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Abstract

We discuss sampling (interpolation) by translates of sinc functions for data restricted to a
finite interval. We indicate how the Floater–Hormann (cf. [8]) of the Berrut normalization (cf.
[2]), in the case of equally spaced nodes, can be regarded as a sampling operator with improved
approximation properties that remains numerically stable. We provide a compact formula for
the denominator of the Floater–Hormann operator. Finally we use this compact formula to
compute, for the case of the Berrut operator, the asymptotics of the associated quadrature
weights.
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1 Introduction

The justly famous Whittaker–Shannon Sampling Theorem may be stated as follows.

Theorem 1. Suppose that f ∈ C(R) ∩ L1(R) and that f̂(ω) = 0 for |ω| ≥ h/2. Then

f(x) =

∞∑
k=−∞

f(kh)sinc

(
1

h
(x− kh)

)
. (1)

Here

sinc(x) :=
sin(πx)

πx

is the sinc function and we define the Fourier transform

f̂(ω) :=

∫ ∞
−∞

e−2πiωxf(x)dx.

In the case of f with domain restricted to some compact subinterval of R, say to [0, 1], the
formula (1) of course no longer makes sense. However, taking h = 1/n, we may consider the partial
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Figure 1: F11(x) and F41(x) for f(x) = x2.

sum

f(x) ≈ Fn(x) :=

n∑
k=0

f(k/n)sinc (n(x− k/n))

=

n∑
k=0

f(xk)sinc (n(x− xk)) (2)

where we have set xk := k/n, 0 ≤ k ≤ n. Although (2) no longer reproduces f(x) for all x ∈ [0, 1],
it is an interpolant in that

Fn(xj) = f(xj), 0 ≤ j ≤ n, (3)

as easily follows from the cardinality property of the translated sinc functions, i.e.,

sinc(n(xj − xk)) =


1 if j = k

0 if j 6= k
.

This interpolant Fn was already studied by de la Vallée Poussin (cf. [7]) who showed that
under some weak regularity conditions on f(x),

lim
n→∞

Fn(x) = f(x), x ∈ [0, 1],

with error essentially of O(1/n). The reader interested in further details may find them in the
excellent survey by Butzer and Stens (cf. [6]).

A decidedly negative property of the interpolant Fn of (2) is that it does not reproduce lines
or even constants. Plots of F11 and F41 for f(x) = x2 are given in Figure 1. Notice, in particular,
the strong Gibbs phenomenon at the right end point x = 1.

In order to alleviate the poor approximation quality of Fn Berrut (cf. [2]) has suggested
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normalizing the formula (2) for Fn to obtain

Bn(x) :=

n∑
k=0

f(xk)sinc (n(x− xk))

n∑
k=0

sinc (n(x− xk))
. (4)

As is easily seen, Bn remains an interpolant of f at the nodes xk, k = 0, · · · , n but has the
advantage of reproducing constants, i.e., if f(x) = 1 then Bn(x) = 1. It turns out that the formula
for Bn can be simplified. Specifically, just notice that

sinc(n(x− xk) = sinc(n(x− k/n))

=
sin(nπx− kπ)

nπ(x− xk)

= (−1)k
sin(nπx)

nπ(x− xk)
.

Hence,

Bn(x) =

∑n
k=0 f(xk)sinc (n(x− xk))∑n

k=0 sinc (n(x− xk))

=
sin(nπx)

∑n
k=0(−1)k f(xk)x−xk

sin(nπx)
∑n

k=0(−1)k 1
x−xk

=

∑n
k=0(−1)kf(xk)/(x− xk)∑n

k=0(−1)k/(x− xk)
. (5)

This latter formula remains an interpolant for any set of distinct nodes xk and is, in general, the
barycentric rational interpolant introduced by Berrut in [1].

As already noted, Bn reproduces constants. If we take f(x) = x then we may calculate

Bn(x) =

∑n
k=0(−1)kxk/(x− xk)∑n
k=0(−1)k/(x− xk)

=

∑n
k=0(−1)k((xk − x) + x)/(x− xk)∑n

k=0(−1)k/(x− xk)

=

∑n
k=0(−1)k+1 + x

∑n
k=0(−1)k/(x− xk)∑n

k=0(−1)k/(x− xk)
= x

for n odd, as in this case
∑n

k=0(−1)k+1 = 0. In other words, for n odd, Bn also reproduces linears,
resulting in improved approximation properties, as is already evident by comparing Figure 1 with
Figure 2 where we show Bn(x) for f(x) = x2 and n = 11 and n = 41.

