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Abstract: The aim of the present work is a comparative study of different persis-
tence kernels applied to various classification problems. After some necessary prelimi-
naries on homology and persistence diagrams, we introduce five different kernels that
are then used to compare their performances of classification on various datasets. We
also provide the Python codes for the reproducibility of results.

1 Introduction

In the last two decades, with the increasing need to analyze big amounts of data,
which are usually complex and of high dimension, it was revealed meaningful and
helpful to discover further methodologies to provide new information from data. This
has brought to the birth of Topological Data Analysis (TDA), whose aim is to extract
intrinsic, topological features, related to the so-called ”shape of data”. Thanks to its
main tool, Persistent Homology (PH), it can provide new qualitative information that
it would be impossible to extract in any other way. These kinds of features that can
be collected in the so-called Persistence Diagram (PD), have been winning in many
different applications, mainly related to applied science, improving the performances
of models or classifiers, as in our context. Thanks to the strong basis of algebraic
topology behind it, the TDA is very versatile and can be applied to data with a priori
any kind of structure, as we will explain in the following. This is the reason why there
is a wide range of fields of applications like chemistry [39], medicine [4], neuroscience
[26], [16], finance [25] and computer graphics [6] only to name a few.

An interesting and relevant property of this tool is its stability to noise [9], which
is a meaningful aspect for applications to real-world data. On the other hand, since
the space of PDs is only metric one, to use methods that require data to live in a
Hilbert space, such as SVM and PCA, it is necessary to introduce the notion of kernel
or better Persistence Kernel (PK) that maps PD to space with more structure where
it is possible to apply techniques that need a proper definition of inner product.

The goals of the present paper are: first we investigate how to choose values for
parameters related to different kernels, then we collect tools for computing PD starting
from different kinds of data and finally we compare performances of the main kernels
in the classification context. As far as we know, the content of this study is not already
present in literature.
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The paper is organized as follows: in Section 2 we recall the basic notion related
to persistent homology, in Section 3 we describe the problem of classification and solve
it using Support Vector Machine (SVM), Section 4 lists the main PK available in
literature, Section 5 collects all numerical tests that we have run and in Section 6 we
outline conclusions.

2 Persistent Homology

This brief introduction does not claim to be exhaustive therefore we invite interested
readers to refer, for instance, to the works [17], [32], [13], [14] and [7]. The first
ingredient needed is the concept of filtration. The most common choice in applications
is to consider a function f : X → R, where X is a topological space that varies based
on different contexts, and then take into account the filtration based on the sub-level
set given by f−1(−∞, a), a ∈ R. For example, such an f can be chosen as the distance
function in the case of point cloud data, the gray-scale values at each pixel for images,
the heat kernel signature for datasets as SHREC14 [29], the weight function of edges
for graphs, and so on. We now recall the main theoretical results related to point cloud
data but all of them can be easily apply to other contexts.

We assume to have a set of points X = {xk}k=1,...,m that, we suppose to live in an
open set of a manifold M. The aim is to be able to capture relevant intrinsic properties
of the manifold itself and this is achieved through Persistent Homology (PH) applied
to such discrete information. To understand how PH has been introduced, first, we
have to mention the simplicial homology, which represents the extension of homology
theory to structures called simplicial complexes.

Figure 1: An example of a valid simplicial complex (left) and an invalid one (right)

Definition 1. A simplicial complex K consists of a set of simplices of different
dimensions and has to meet the following conditions:

• Every face of a simplex σ in K must belong to K

• The non-empty intersection of any two simplices σ1, σ2 ∈ K is a face of both σ1

and σ2

The dimension of K is the maximum dimension of simplices that belong to K.

In application, data analysts usually compute the Vietoris-Rips complex.

Definition 2. Let (X , d) denote a metric space from which the samples are taken. The
Vietoris-Rips complex for X , associated to the parameter ϵ, denoted by V R(X , ϵ),
is the simplicial complex whose vertex set is X and {x0, . . . ,xk} spans a k-simplex if
and only if d(xi,xj) ⩽ 2ϵ for all 0 ⩽ i, j ⩽ k.
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If K := V R(X , ϵ̄), we can divide all simplices of this set K, into groups based on
their dimension k and we can enumerate them using ∆k

i . If G = (Z,+) is the well
known Abelian group, we may build linear combinations of simplices with coefficients
in G, and so we introduce the following

Definition 3. An object of the form c =
∑

i ai∆
k
i with ai ∈ Z is a integer valued

k-dimensional chain.

Linearity allows to extend the previous definition to any subsets of simplices of K
with dimension k,

Definition 4. The group C ϵ̄
k(X ) is called the group of k-dimensional simplicial

integer-valued chains of the simplicial complex K.

It is then possible to associate to each simplicial complex, the corresponding set of
Abelian groups C ϵ̄

0(X ), . . . , C ϵ̄
n(X ).

Definition 5. The boundary ∂∆k of an oriented simplex ∆k, is the sum of all its
(k − 1)-dimensional faces taken with a chosen orientation. More precisely

∂∆k =
k∑

i=0

(−1)k∆k−1
i .

