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Abstract

In [2] we proved the stability, in L2 and L∞ norms, of kernel–based interpola-
tion, essentially based on standard error estimates for radial basis functions.
In this note we give a different proof based on a sampling inequality (cf.
[14, Th. 2.6]). A few numerical examples, supporting the results, will be
presented too.
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1 Introduction

Let sf,X denote the recovery of a real–valued function f : Ω → R on some
compact domain Ω ⊆ R

d from its function values f(xj) on a scattered set
X = {x1, ..., xN} ⊂ Ω ⊆ R

d. Independently on how the reconstruction is
done we may assume that sf,X is a linear function of the data

sf,X =

N
∑

j=1

f(xj)uj (1)

with certain continuous functions uj : Ω → R. To assert the stability of
the recovery process f 7→ sf,X , we look for bounds of the form

‖sf,X‖L∞(Ω) ≤ C(X)‖f‖ℓ∞(X) (2)

which imply that the map, taking the data into the interpolant, is continuous
in the L∞(Ω) and ℓ∞(X) norms. Of course, one can also use L2(Ω) and
ℓ2(X) norms above.

An upper (naive) bound for the stability constant C(X) is supplied by
putting (1) into (2):

C(X) ≥

∥

∥

∥

∥

∥

∥

N
∑

j=1

|uj(x)|

∥

∥

∥

∥

∥

∥

L∞(Ω)

=: ΛX .

This involves the Lebesgue function

λX(x) :=

N
∑

j=1

|uj(x)| .

whose maximum value ΛX := maxx∈Ω λX(x) is called the associated Lebesgue

constant.

It is a classical problem to derive upper bounds for the stability constant in
(2) and for its upper bound, the Lebesgue constant ΛX .

However, stability bounds for multivariate kernel–based recovery processes
are missing. We shall derive them as follows. Given a positive definite kernel
Φ : Ω × Ω → R, the recovery of functions from function values f(xj) on the
set X = {x1, ..., xN} ⊂ Ω ⊆ R

d of N different data sites can be done via
interpolants of the form

sf,X :=

N
∑

j=1

αjΦ(·, xj) (3)
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from the finite-dimensional space VX := span {Φ(·, x) : x ∈ X} of translates
of the kernel, and satisfying the linear system

f(xk) =

N
∑

j=1

αjΦ(xk, xj), 1 ≤ k ≤ N

based on the kernel matrix AΦ,X := Φ(xk, xj), 1 ≤ j, k ≤ N . The case
of conditionally positive definite kernels is similar, and we suppress details
here.

The interpolant of (3), as in classical polynomial interpolation, can also be
written in terms of cardinal functions uj ∈ VX such that uj(xk) = δj,k.
Then, the interpolant (3) takes the usual Lagrangian form (1).

The reproduction quality of kernel–based methods is governed by the fill

distance or mesh norm

hX,Ω = sup
x∈Ω

min
xj∈X

‖x − xj‖2 (4)

describing the geometric relation of X to the domain Ω. In particular, the
reproduction error is small if hX,Ω is small. But unfortunately the kernel
matrix AΦ,X is badly conditioned if the data locations has small separation

distance

qX =
1

2
min

xi, xj ∈ X

xi 6= xj

‖xi − xj‖ . (5)

Then the coefficients of the representation (3) get very large even if the data
values f(xk) are small, and simple linear solvers will fail. However, users
often report that the final function sf,X of (3) behaves nicely in spite of the
large coefficients, and using stable solvers lead to useful results even in case
of unreasonably large condition numbers. This means that the interpolant
can be stably calculated in the sense of (2), while the coefficients in the basis
supplied by the Φ(x, xj) are unstable. This calls for the construction of new
and more stable bases as shown in [9].

The fill distance (4) and the separation distance (5) are used for standard
error and stability estimates for multivariate interpolants. For instace, in
[2] we used them to derive the very first proofd of the results of the present
paper.

2 The main results

Later, we shall consider arbitrary sets with different cardinalities, but with
uniformity constants bounded above by a fixed number. Note that hX,Ω and
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qX play an important role in finding good points for radial basis function
interpolation, as recently studied in [7, 1, 3].

To generate interpolants, we allow conditionally positive definite translation-
invariant kernels

Φ(x, y) = K(x − y) for all x, y ∈ R
d, K : R

d → R

which are reproducing in their “native” Hilbert space N which we assume
to be norm–equivalent to some Sobolev space W τ

2 (Ω) with τ > d/2. The
kernel will then have a Fourier transform satisfying

0 < c(1 + ‖ω‖2
2)

−τ ≤ K̂(ω) ≤ C(1 + ‖ω‖2
2)

−τ (6)

at infinity. This includes Poisson radial functions [5, 6], Sobolev/Matern
kernels, and Wendland’s compactly supported kernels (cf. e.g. [12]). It is
well-known that under the above assumptions the interpolation problem is
uniquely solvable, and the space VX is a subspace of Sobolev space W τ

2 (Ω).

In the following, the constants are dependent on the space dimension, the
domain, and the kernel, and the assertions hold for all sets X of scattered
data locations with sufficiently small fill distance hX,Ω.

Our central result is

Theorem 1 The classical Lebesgue constant for interpolation with Φ on

N = |X| data locations X = {x1, . . . , xN} in a bounded domain Ω ⊆ R
d

satisfying an outer cone condition has a bound of the form

ΛX ≤ C
√

N

(

hX,Ω

qX

)τ−d/2

.