Besides being an improved approximant, Bn is also numerically stable as its associated Lebesgue
constant has O(log(n)) growth, as was recently shown in [4].

Floater and Hormann in [8], have suggested an even greater improvement to the approximation
power of the Berrut interpolant (also for general nodes xk) by introducing a family of weights

3



0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

B11

0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

B41

Figure 2: B11(x) and B41(x) for f(x) = x2.

βk = β
(d)
k , depending on a degree d ≥ 0, into the formula for Bn, resulting in

FHn(x) :=

n∑
k=0

(−1)kβkf(xk)/(x− xk)

n∑
k=0

(−1)kβk/(x− xk)
. (6)

In general, the weights β
(d)
k are specifically chosen so that FHn reproduces polynomials of degree

at most d and how to do this is perhaps the main result of their paper. However, in the case of
equally spaced nodes, xk = k/n, this is rather easy to explain, and we offer a simplified proof of
this special case of [8], culminating in Proposition 4 below.

Firstly, in the specific case of equally spaced nodes their formula for the β
(d)
k reduces to

β
(d)
k :=



∑k
j=0

(
d
k

)
0 ≤ k ≤ d

2d d ≤ k ≤ n− d

βn−k n− d ≤ k ≤ n

(7)

where n ≥ 2d, by assumption. Note that for d = 0, FHn(x) reduces to Bn(x).

Lemma 2. Assume that n ≥ 2d. Then the generating function of the β
(d)
k is given by

β(n,d)(t) :=

n∑
k=0

β
(d)
k tk = (1 + t)d

(
1− tn+1−d

1− t

)
= (1 + t)d

{
1 + t+ tt + · · ·+ tn−d

}
.
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Proof. Write

(1 + t)d
{

1 + t+ tt + · · ·+ tn−d
}

=

( ∞∑
k=0

akt
k

)( ∞∑
k=0

bkt
k

)
where

ak =


(
d
k

)
0 ≤ k ≤ d

0 otherwise

and

bk =


1 0 ≤ k ≤ n− d

0 otherwise
.

But ( ∞∑
k=0

akt
k

)( ∞∑
k=0

bkt
k

)
=
∞∑
k=0

tk


k∑
j=0

ajbk−j

 ,

and, for 0 ≤ k ≤ d,
k∑
j=0

ajbk−j =

k∑
j=0

(
d

j

)
× 1 = β

(d)
k

while for d < k ≤ n− d,

k∑
j=0

ajbk−j =

d∑
j=0

ajbk−j (since aj = 0 for j > d)

=

d∑
j=0

(
d

j

)
× 1

= 2d

= β
(d)
k
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and for n− d < k ≤ n,

k∑
j=0

ajbk−j =
k∑
j=0

bjak−j

=
n−d∑
j=0

bjak−j (since bj = 0 for j > n− d)

=
n−d∑
j=0

1× ak−j

=
n−d∑
j=k−d

ak−j (since ak−j = 0 for j < k − d, i.e. k − j > d)

=

n−d∑
j=k−d

(
d

k − j

)

=

n−k∑
j=0

(
d

d− j

)
(letting j′ = d+ j − k)

=

n−k∑
j=0

(
d

j

)
= β

(d)
k .

These β
(d)
k have the property that their alternating moments up to order d− 1 are 0.

Lemma 3. For n ≥ 2d and 0 ≤ j ≤ d− 1, the alternating moments

n∑
k=0

(−1)kβ
(d)
k kj = 0.

Proof. From the generating function we have

β(n,d)(−t) =
n∑
k=0

(−1)kβ
(d)
k tk = (1− t)d{1− t+ t2 − t3 + · · ·+ (−1)n−dtn−d}

and hence each of the derivatives(
dj

dtj
β(n,d)(−t)

)∣∣∣∣
t=1

= 0, 0 ≤ j ≤ d− 1.

In other words,

0 =

(
n∑
k=0

(−1)kβ
(d)
k k(k − 1) · · · (k − j + 1)tk−j

)∣∣∣∣∣
t=1

, 0 ≤ j ≤ d− 1.

