fekete points are extracted from a

WAM, ‖lj‖K ≤ C(An)‖lj‖An
∀j (cf. [11, §4.4]), from which the following upper bound holds

Λn ≤ N C(An) ,

with C(An), the same constant in definition of a WAM, which depends on An. In the numerical experiments
that we will present in the next section, we will observe that the above upper bound is a quite pessimistic
overestimate.

Another natural application of such a construction, is the least squares approximation of a function f ∈ C(K).
Given a WAM An = {a1, . . . ,aM}, M ≥ N , with N = dim(P3

n) and p = {p1, . . . , pN} a basis for P3
n, let

us consider the orthonormal basis q w.r.t. the discrete inner product 〈f, g〉 =
∑M
i=1 f(ai)g(ai) which can be

obtained from the basis p by multiplying by a certain transformation matrix P , i.e. q=Pp.
The least squares operator of f at the points of a WAM An can then be written as

LAn
(f)(x) =

N∑
j=1

(
M∑
i=1

f(ai)qj(ai)

)
qj(x) =

M∑
i=1

f(ai)gi(x)

where gi(x) =
∑N
j=1 qj(x)qj(ai). Letting g = (g1, . . . , gM )t, it follows that g = QP tp, where the matrix Q

is a numerically orthogonal (unitary) matrix, i.e. Q̄tQ = I, and Q = V (a,q) = V (a,p)P . Notice that, the
transformation matrix P and the matrix Q are computed once and for all for a fixed mesh.
The norm of the operator, that is its Lebesgue constant, is then

‖LAn‖ = max
x∈K

M∑
i=1

|gi(x)| = max
x∈K
‖QP tp(x)‖1 .

In [11], it is observed that three-dimensional WAMs so defined can be used as discretization of compact sets
K ⊂ R3 for the computation of good points for least-square approximation by polynomials. Indeed, using
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property P9, in [11, Th. 2] the authors proved the following error estimates for least-squares approximation
on WAMs of a function f ∈ C(K)

‖f − LAn(f)‖K ≤
(

1 + C(An)(1 +
√
card(An))

)
min{‖f − p‖K : p ∈ P3

n} (4.9)

where again C(An) depends on the WAM.
This estimate says that if we could control the factor C(An)(1 +

√
card(An)), and this is possible when

we use WAMs, then the approximation LAn
(f) ∈ P3

n is nearly optimal.

4.2. Cubature

For a given function f : K ⊂ R3 → R we want to compute

I(f) =

∫
K

f(x)dx

where dx is the usual Lebesgue measure of the compact set K. An interpolating cubature formula CN (f) that
approximates I(f) can be expressed as

CN (f) =

N∑
i=1

wif(xi)

where, in our case, the nodes xi are the AFP or the DLP for K. Once we know the cubature weights wi,
the CN (f) gives an approximation of I(f). The cubature weights can be determined by solving the moment
system, that is

N∑
j=1

wjpi(xj) =

∫
K

pi(x)dx, i = 1, . . . , N

where pi is the i-th element of the polynomial basis p. Hence, if V = (pi(xj)) and bi =
∫
K
pi(x)dx, the nodes

xi and the weights wi are provided by the AFP or DLP algorithm.

5. Numerical results

In this section we present the numerical experiments that we made for showing the quality of AFP and DLP
on interpolation, approximation by least-squares and cubature of 6 test functions defined on the rectangular
cylinder K = D× [−1, 1]. The results are obtained by using both the AFP and the DLP extracted from both
WAM1 and WAM2.

In Table 1 we collect, for degrees n = 5, 10, 15, 20, 25, 30, the values of the Lebesgue constant Λn, those of
the condition number (in the sup norm) κ∞,1 for the associated Vandermonde matrix using the Wade basis for
the WAM1 for the AFP. Due to hardware restrictions, the Lebesgue constant has been evaluated on a control
mesh Mn = Am with m = 4n for n ≤ 20, m = 2n for n > 20.

In Table 2 we present Λn, κ∞,2 for the WAM2 on the AFP. In this case the control mesh Mn = Am with
m = 4n for n ≤ 20, m = 3n for n ≤ 25 and m = 2n for n > 25.

In Tables 3 and 4 we present the corresponding values for the DLP.
In Table 5 we display the the norm of the least-square operator ‖LAn‖ on the WAM1 and WAM2, respec-

tively.
Note that the norm of the least-square operator ‖LAn

‖ (norm computed at the points of the WAM An)
has been computed after two steps of orthonormalization of the polynomial basis.

The numerical results show that both Λn and the condition number κ∞,∗ are smaller for WAM2 while,
by oppositeon the contrary, the sup norm of the least-square operator turns out to be bigger for WAM2 than
WAM1. Actually, for WAM2, ‖LAn‖ has a growth factor close to 2.

10



n 5 10 15 20 25 30
Λn 17 83 208 384 849 988
κ∞,1 18.2 177 384 746 1410 2650

Table 1: The Lebesgue constant and the condition number of the Vandermonde matrix constructed using the Wade basis on the
AFP for the WAM1.

n 5 10 15 20 25 30
Λn 19 76 213 427 879 1034
κ∞,2 19.4 115 440 705 1540 2380

Table 2: The Lebesgue constant and the condition number of the Vandermonde matrix constructed using the Wade basis on the
AFP for the WAM2.