In the general setting, we can extend the boundary operator by linearity to a general
element of C ϵ̄

k(X ), obtaining a map ∂k : C
ϵ̄
k(X ) → C ϵ̄

k−1(X ).
No matter what the value of k is, it is a linear map. Therefore we can take into

account its kernel, for instance, the group of k-cycles, Z ϵ̄
k(X ) := ker(∂k) and the image,

the group of k-boundaries, B ϵ̄
k+1(X ) := im(∂k). Then H ϵ̄

k(X ) = Z ϵ̄
k(X )/B ϵ̄

k+1(X ) is the
k-homology group and represents the k-dimensional holes that can be recovered from
the simplicial structure. We briefly recall here that, for instance, 0-dimensional holes
correspond to connected components, 1-dimensional holes are cycles, and 2-dimensional
holes are cavities/voids. Since they are algebraic invariants, they collect qualitative
information regarding the topology of the data. The most crucial aspect is highlighting
the best value for ϵ to obtain a simplicial complex K that faithfully reproduces the
original manifold’s topological structure. The answer is not straightforward and the
process reveals unstable, therefore the PH analyzes not only one simplicial complex
but a nested sequence of them, and, following the evolution of such structure, it notes
down features that gradually emerge. From a theoretical point of view, letting 0 <
ϵ1 < · · · < ϵl be an increasing sequence of real numbers, we obtain the filtration

∅ ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kl

with Ki = V R(X , ϵi) and then

Definition 6. The p-persistent homology group of Ki is the group defined as

H i,p
k = Zi

k/(B
i+p
k ∩ Zi

k)

This group contains all stable homology classes in the interval i to i + p: they are
born before the time/index i and are still alive after p steps. The persistent homology
classes alive for large values of p are stable topological features of S (see [3]). Along the
filtration, the topological information appears and disappears, thus it means that they
may be represented with a couple of indexes. If p is such a feature, it must be born in
some Ki and die in Kj so it can be described as (i, j), i < j. We underline here that
j can be equal to +∞, since some features can be alive up to the end of the filtration.
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Hence, all such topological invariants live in the extended positive plane, that here is
denoted by R2

+ = R≥0×{R≥0∪{+∞}}. Another interesting aspect to highlight is that
some features can appear more than once and accordingly such collection of points are
called multisets. All of these observations are grouped into the following

Definition 7. A Persistence Diagram (PD) Dr(X , ε) related to the filtration ∅ ⊂
K1 ⊂ K2 ⊂ · · · ⊂ Kl with ε := (ϵ1, . . . , ϵl) is a multiset of points defined as

Dr(X , ε) := {(b, d)|(b, d) ∈ Pr(X , ε)} ∪∆

where Pr(X , ε) denotes the set of r-dimensional birth-death couples that came
out along the filtration, each (b, d) is considered with its multiplicity, while points of
∆ = {(x, x)|x ≥ 0} with infinite multiplicity. One may consider all Pr(X , ε) for every r
together, obtaining the total PD denoted here by D(X , ε), that we will usually consider
in the following sections.

Each point (b, d) ∈ Dr(X , ε) is called generator of the persistent homology, and
represents a topological property which appears at Kb and disappears at Kd. The
difference d − b is called persistence of the generator, represents its lifespan and
shows the robustness of the topological property.

Figure 2: An example of Persistence Diagram with features of dimensions 0,1 and 2
(image taken from a financial application as discussed in [44])

Figure 2 is an example of total PD collecting features of dimension 0 (in blue), of
dimension 1 (in orange), and of dimension 2 (in green). Points close to the diagonal
represent features with a short lifetime, and so usually they are concerned with noise,
instead features far away are indeed relevant and meaningful and, based on applications,
one can decide to consider both or only the most interesting ones. At the top of the
Figure, there is a dashed line that indicates the infinity and allows to plot also couples
as (i,+∞).

In the previous definition, the set ∆ is added to finding out proper bijections be-
tween sets, that without ∆ could not have the same number of points. It makes it
possible to compute the proper distance between PDs.
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2.1 Stability

A key property of PDs is stability under perturbation of the data. First, we recall two
famous distances for sets,

Definition 8. For two nonempty sets X ,Y ⊂ Rd with the same cardinality, theHauss-
dorff distance is

dH(X ,Y) := max{sup
x∈X

inf
y∈Y

∥x− y∥∞, sup
y∈Y

inf
x∈X

∥y − x∥∞}

and bottleneck distance is defined as

dB(X ,Y) := inf
γ
sup
x∈X

∥x− γ(x)∥∞ (1)

where we consider all possible bijection of multisets γ : X → Y . Here, we use

∥v − w∥∞ = max{|v1 − w1|, |v2 − w2|}, for v = (v1, v2), w = (w1, w2) ∈ R2

Figure 3: Example of bottleneck distance between two PDs in red and blue (image
from [42])

We try to explain better how to compute the bottleneck distance. We have to take
all possible ways to move points from X to Y in a bijective manner and then one can
compute properly the distance. Figure 3 shows two different PDs overlapped, that
consist of ∆ joined with 2 points in red and 11 points in blu respectively. First, in
order to apply the definition (1), we need two sets with same cardinality. For this aim,
it is necessary to add points of ∆, more precisely the orthogonal projection onto the
diagonal of the 9 blue points closer to it, to reach 11. Lines between points and ∆
represent the bijection that realizes the best matching between points in definition (1).