From j = 0 we have

0 =
n∑
k=0

(−1)kβ
(d)
k .
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From j = 1 we have

0 =
n∑
k=0

(−1)kβ
(d)
k k.

From j = 2 we have

0 =
n∑
k=0

(−1)kβ
(d)
k k(k − 1)

=
n∑
k=0

(−1)kβ
(d)
k (k2 − k)

=
n∑
k=0

(−1)kβ
(d)
k k2 −

n∑
k=0

(−1)kβ
(d)
k k

=
n∑
k=0

(−1)kβ
(d)
k k2

by the j = 1 case. Continuing in this way we have that all the (alternating) moments up to order
d− 1 are zero.

Proposition 4. (Floater and Hormann [8]) Consider the Floater-Hormann inerpolant FHn with

weights β
(d)
k given by (7), n ≥ 2d, and equally spaced nodes xk = k/n. Then if f(x) is a polynomial

of degree at most d,
FHn(x) = f(x).

Proof. For simplicity’s sake we will write βk for β
(d)
k . It is also somewhat convenient to write the

Floater-Hormann formula (6) as

FHn(x) =
n∑
k=0

f(xk)bk(x)

where

bk(x) :=
{

(−1)kβk/(x− xk)
}
/

n∑
j=0

(−1)jβj/(x− xj). (8)

Clearly,
n∑
k=0

bk(x) = 1 (9)

(a property that is true for any weights and any nodes).
We will prove the Proposition for f(x) = xj , 0 ≤ j ≤ d, by induction on j. The j = 0 case

follows directly from (9). Hence suppose that the claim holds for xi, i ≤ j − 1; we will show that
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it then also holds for xj , 1 ≤ j ≤ d. Note that for 1 ≤ j ≤ d,
n∑
k=0

(−1)kβk(x− xk)j/(x− xk) =
n∑
k=0

(−1)kβk(x− xk)j−1

=
n∑
k=0

(−1)kβk(x− k/n)j−1

=
n∑
k=0

(−1)kβk

{
j−1∑
i=0

(−1)i(ki/ni)xj−1−i

}

=

j−1∑
i=0

{(
j − 1

i

)
(−1)ixj−1−in−i

(
n∑
k=0

(−1)kβkk
i

)}
= 0

by Lemma 3. Consequently we have also that

n∑
k=0

bk(x)(x− xk)j = 0

for 1 ≤ j ≤ d. Thus

0 =

n∑
k=0

bk(x)(x− xk)j

=
n∑
k=0

bk(x)

{
j∑
i=0

(
j

i

)
xj−i(−1)ixik

}

=

j∑
i=0

{
(−1)i

(
j

i

)
xj−i

n∑
k=0

xikbk(x)

}
.

But by the induction assumptiom, for i < j,

n∑
k=0

xikbk(x) = xi

and so we have

0 =

(
j−1∑
i=0

(−1)i
(
j

i

)
xj−ixi

)
+ (−1)j

(
j

j

)
xj−j

n∑
k=0

xjkbk(x)

= xj
(

(1− 1)j − (−1)j
(
j

j

))
+ (−1)j

n∑
k=0

xjkbk(x)

= (−1)j+1xj + (−1)j
n∑
k=0

xjkbk(x).

It follows that
n∑
k=0

xjkbk(x) = xj

and we are done.
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Figure 3: B11(x) and FH11 (with d = 2) for f(x) = x4.

Besides having improved approximation properties, the Floater-Hormann remains numerically
stable as its associated Lebesgue constant is also of logarithmic growth in n, as is shown in the
recent paper [5].

We would like to emphasize that the Floater-Hormann interpolant for equally spaced nodes
may also be regarded as a simple improvement on the sampling operator. Indeed we may write

FHn(x) =

n∑
k=0

β
(d)
k f(xk)sinc(n(x− xk))

n∑
k=0

β
(d)
k sinc(n(x− xk))

.

The weights β
(d)
k are constant except for the first d and last d and hence (for small d) are only a

small modification of the normalized sampling operator Bn(x), but FHn reproduces polynomials
of degree d and yet enjoys a Lebesgue constant of minimal growth.