The interpolation and the cubature relative errors on the AFP and the DLP have been computed for the
following six test functions:

f1(x, y, z) = 0.75e−
(9x−2)2+(9y−2)2+(9z−2)2

4 + 0.75e−
(9x+1)2

49 − 9y+1
10 −

9z+1
10

+ 0.5e−
(9x−7)2+(9y−3)2+(9z−5)2

4 − 0.2e−(9x−4)
2−(9y−7)2−(9z−5)2 ;

f2(x, y, z) =
√

(x− 0.4)2 + (y − 0.4)2 + (z − 0.4)2;

f3(x, y, z) = cos(4(x+ y + z));

f4(x, y, z) =
1

1 + 16(x2 + y2 + z2)
;

f5(x, y, z) =
√

(x2 + y2 + z2)3 .

The function f1 is the three-dimensional equivalent of the well-known Franke test function. The function f2
has a singular point into the cylinder K = D× [−1, 1]. The function f3 is infinitely differentiable. The function
f4 is the Runge function. The function f5 is a C2 function with third derivatives singular at the origin.

All numerical experiments have been done on a cluster HP with 14 nodes. We used one of the nodes
equipped with 2 processors quad core with 64Gb of RAM.

In Figures 6 and 7 we display the interpolation, cubature and least-square relative errors on the AFP and
DLP, up to degree n = 30, for the WAM1 and WAM2, respectively. The results shows that the AFP give,
in general, smaller errors. Only the cubature errors on WAM2 are smaller for DLP than AFP. One reason is
related to the values of the Lebesgue constants and the conditioning of the Vandermonde matrices that are
smaller for AFP than DLP.

Since WAM2 has a lower cardinality and that the results are more or less the same, such a mesh is
more convenient from the point of view of efficiency and approximation order. As true values of the functions
fi, i = 1, . . . , 5, we considered the value of fi on the control meshes used for computing the Lebesgue constants.
As exact values of the integrals, we considered the values computed by the Matlab built-in function triplequad

with the chosen tolerance depending on the smoothness of the function. For the smoothest functions f3 and f6
we used the tolerance 1.e− 12 while for the others 1.e− 10. This choice allowed to avoid stalling phenomena
that we encountered in computing the integrals of f3 and f6.

We point out that in the case of the function f2, where there exist a singularity in (0.4, 0.4, 0.4), triplequad

n 5 10 15 20 25 30
Λn 30 115 350 617 1388 2597
κ∞,1 35.2 247 772 1190 3090 5320

Table 3: The Lebesgue constant and the condition number of the Vandermonde matrix constructed using the Wade basis on the
DLP for the WAM1.

11



n 5 10 15 20 25 30
Λn 30 129 349 648 1520 2143
κ∞,2 29.9 176 638 782 2310 3940

Table 4: The Lebesgue constant and the condition number of the Vandermonde matrix constructed using the Wade basis on the
DLP for the WAM2.

n 5 10 15 20 25 30
||LAn,1

|| 4.8 10.2 10.7 21.1 15.8 22.6
||LAn,2

|| 7.2 15.3 32.8 43.4 85.9 96.6

Table 5: The sup-norm of the least-squares operator on WAM1 and WAM2, respectively.

uses a domain decomposition approach, implemented in the method quadgk (Gauss-Kronrod cubature rules)
avoiding the singularity. Actually, due to the geometry of the cylinder, we could compute the exact values
for the integrals by using separation of variables, that is instead of a call to the Matlab built-in function
triplequad we used the product of the built-in functions dblquad and quadl. This allowed a considerably
reduction of the computational time, as displayed in Table 6 for degrees n ≤ 20.

Concerning function f4, the least-square errors seem not those that one can expected. In [15, Fig. 3.2] the
authors already computed the relative hyperinterpolation errors for the Runge function w.r.t. the number of
function evaluations. From that figure, correspondingly to polynomial degree n = 30, that requires (n+1)(n+
2)(n + 3)/6 = 5456 function evaluations, the hyperinterpolation error is about 10−1. Hence, what we see in
Figure 7 is consistent with those results and, as expected, formula (4.9) is an overestimate of the least-square
error.

n triplequad dblquad×quadl
5 1 min. 9 sec. 4.7 sec.
10 16 min. 3 sec. 1 min. 4 sec.
15 1 h 15 min. 10 sec. 5 min. 33 sec.
20 3 h 47 min. 12 sec. 16 min. 30 sec.

Table 6: Computational time: triplequad vs doublequad×quadl

5.1. Final remarks

The AFP and DLP of the cylinder extracted from WAM1 or WAM2 have shown the following advantages:

• Using points extracted from WAM1 or WAM2, the estimate (4.9) says that the least squares approxi-
mation LAn

(f) ∈ P3
n is nearly optimal.

• We can control the condition numbers of the Vandermonde matrix and the growth of the Lebesgue
constants, especially using the Wade’s orthogonal basis.

• In the application to cubature, we can approximately solve the moment system at low cost.

Some disadvantages have already pointed out in the Remark 2. In practice, these points are affected by the
choice of the WAM from which they are extracted. The availability of the best mesh of the cylinder (or of a
general compact domain) could give possibly the optimal solution. Since there is a lot of work in progress on
this point, involving not only us but also the researchers that have already contributed to develop the WAMs
theory, we hope to be able to give a better answer in the near future.
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Figure 6: Interpolation error on AFP (−∗), cubature errors on AFP ( −+) Interpolation error on DLP (−�), cubature errors on
DLP (−− ?) and least-squares errors (−·o). The points are extracted from the WAM1. Wade basis. In abscissa the polynomial
degree.
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Figure 7: Interpolation error on AFP (−∗), cubature errors on AFP (−+) Interpolation error on DLP (−�), cubature errors on
DLP (−− ?) and least-squares errors (−·o). The points are extracted from the WAM2. Wade basis. In abscissa the polynomial
degree.
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