Proposizione 2.1. Let X and Y be finite subset in a metric space (M,dM). Then the
Persistence Diagrams D(X , ε), D(Y , ε) satisfy

dB(D(X , ε), D(Y , ε)) ⩽ dH(X ,Y).

For any further details see for example [32].
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3 SVM

3.1 Classification problem

Let Ω ⊂ Rd and {x1, ...,xm} ⊂ X ⊂ Ω be the set of input data with d,m ∈ N. We have
a training set, composed by the couples (xi, yi) with i = 1, ...,m and yi ∈ Y = {−1, 1}.
The binary supervised learning task consists in finding a function f : Ω −→ Y , the
model, such that it can predict, in a satisfactory way, the label of an unseen x̃ ∈ Ω\X .

The aim is to find the hyperplane that can separate, in the best possible way, points
that belong to different classes and from here the name separating hyperplane. The
best possible way means that it separates the two classes with the higher margin, that
is the distance between the hyperplane and the points of both classes.

More formally, if we assume to be in a space F with dot product, for instance F
can be a subset of Rd with ⟨·, ·⟩, since a generic hyperplane can be defined as

{x ∈ F |⟨w,x⟩+ b = 0} w ∈ F , b ∈ R

one can introduce

Definition 9. We call

ρw,b(x, y) :=
y(⟨w,x⟩+ b)

∥w∥
the geometrical margin of the point (x, y) ∈ F ×{−1, 1}. Instead, the minimum

value,

ρw,b := min
i=1,...,m

ρw,b(xi, yi)

shall be call the geometrical margin of (x1, y1), . . . , (xm, ym).

From a geometrical point of view, this margin measures effectively the distance
between samples and the hyperplane itself. Then SVM is looking for a suitable hyper-
plane that, intuitively realizes the maximum of such margin. For any further details,
see for example [34]. The precise formalization brings to an optimization problem that,
thanks to the Lagrange multipliers and Karush-Kuhn-Tucker conditions, it turns out
to have the following formulation, as SVM optimization problem,

max
α ∈ Rm

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj⟨xi,xj⟩

s. to
m∑
i=1

αiyi = 0

0 ≤ αi ≤ C ∀i = 1, . . . ,m

where [0, C]m is the bounding box C ∈ [0,+∞) and αi > 0 are called Support
Vectors. From here and what follows the name Support Vector Machine is shortened in
SVM and ⟨·, ·⟩ denotes the inner product in Rd. This formulation can face satisfactorily
the classification task if data are linearly separable. In applications, it doesn’t happen
frequently and so it is needed to introduce some nonlinearity and move in higher
dimensional space where, hopefully, that can happen. This can be achieved with the
use of kernels. Starting from the original dataset X , the theory tells to introduce a
feature map Φ : X → H that moves data from X to a Hilbert space of function H,
the so-called feature space. The kernel is then defined as κ(x, x̄) := ⟨Φ(x),Φ(x̄)⟩H
(kernel trick). Thus the optimization problem becomes
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max
α ∈ Rm

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjκ(xi,xj)

s. to
m∑
i=1

αiyi = 0

0 ≤ αi ≤ C ∀i = 1, . . . ,m

where kernel represents a generalization of the inner product in Rd. We are inter-
ested in classifying PDs and obviously, we need suitable definitions for kernels for PDs,
the so-called Persistence Kernels (PK).

4 Persistence Kernels

In what follows we denote with D the set of the total PDs.

4.0.1 Persistence Scale-Space Kernel (PSSK)

The first kernel was described in [31]. The main idea is to compute the feature map
as the solution of the Heat equation. We consider Ωad = {x = (x1, x2) ∈ R2 : x2 ⩾ x1}
and we denote with δx the Dirac delta centered at x. For a given D ∈ D, we consider
the solution u : Ωad × R⩾0 → R, (x, t) 7→ u(x, t) of the following PDE:

∆xu = ∂tu in Ωad × R⩾0

u = 0 on ∂Ωad × R⩾0

u =
∑
y∈D

δy on Ωad × 0

The feature map Φσ : D → L2(Ωad) at scale σ > 0 at D is defined as Φσ(D) = u
∣∣
t=σ.

This map yields the Persistence Scale Space Kernel (PSSK) Kσ on D as:

Kσ(D,E) = ⟨Φσ(D),Φσ(E)⟩L2(Ωad).

But since it is known as an explicit formula for the solution u, the kernel takes the
form

Kσ(D,E) =
1

8πσ

∑
x∈D,y∈E

exp(−∥x− y∥2

8σ
)− exp(−∥x− ȳ∥2

8σ
)

where y = (a, b), ȳ = (b, a), for any D,E ∈ D.