In Figure 3 we show B11(x) for f(x) = x4 together with FH11(x) for d = 2. We hope to have
convinced the reader that the interpolation operators FHn are indeed worthy of further study,
and provide an interesting improvement to (truncated) sampling.

2 A Compact Formula for the Basis Functions bk(x)

We first consider the case d = 0 and equally spaced points (in which case FHn(x) = Bn(x)) for
which (8) reduces to

bk(x) =
(−1)k/(x− xk)
n∑
j=0

(−1)j/(x− xj)
. (10)

We will give a compact formula for bk(x) in terms of the so-called Bateman G-function, which we
now introduce.
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Let ψ(x) denote the classical digamma function, i.e.,

ψ(x) :=
d

dx
log(Γ(x)), x 6= 0,−1,−2, · · ·

where Γ(x) is the Gamma function. Bateman’s G-function is defined as

G(x) = ψ

(
x+ 1

2

)
− ψ

(x
2

)
. (11)

Some important equations that we will make use of are (equation numbers refer to An Atlas of
Functions, [10]):

G(x) = 2

∫ ∞
0

e−xt

1 + e−t
dt, x > 0, (44:13:3)

G(1− x) = 2π csc(πx)−G(x), (44:13:5)

G(x) = 2

∞∑
j=0

(−1)j

x+ j
, x 6= 0,−1,−2, . . . , (44:14:5)

n∑
j=0

(−1)j

jb+ c
=

1

2b

{
G
(c
b

)
+ (−1)nG

(c
b

+ n+ 1
)}

, c 6= 0,−b,−2b,−3b, . . . . (44:14:4)

Consider now the denominator of (10),

Dn(x) :=

n∑
j=0

(−1)j

x− xj

= n

n∑
j=0

(−1)j

nx− j

=
n

2(−1)

{
G

(
nx

−1

)
+ (−1)nG

(
nx

−1
+ n+ 1

)}
by (44:14:4) with b = −1 and c = nx. Simplifying, we obtain

Dn(x) = −n
2
{G(−nx) + (−1)nG(−nx+ n+ 1)}

which is valid for nx 6= 0, 1, 2, · · · , i.e., for x 6= 0, 1/n, 2/n, · · · , 1.
Now, by the reflection formula (44:13:5) above, it follows that

G(−nx) = G(1− (nx+ 1))

= 2π csc(π(nx+ 1))−G(nx+ 1)

= −2π csc(nπx)−G(nx+ 1).

Hence,

Dn(x) = −n
2
{−2π csc(nπx)−G(nx+ 1) + (−1)nG(n(1− x) + 1)}

=
n

2

{
2π csc(nπx) +G(nx+ 1) + (−1)n+1G(n(1− x) + 1)

}
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and

bk(x) =
(−1)k/(x− xk)

Dn(x)

=
2
n(−1)k/(x− xk)

2π csc(nπx) +G(nx+ 1) + (−1)n+1G(n(1− x) + 1)

=
2(−1)k/(n(x− xk))

2π csc(nπx) +G(nx+ 1) + (−1)n+1G(n(1− x) + 1)

=
2(−1)k sin(nπx)

n(x−xk)

sin(nπx){2π csc(nπx) +G(nx+ 1) + (−1)n+1G(n(1− x) + 1)}

=
2π(−1)k sin(nπx)

nπ(x−xk)

sin(nπx){2π csc(nπx) +G(nx+ 1) + (−1)n+1G(n(1− x) + 1)}

=
2π sin(nπ(x−xk))

nπ(x−xk)

sin(nπx){2π csc(nπx) +G(nx+ 1) + (−1)n+1G(n(1− x) + 1)}

=
2πsinc(n(x− xk))

2π + sin(nπx)G(nx+ 1) + (−1)n+1 sin(nπx)G(n(1− x) + 1)

=
2πsinc(n(x− xk))

2π + sin(nπx)G(nx+ 1) + sin(nπ(1− x))G(n(1− x) + 1)
.

Simplifying slightly, we arrive at our formula

bk(x) =
sinc(n(x− xk))

1 + 1
2π{sin(nπx)G(nx+ 1) + sin(nπ(1− x))G(n(1− x) + 1)}

. (12)

Note that since G(x) is defined in terms of the digamma function (see (11)), there are fast,
accurate algorithms for its evaluation. For example, one may use Matlab’s psi function. Note also
that by (44:13:3), G(x) is strictly decreasing for x > 0. Hence, for 0 ≤ x ≤ 1, both G(nx+1) ≤ G(1)
and G(n(1− x) + 1) ≤ G(1), where the value of G(1) is known to have the value

G(1) = log(4) = 1.3863 · · · .