4.0.2 Persistence Weighted Gaussian Kernel (PWGK)

In [21], the authors introduce a new kernel whose idea is to replace each PD with a
discrete measure. Starting with a strictly positive definite kernel, as for example the

gaussian one κG(x,y) = e−
∥x−y∥2

2σ2 , σ > 0 we denote the corresponding Reproducing
Kernel Hilbert Space HκG

.
If Ω ⊂ Rd, we denote with Mb(Ω) the space of finite signed Radon measures and

EκG
: Mb(Ω) → HκG

, µ 7→
∫
Ω

κG(·,x)dµ(x).
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For any D ∈ D, if µw
D =

∑
x∈D w(x)δx, where the weight function satisfies w(x) > 0

for all x ∈ D then
EκG

(µw
D) =

∑
x∈D

w(x)κG(·,x)

where

w(x) = arctan(Cwpers(x)
p)

and pers(x) = x2 − x1.
The Persistence Weight Gaussian Kernel (PWGK) is defined as

Kw
G(D,E) = exp

(
− 1

2τ 2
∥EκG

(µw
D)− EκG

(µw
E)∥2HκG

)
, τ > 0

for any D,E ∈ D.

4.0.3 Sliced Wasserstein Kernel (SWK)

Another possible choice for κ has been introduced in [8].
We consider µ and ν two nonnegative measures on R such that µ(R) = r = |µ| and

ν(R) = r = |ν|, we recall that the 1-Wasserstein distance for nonnegative measures is
defined as

W(µ, ν) = inf
P∈Π(µ,ν)

∫ ∫
R×R

|x− y|dP (x, y)

where Π(µ, ν) is the set of measures on R2 with marginals µ and ν.

Definition 10. Given θ ∈ R2 with ∥θ∥2 = 1, let L(θ) denote the line {λθ|λ ∈ R}
and let πθ : R2 → L(θ) be the orthogonal projection onto L(θ). Let D,E ∈ D and
let µθ

D :=
∑

x∈D δπθ(x) and µθ
D∆ :=

∑
x∈D δπθ◦π∆(x) and similarly for µθ

E and µθ
E∆ where

π∆ is the orthogonal projection onto the diagonal. Then, the Sliced Wasserstein
distance is

SW (D,E) =
1

2π

∫
S1
W(µθ

D + µθ
E∆, µ

θ
E + µθ

D∆)dθ

Thus, the Sliced Wasserstein Kernel (SWK) is defined as

KSW (D,E) := exp

(
− SW (D,E)

2η2

)
, η > 0

for any D,E ∈ D.

4.0.4 Persistence Fisher Kernel (PFK)

In [22], the authors describe a kernel based on Fisher Information geometry.
A persistence diagram D ∈ D can be considered as a discrete measure µD =∑

u∈D δu, where δu is the Dirac’s delta centered in u. Given a bandwidth σ > 0, and a
set Θ, one can smooth and normalize µD as follows

ρD :=
1

Z

∑
u∈D

N(x;u, σI)

where N is a Gaussian function, Z =
∫
θ

∑
u∈D N(x;u, σI)dx and I is the iden-

tity matrix. Thus, using this measure, any PD can be regarded as a point in P =
{ρ|

∫
ρ(x)dx = 1, ρ(x) ≥ 0}.

Given two element in ρi, ρj ∈ P, the Fisher Information Metric is
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dP(ρi, ρj) = arccos

(∫ √
ρi(x)ρj(x)dx

)
.

Inspiring by the Sliced Wasserstein Kernel construction, we have the following

Definition 11. Let D,E be two finite and bounded persistence diagrams. The Fisher
information metric between D and E, is defined as

dFIM(D,E) := dP(ρD∪E∆
, ρE∪D∆

)

where D∆ := {Π∆(u)|u ∈ D}, E∆ := {Π∆(u)|u ∈ E} and Π∆ is the orthogonal
projection on the diagonal ∆ = {(a, a)|a ≥ 0}.

The Persistence Fisher Kernel (PFK) is then defined as

K(D,E) := exp(−tdFIM(D,E)), t > 0, for any D,E ∈ D.

4.0.5 Persistence Images (PI)

The main reference is [1]. If D ∈ D we introduce a change of coordinates, T : R2 →
R2 given by T (x, y) = (x, y − x) and let T (D) be the transformed multiset in first-
persistence coordinates. Let ϕu : R2 → R be a differentiable probability distribution
with mean u = (ux, uy) ∈ R2, usually ϕu = gu, where gu is the 2-dimensional Gaussian
with mean u and variance σ2, defined as

gu(x, y) =
1

2πσ2
e−[(x−ux)2+(y−uy)2]/2σ2

.

Fix a weight function f : R2 → R, that is f ≥ 0, it is equal zero on the horizontal
axis, continuous and piecewise differentiable. A possible choice is a function that
depends only to the persistence coordinate y, a function f(x, y) = wb(y) where

wb(t) =


0 if t ≤ 0,
t
b

if 0 < t < b,
1 if t ≥ b

Definition 12. Given D ∈ D, the corresponding persistence surface ρD : R2 → R
is the function

ρD(x, y) =
∑

u∈T (D)

f(u)ϕu(x, y).

If we divide the plane in a grid with n2 pixels (Pi,j)i,j=1,...,n, we have the following

Definition 13. Given D ∈ D, its persistence image is the collection of pixels

PI(ρD)i,j =

∫ ∫
Pi,j

ρD(x, y)dxdy

Thus, through persistence image, each persistence diagram is turned into a vector
PIV ∈ Rn2

that is PIV (D)i+n(j−1) = PI(D)i,j, then it is possible to introduce the
following kernel

KPI(D,E) =< PIV (D), P IV (E) >Rn2
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5 Shape paramenters analysis

Each aforementioned kernel has some parameters, that have been chosen through the
cross-validation phase. As in the context of RBF as explained in [15], also in Machine
Learning framework, it is better to tune the parameters accordingly to the so-called
trade-off principle, for instance, such that the condition number of Gram matrix is not
so high and on the other hand the accuracy is satisfactorily high. The aim here is to
run such analysis to kernels presented in this paper.

The PSSK has only one parameter to tune σ. Typically the users consider σ ∈
{0.001, 0.01, 0.1, 1, 10, 100, 1000}. We run the CV phase for different shuffles of a
dataset and plot the results in terms of the condition number of the Gram matrix
related to the training samples and the accuracy. For our analysis, we consider
σ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 500, 800, 1000} and run tests on some
datasets cited in the following. The results are similar in each case so we decided to
report ones about SHREC14 dataset.

Figure 4: Comparison results about PSSK for SHREC14 in terms of condition number
(left) and accuracy (right) with different σ

From the plot, it is evident how large values of σ bring to unstable matrix and less
accuracy. Then in what follows, we will take into account only σ ∈ {0.00001, 0.0001, 0.001,
0.01, 0.1, 1, 10}.

PWGK is the kernel with a higher number of parameters to tune, then it is not so
evident what are the best-set values to take into account. We choose reasonable starting
sets as: τ ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}, ρ ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000},
p ∈ {1, 5, 10, 50, 100}, Cw ∈ {0.001, 0.01, 0.1, 1}. Due to a large number of parameters,
we first ran some experiments varying (ρ, τ) with fixed (p, Cw), and then we reversed
the roles.

We report here in Figure 5 only a plot for fixed Cw and p because it highlights
how high values of τ (for example τ = 1000) are to be excluded. We find this behav-
ior for different values of Cw, p and various datasets, here the case Cw = 1, p = 10
and MUTAG dataset. Therefore we decide to vary the parameters as follows: τ ∈
{0.001, 0.01, 0.1, 1, 10, 100}, ρ ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}, p ∈ {1, 5, 10, 50, 100},
Cw ∈ {0.001, 0.01, 0.1, 1}. Unluckily there is no other evidence that can guide the
choices, except for τ , where values τ = 1000 always have bad accuracy, as one can see
below in the case of MUTAG with shortest path distance.

In the case of SWK, there is only one parameter η. In [8], the authors propose to
consider values starting from the first and last decile and the median value of the gram
matrix of the training samples flatten in order to obtain a vector, then they multiply
these three values for 0.01, 0.1, 1, 10, 100. For our analysis, we have decided to study the
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Figure 5: Comparison results about PWGK for MUTAG in terms of accuracy with
different τ and ρ

behavior of such kernel considering the same set of values, independently from the spe-
cific dataset. We consider η ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 500, 800, 1000}.

Figure 6: Comparison results about SWK for DHFR in terms of condition number
(left) and accuracy (right) with different η

We run tests on some datasets and the plot, related to the DHFR dataset, reveals
evidently that large values for η are to be excluded. So, we will decide to take η only
in {0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10}.

PFK has two parameters: the variance σ and t. In [22], the authors exhibit the
procedure to follow in order to obtain the corresponding set of values. It shows that
the choice of t depends on σ. Instead, our aim in this paper is to carry out an analysis
that is dataset-independent and that turns out to be strictly connected only to the
definition of kernel itself. First, we take different values for (σ, t) and we plot the
corresponding accuracies, here in the case of MUTAG with shortest path distance, but
the same behavior holds true also for other datasets.

The condition numbers are indeed high for every choice of parameters and therefore
we avoid reporting here because it would be meaningless. From the plot, it is evident
that it is convenient to set σ lower or equal to 10 instead t should be set bigger or
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Figure 7: Comparison results about PFK for MUTAG in terms of accuracy with dif-
ferent t and σ

equal to 0.1. Thus in what follows, we take into account σ ∈ {0.001, 0.01, 0.1, 1, 10}
and t ∈ {0.1, 1, 10, 100, 1000}.

In the case of PI, we considered a reasonable set of values for the parameter σ ∈
{0.001, 0.01, 0.1, 1, 10, 100, 1000}. The results are related to BZR with shortest path
distance.

Figure 8: Comparison results about PI for BZR in terms of condition number (left)
and accuracy (right) with different σ

As in the previous kernels, it seems that the accuracy is better for small values of
σ. For this reason, we set σ ∈ {0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10}.