It follows that the denominator in (12) is, on [0, 1], bounded below by

1− 1

2π
2 log(4) = 0.5587 · · · . (13)

The formula for d > 0 is a slight modification of (12). Notice that in the formula for bk, (8),
we may divide the numerator and denominator by 2d, or in other words, use the normalize weights

β̂
(d)
k :=


2−d

∑k
j=0

(
d
k

)
0 ≤ k ≤ d

1 d ≤ k ≤ n− d

β̂n−k n− d ≤ k ≤ n

(14)

which are equal to 1 except for the first and last d weights. Hence the formula for the denominator
is the same except for a modification to the first and last d terms.
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Proposition 5. Suppose that n ≥ 2d. Then

bk(x) =
β̂
(d)
k sinc(n(x− xk))

Ad(x) +
[
1 + 1

2π{sin(nπx)G(nx+ 1) + sin(nπ(1− x))G(n(1− x) + 1)}
]

+Bd(x)

where

Ad(x) :=
d−1∑
j=0

(β̂
(d)
j − 1) sinc(n(x− xj)),

Bd(x) :=

n∑
j=n−d+1

(β̂
(d)
j − 1) sinc(n(x− xj)).

Proof. The proof is elementary bookkeeping and we suppress the details.

3 Quadrature Based on FHn

The interpolation formula FHn leads naturally to an interpolatory quadrature formula of the type∫ 1

0
f(x)dx ≈

∑
k=0

wkf(xk)

where the weights wk are given by

wk :=

∫ 1

0
bk(x)dx. (15)

The study of these quadrature formulas is still at a preliminary stage. Indeed, the recent paper
[9] studies the approximation order of the quadrature formula and gives a numerical study of the
weights for d > 0.

In particular, for stability reasons it is interesting to know if the weights wk are positive or
not. We can use the compact formula given in Proposition 5 to show that, at least for d = 0, the
weights are (essentially) asymptotic to 1/n.

In the d = 0 case we have bk given by (12), which we may write in the form

bk(x) =
sinc(n(x− xk))

Dn(x)

where

Dn(x) := 1 +
1

2π
{sin(nπx)G(nx+ 1) + sin(nπ(1− x))G(n(1− x) + 1)}.

Proposition 6. Suppose that d = 0 and r is such that that k/n→ r ∈ (0, 1), with both k, n→∞.
Then

lim
k/n→r

nwk = lim
n→∞

n

∫ 1

0
sinc(n(x− xk))dx = 1.

12



Proof. We calculate

n

∫ 1

0
sinc(n(x− xk))− bk(x) dx

= n

∫ 1

0
sinc(n(x− xk))

{
1− 1

Dn(x)

}
dx

=
n

2π

∫ 1

0
sinc(n(x− xk))

sin(nπx)G(nx+ 1) + sin(nπ(1− x))G(n(1− x) + 1)

Dn(x)
dx

=
n

2π

{∫ 1

0

sinc(n(x− xk)) sin(nπx)G(nx+ 1)

Dn(x)
dx+

∫ 1

0

sinc(n(x− xk)) sin(nπ(1− x))G(n(1− x) + 1)

Dn(x)
dx

}
.

(16)

Consider first,

n

∫ 1

0

sinc(n(x− xk)) sin(nπx)G(nx+ 1)

Dn(x)
dx.

Letting x = t/n, we obtain∫ n

0

sinc(t− k) sin(πt)G(t+ 1)

Dn(t/n)
dt

=

(∫ k−1

0
+

∫ k+1

k−1
+

∫ n

k+1

)
sinc(t− k) sin(πt)G(t+ 1)

Dn(t/n)
dt

= A+B + C, say.