6 Numerical Tests

For what concerns the computation of simplicial complexes and persistence diagrams,
we use some Python libraries available online as gudhi [42], ripser [38], giotto-tda
[43] and persim [33]. To all datasets, we have performed a random splitting (70%/30%)
for training and test and applied a 10-fold Cross Validation on the training set for the
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hyperparameters tuning. Then we averaged the results over 10 runs. For balanced
datasets, we have measured the performances of classifier through the accuracy for
binary and multiclass problems,

accuracy =
number of test samples correctly classify

all test samples

Instead, in the case of imbalanced datasets, we have adopted the balanced accuracy
as explained in [19], if for every class i we define the related recall as

recalli =
test samples of class i correctly classify

all test samples of class i

then the balanced accuracy, in case of n different classes is,

balanced accuracy =

∑n
i=1 recalli

n

This definition is able to effectively quantify how accurate is the classifier even in
the case of the smallest classes. In tests, we use the implementation of SVM provided
by the Scikit [27] library of Python. For PFK, we precomputed the Gram matrices
using a Matlab (Matlab R2023b) routine because it is faster than the Python one. The
values for C belong to {0.001, 0.01, 0.1, 1, 10, 100}. For each kernel, we have considered
the following values for the parameters:

• PSSK: σ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10}

• PWGK: τ ∈ {0.001, 0.01, 0.1, 1, 10, 100}, ρ ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000},
p ∈ {1, 5, 10, 50, 100}, Cw ∈ {0.001, 0.01, 0.1, 1} and for kernel we chose the Gaus-
sian one.

• SWK: η ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10}

• PFK: σ ∈ {0.001, 0.01, 0.1, 1, 10} and t ∈ {0.1, 1, 10, 100, 1000}

• PI: σ ∈ {0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10} and number of pixel 0.1.

All codes have been run using Python 3.11 on a 2.5 GHz Dual-Core Intel Core i5,
32 Giga RAM. They are available in the GitHub page

https://github.com/cinziabandiziol/persistence kernels

6.1 Point cloud data and shapes

6.1.1 Protein

This is the Protein Classification Benchmark dataset PCB00019 [36]. It sums up
information for 1357 proteins corresponding to 55 classification problems. The data
are highly imbalanced and therefore we apply the classifier to one of them, where the
imbalance is slightly less evident. Persistence diagrams were computed for each protein
by considering the 3-D structure or better the (x, y, z) position of any atoms in each
of the 1357 molecules, as a point cloud in R3. Finally using ripser we compute the
persistence diagrams only of dimension 1.
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6.1.2 SHREC14 - Synthetic data

The dataset is related to the problem of non-rigid 3D shape retrieval. It collects
exclusively human models in different body shapes and 20 poses. It consists of 15
different human models, about man, woman, and child, each with its own body shape.
Each of these models exists in 20 different poses making the dataset composed of 300
models. For each shape, the meshes are given with about 60000 vertices and, using the
Heat Kernel Signature (HKS) introduced in [37], over different values of ti as [31], we
have computed the persistence diagrams of the induced filtrations in dimensions 1.

6.1.3 Orbit recognition

We consider the dataset proposed in [1]. We take into account the linked twisted map,
which models fluid flows. The orbits can then be computed through the following
discrete dynamical system{

xn+1 = xn + ryn(1− yn) mod 1

yn+1 = yn + rxn+1(1− xn+1) mod 1

where the starting point (x0, y0) ∈ [0, 1] × [0, 1] and r > 0 is a real parameter that
influences the behavior of the orbits, as appears in images.

Figure 9: Orbits composed by the first 1000 iterations of the twisted map with r =
3.5, 4.1, 4.3 from left to right

As in [1], r ∈ 2.5, 3.5, 4, 4.1, 4.3 and it is strictly connected to the label of the
corresponding orbit. For each of them, we compute the first 1000 points of 50 orbits,
with starting points chosen randomly. The final dataset is composed of 250 elements.
We compute PD considering only the 1-dimensional features. Since each PD has a huge
number of topological features, we decide to consider only the first 10 most persistent,
as done in [12].
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Kernel PROTEIN SHREC14 DYN SYS
PSSK 0.561 0.933 0.829
PWGK 0.538 0.923 0.819
SWK 0.531 0.935 0.841
PFK 0.556 0.935 0.784
PI 0.560 0.934 0.777

Table 1: Accuracy related to point cloud and shape datasets

First, the high difference in performances through different datasets is probably
due to the high imbalance of the PROTEIN one with respect to the perfect balance of
the other ones. It is well known that, if the classifier has not enough samples for each
class, as in the case of the imbalanced dataset, it has to face high issues in classifying
correctly elements of the minor classes. Except for PROTEIN where the PSSK shows
slightly better performances, for SHREC14 and DYN SYS the best accuracy has been
achieved by SWK.

6.2 Images

All the definitions introduced in Section 2 can be extended to another kind of simplicial
complex, the cubical complex. It is useful when one deals with images or objects based
on meshes, for example. More precise from [24]

Definition 14. An elementary cube Q ⊂ Rd is defined as a product Q = I1 × · · · × Id
where each Ij is either a singleton set {m} or a unit-length interval [m;m+1] for some
integers m ∈ Z. The number k of the unit-length intervals in the product of Q is called
the dimension of cube Q and we call Q a k-cube. If Q and Q̄ are two cubes and Q ⊂ Q̄,
then Q is said to be a face of Q̄. A cubical complex X in Rd is a collection of k-cubes
(0 ≤ k ≤ d) such that:

• every face of a cube in X is also in X;

• the intersection of any two cubes of X is either empty or a face of each of them.