Using the fact that Dn(x) ≥ 1− ln(4)/π (see (13)) we may bound |A| by

|A| =
∣∣∣∣∫ k−1

0

sinc(t− k) sin(πt)G(t+ 1)

Dn(t/n)
dt

∣∣∣∣
≤ 1

1− log(4)/π

∫ k−1

0
|sinc(t− k)| · | sin(πt)| ·G(t+ 1)dt

≤ 1

1− log(4)/π

∫ k−1

0
|sinc(t− k)| ·G(t+ 1)dt.

Now, by (44:13:3),

G(x) = 2

∫ ∞
0

e−xt

1 + e−t
dt ≤

∫ ∞
0

e−xtdt =
2

x
.

Further,

|sinc(x)| ≤ 1

π|x|
.

Hence,

|A| ≤ 2

π − log(4)

∫ k−1

0

1

(k − t)(t+ 1)
dt

=
2

π − log(4)

1

k + 1
log

(
t+ 1

k − t

)∣∣∣∣t=k−1
t=0

=
4

π − log(2)

log(k)

k + 1
. (17)
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Similarly, using the fact that |sinc(x)| ≤ 1, we have for |B|

|B| =
∣∣∣∣∫ k+1

k−1

sinc(t− k) sin(πt)G(t+ 1)

Dn(t/n)
dt

∣∣∣∣
≤ 1

1− log(4)/π

∫ k+1

k−1
G(t+ 1)dt

≤ 1

1− log(4)/π

∫ k+1

k−1

2

t+ 1
dt

=
2π

π − log(4)
log

(
k + 2

k

)
. (18)

Finally, for |C| we have

|C| =
∣∣∣∣∫ n

k+1

sinc(t− k) sin(πt)G(t+ 1)

Dn(t/n)
dt

∣∣∣∣
≤ 1

1− log(4)/π

∫ n

k+1
|sinc(t− k)| · | sin(πt)| ·G(t+ 1)dt

≤ 2

π − log(4)

∫ n

k+1

1

(t− k)(t+ 1)
dt

≤ 2

π − log(4)

∫ ∞
k+1

1

(t− k)(t+ 1)
dt

=
2

π − log(4)

1

k + 1
log

(
t− k
t+ 1

)∣∣∣∣t=∞
t=k+1

=
2

π − log(4)

log(k + 1)

k + 1
. (19)

Next consider (2π times) the second integral of the right side of (16), i.e.,

n

∫ 1

0

sinc(n(x− xk)) sin(nπ(1− x))G(n(1− x) + 1)

Dn(x)
dx.

Let x = 1− x′ to get

n

∫ 1

0

sinc(n(1− x− xk)) sin(nπx)G(nx+ 1)

Dn(1− x)
dx

=

∫ 1

0

sinc(n(x− (1− xk))) sin(nπx)G(nx+ 1)

Dn(x)
dx (as Dn(1− x) = Dn(x))

=

∫ 1

0

sinc(n(x− xn−k)) sin(nπx)G(nx+ 1)

Dn(x)
dx (as Dn(1− x) = Dn(x))

=

∫ 1

0

sinc(n(x− xk′)) sin(nπx)G(nx+ 1)

Dn(x)
dx (as Dn(1− x) = Dn(x))

with k′ := n − k. This is the same as the first integral, but with k replaced by k′ = n − k. (Note
that as k/n → r ∈ (0, 1), (n − k)/k → 1 − r ∈ (0, 1). In particular k′ → ∞ as well.) Hence the
bounds developed for the first integral also hold for the second. It follows from (16), (17), (18)

14



and (19) that∣∣∣∣n ∫ 1

0
sinc(n(x− xk))− bk(x) dx

∣∣∣∣ ≤ 1

2π

4

π − log(2)

{
log(k)

k + 1
+

log(k′)

k′ + 1

}
+

1

2π

2π

π − log(4)

{
log

(
k + 2

k

)
+ log

(
k′ + 2

k′

)}
+

1

2π

2

π − log(4)

{
log(k + 1)

k + 1
+

log(k′ + 1)

k′ + 1

}
which tends to 0 as k, n→∞ with k/n→ r ∈ (0, 1).

We are almost finished. Note now that

n

∫ 1

0
sinc(n(x− xk)) dx =

∫ n

0
sinc(x− k) dx (letting x′ = nx)

=

∫ n−k

−k
sinc(x) dx (letting x′ = x− k)

→
∫ ∞
−∞

sinc(x) dx (since k, n, n− k →∞)

= 1

as is well known.
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