Figure 10: Cubical simplices

6.2.1 MNIST and FMNIST

MNIST [23] is very common in the classification framework. It consists of 70000 hand-
written digits, in grayscale, which one could try to classify into 10 different classes.
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Each image can be viewed as a set of pixels with a value between 0 and 256 (black and
white) as in the figure.

Figure 11: Example of an element in MNIST dataset

Starting from this kind of dataset, we have to compute the corresponding persistent
features. According to the approach proposed in [18] coming from [5], we first binarize
each image, for instance, we replace each grayscale image with a white/black one, then
we use as filtration function the so-called Height filtration H(p) in [18]. For cubical
complex, for a chosen vector v ∈ Rd of unit norm, it is defined as

H(p) =

{
⟨p, v⟩ if p is black,

H∞ otherwise

where H∞ is a big default value chosen by the user. As in [5] we have chosen 4
different vectors for p: (1, 0), (−1, 0), (0, 1), (0,−1) and we have computed 0 and 1-
dimensional persistent features both using tda-giotto and gudhi libraries. Finally,
we concatenate them. For the current experiment, we decided to focus the test on a
subset of the original MNIST, composed of only 10000 samples. This is a balanced
dataset. Due to some memory issues, we have to consider for this dataset a pixel size
of 0.5 and for PWGK only τ ∈ {0.001, 0.01, 0.1, 1, 10, 100}, ρ ∈ {0.001, 0.1, 10, 1000},
p = 10, Cw ∈ {0.001, 0.01, 0.1, 1}.

Another example of a grayscale image dataset is the FMNIST [40], which contains
28 x 28 grayscale images related to the fashion world.

To deal with it, we follow another approach proposed in [3], where the authors apply
padding, median filter, shallow thresholding, and canny edges and then compute the
usual filtration to the image obtained. Due to some memory issues, we have to consider
for this dataset a pixel size of 1 and for PWGK only τ ∈ {0.001, 0.01, 0.1, 1, 10, 100},
ρ ∈ {0.001, 0.1, 10, 1000}, p = 10, Cw ∈ {0.001, 0.01, 0.1, 1}.

Kernel MNIST FMNIST
PSSK 0.729 0.664
SWK 0.802 0.709
PWGK 0.754 0.684
PFK 0.734 0.671
PI 0.760 0.651

Table 2: Accuracy related to MNIST and FMNIST
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Figure 12: Example of an element in FMNIST dataset

Both datasets are balanced and probably the results are better in the case of MNIST
due the fact that it is easier to classify handwritten digits instead of images of cloths.
SWK shows slightly best performances.

6.3 Graphs

In many different contexts from medicine to chemistry, data can have the structure of
graphs. Graphs are couples of set (V,E) where V is the set of vertices and E is the set
of edges. The graph classification is the task of attaching a label/class to each whole
graph. In order to compute the persistent features, we need to build a filtration. In
the context of graphs, as in other cases, there are different definitions, see for example
[2].

We consider the Vietoris Rips filtration, where starting from the set of vertices, at
each step we add the corresponding edge whose weights are less or equal to a current
value ϵ. This turns out to be the most common choice and the software available
online allows us to build it after providing the corresponding adjacency matrix. In our
experiments, we consider only undirected graphs but, as in [2], building a filtration is
possible also for directed graphs. Once defining the kind of filtration to use, one needs
again to choose the corresponding weights. We decide to take into account: first, the
shortest path distance and then the Jaccard index as for example in [41].

Given two vertices u, v ∈ V the shortest path distance is defined as the minimum
number of different edges that one has to meet going from u to v, or vice versa since the
graphs here are considered as undirected. In graphs theory, it is a widely use metric.

Instead, the Jaccard index is a good measure of edge similarity. Given an edge
e = (u, v) ∈ E then the corresponding Jaccard index is computed as

ρ(u, v) =

∣∣∣∣NB(u) ∩NB(v)

NB(u) ∪NB(v)

∣∣∣∣
where NB(u) is the set of neighbours of u in the graph. This metric recover local

information of nodes in the sense that two nodes are considered similar if their neighbor
sets are similar.

In both cases, we consider the sub-level set filtration and we collect 0 and 1 dimen-
sional persistent features both.
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We take 6 of such sets among the graph benchmark datasets, all undirected. They
are

• MUTAG: it is a collection of nitroaromatic compounds and the goal is to predict
their mutagenicity on Salmonella typhimurium

• PTC: is a collection of chemical compounds represented as graphs that report
the carcinogenicity of rats

• BZR: it is a collection of chemical compounds and one has to classify them as
active or inactive

• ENZYMES: it is a dataset of protein tertiary structures obtained from the
BRENDA enzyme database and the aim is to classify each graph into 6 enzymes.

• DHFR: it is a collection of chemical compounds and one has to classify them as
active or inactive

• PROTEINS: in each graph nodes represent the secondary structure elements
and the task is to predict whether a protein is an enzyme or not.

Their properties are summarized in table 3, where the IR index is the so-called
Imbalanced Ratio (IR), that denotes the imbalance of the dataset, and it is defined
as, a sample size of the major class over sample size of the minor class.

Dataset N° Graphs N° classes IR
MUTAG 188 2 125:63
PTC 344 2 192:152
BZR 405 2 319:86

ENZYMES 600 6 100:100
DHFR 756 2 461:295

PROTEINS 1113 2 663:450

Table 3: Graph datasets

Computations of adjacency matrix and PDs are made using functions implemented
in tda-giotto.

The performances achieved with two edge weights are reported in tables,

Kernel MUTAG BZR DHFR PROTEINS ENZYMES PTC
PSSK 0.868 0.606 0.557 0.668 0.281 0.545
PWGK 0.858 0.644 0.655 0.694 0.329 0.510
SWK 0.872 0.712 0.656 0.686 0.370 0.511
PFK 0.842 0.682 0.656 0.694 0.341 0.534
PI 0.863 0.585 0.519 0.691 0.285 0.542

Table 4: Balanced Accuracy related to graph datasets using shortest path distance
(Accuracy only for ENZYMES dataset)

Thanks to these results two conclusions can be taken. The first one is that, as
expected, the performance of the classifier depends on the particular filtration used
for the computation of persistent features. The second one is related to the fact that
SWK and PFK seem to work slightly better than the other kernels: in the case of
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Kernel MUTAG BZR DHFR PROTEINS ENZYMES PTC
PSSK 0.865 0.704 0.717 0.675 0.298 0.490
PWGK 0.859 0.720 0.727 0.699 0.355 0.516
SWK 0.858 0.703 0.726 0.689 0.406 0.523
PFK 0.874 0.704 0.743 0.678 0.400 0.554
PI 0.846 0.670 0.712 0.690 0.280 0.478

Table 5: Balanced Accuracy related to graph datasets using Jaccard Index (Accuracy
only for ENZYMES dataset)

shortest path distance, SWK is to be preferred while PFK seems work better in the
case of Jaccard index. In the case of PROTEINS, in both cases PWGK provides best
balanced accuracy.

6.4 1-Dimensional Time Series

In many different applications, one can deal with 1-dimensional time series. A 1-
dimensional time series is a set {xt ∈ R|t = 1, . . . , T}. In [30] authors provide different
approaches to build a filtration upon this kind of data. We decide to adopt the most
common one. Thanks to the Taken’s embedding, these data can be translated into
point clouds. With suitable choices for two parameters: τ > 0 the delay parameter
and d > 0 the dimension, it is possible to compute a subset of points in Rd composed
by vi = {xi, xi+τ , . . . , xi+(d−1)τ} for i = 1, . . . , T − (d − 1)τ . The theory mentioned
above related to point clouds can now be applied to signals, as points in Rd. For how
to choose values for the parameters, see [30]. The dataset for tests is taken from the
UCR Time Series Classification Archive (2018) [10], which consists of 128 datasets of
time series from different worlds of application. In the archive there is the splitting
into test and train sets but, for the aim of our analysis, we don’t take care of it and we
consider train and test data as a whole dataset and then codes provide properly the
subdivision.

Dataset N° time series N° classes IR
ECG200 200 2 133:67
SONY 621 2 349:272
DISTAL 876 2 539:337

STRAWBERRY 983 2 632:351
POWER 1096 2 549:547
MOTE 1272 2 685:587

Table 6: Time series datasets

Using giotto-tda we compute the persistent features of dimensions 0,1,2 and join
them together. The final results of the datasets are reported here.

As in the previous examples, SWK is winning and provides slightly best perfor-
mances in terms of accuracy.

7 Conclusions

In this paper, we have compared the performance of five Persistent Kernels applied
to data of different nature. The results show how different PK are indeed comparable
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Kernel ECG200 SONY DISTAL STRAWBERRY POWER MOTE
PSSK 0.642 0.874 0.658 0.814 0.720 0.618
PWGK 0.726 0.888 0.696 0.840 0.769 0.633
SWK 0.731 0.892 0.723 0.898 0.784 0.671
PFK 0.707 0.895 0.676 0.892 0.750 0.652
PI 0.717 0.841 0.662 0.793 0.712 0.606

Table 7: Balanced Accuracy related to time series datasets

in terms of accuracy and there is not a PK that emerges clearly above the others.
However, in many cases the SWK and PFK perform slightly better. In addition, from
a purely computational point of view, SWK is to be preferred since, by construction,
the preGram matrix is parameter-independent. Therefore, in practice, the user has
to compute such a matrix on the whole dataset only once at the beginning and then
choose a suitable subset of rows and columns to perform the training, cross-validation,
and test phases. This aspect is relevant and reduces the computational costs and
time compared with other kernels. Another aspect to be considered, as in the case of
graphs, is how to choose the function f that provides the filtration. The choice of such
a function is still an open problem and an interesting field of research. The right choice
in fact would guarantee to be able to better extract the intrinsic information from data,
improving, in this way, the classifier’s performances. For the sake of completeness, we
recall here that in literature there is also an interesting direction of reasearch whose
aim is to build a new PK strarting from the main 5. From one of the PKs mentioned
in previous sections, the authors in [12] studied how to modify them obtaining the
so-called Variably Scale Persistent Kernels, which are Variably Scaled Kernels
applied to the classification context. The results reported by the authors are indeed
promising, thus it could be another interesting direction for further analysis.
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