For quasi-uniform sets with bounded uniformity γ, this simplifies to

ΛX ≤ C
√

N.

Each single cardinal function is bounded by

‖uj‖L∞(Ω) ≤ C

(

hX,Ω

qX

)τ−d/2

,

which in the quasi-uniform case simplifies to

‖uj‖L∞(Ω) ≤ C.

There also is an L2 analog of this:
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Theorem 2 Under the above assumptions, the cardinal functions have a

bound

‖uj‖L2(Ω) ≤ C

(

hX,Ω

qX

)τ−d/2

h
d/2
X,Ω

and for quasi-uniform data locations they behave like

‖uj‖L2(Ω) ≤ Ch
d/2
X,Ω.

But the Lebesgue constants are only upper bounds for the stability constant
in function space. In fact, we can do better:

Theorem 3 Interpolation on sufficiently many quasi–uniformly distributed

data is stable in the sense of

‖sf,X‖L∞(Ω) ≤ C
(

‖f‖ℓ∞(X) + ‖f‖ℓ2(X)

)

and

‖sf,X‖L2(Ω) ≤ Chd/2‖f‖ℓ2(X)

with a constant C independent of X.

Note that the right-hand side of the final inequality is a properly scaled
discrete version of the L2 norm.

We shall prove these results in the next section. However, it turns out there
that the assumption (6) is crucial, and we were not able to extend the results
to kernels with infinite smoothness. The final chapter will provide exam-
ples showing that similar results are not possible for kernels with infinite
smoothness.

2.1 Proofs

Our most important tool for the proof of Theorem 1 is a sampling inequality

(cf. [14, Th. 2.6]). For any a bounded Lipschitz domain Ω with an inner
cone condition, and for Sobolev space W τ

2 (Ω) ⊂ R
d with τ > d/2 there are

positive constants C and h0 such that

‖u‖L∞(Ω) ≤ C
(

h
τ−d/2
X,Ω ‖u‖W τ

2
(Ω) + ‖u‖ℓ∞(X)

)

(7)

holds for all u ∈ W τ
2 (Ω) and all finite subsets X ⊂ Ω with hX,Ω ≤ h0. This

is independent of kernels.
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We can apply the sampling inequality in two ways:

‖sf,X‖L∞(Ω) ≤ C
(

h
τ−d/2
X,Ω ‖sf,X‖W τ

2
(Ω) + ‖sf,X‖ℓ∞(X)

)

≤ C
(

h
τ−d/2
X,Ω ‖sf,X‖W τ

2
(Ω) + ‖f‖ℓ∞(X)

)

,

≤ C
(

h
τ−d/2
X,Ω ‖sf,X‖N + ‖f‖ℓ∞(X)

)

,

‖uj‖L∞(Ω) ≤ C
(

h
τ−d/2
X,Ω ‖uj‖W τ

2
(Ω) + ‖uj‖ℓ∞(X)

)

≤ C
(

h
τ−d/2
X,Ω ‖uj‖W τ

2
(Ω) + 1

)

≤ C
(

h
τ−d/2
X,Ω ‖uj‖N + 1

)

since we know that the space VX is contained in W τ
2 (Ω). To get a bound on

the norm in native space, we need bounds of the form

‖s‖N ≤ C(X,Ω,Φ)‖s‖ℓ∞(X)

for arbitrary elements s ∈ VX . Such bounds are available from [12], but we
repeat the basic notation here. Let Φ satisfy (6). Then [12] has

‖s‖2
W τ

2
(Ω) ≤ Cq−2τ+d

X ‖s‖2
ℓ2(X) ≤ CNq−2τ+d

X ‖s‖2
ℓ∞(X) for all s ∈ VX

with a different generic constant. If we apply this to uj , we get

‖uj‖L∞(Ω) ≤ C

(

(

hX,Ω

qX

)τ−d/2

+ 1

)

,

while application to sf,X yields

‖sf,X‖L∞(Ω) ≤ C

(

(

hX,Ω

qX

)τ−d/2
‖f‖ℓ2(X) + ‖f‖ℓ∞(X)

)

≤ C

(√
N
(

hX,Ω

qX

)τ−d/2
+ 1

)

‖f‖ℓ∞(X).

Then the assertions of Theorem 1 and the first part of Theorem 3 follow.�

For the L2 case covered by Theorem 2, we take the sampling inequality

‖f‖L2(Ω) ≤ C
(

hτ
X,Ω‖f‖W τ

2
(Ω) + ‖f‖ℓ2(X)h

d/2
X,Ω

)

, for all f ∈ W τ
2 (Ω) (8)

of [8, Thm. 3.5]. We can apply the sampling inequality as

‖sf,X‖L2(Ω) ≤ C
(

hτ
X,Ω‖sf,X‖W τ

2
(Ω) + ‖sf,X‖ℓ2(X)h

d/2
X,Ω

)

≤ C
(

hτ
X,Ω‖sf,X‖W τ

2
(Ω) + ‖f‖ℓ2(X)h

d/2
X,Ω

)

,

≤ C
(

hX,Ω

qX

)τ−d/2
‖f‖ℓ2(X)h

d/2
X,Ω,

‖uj‖L2(Ω) ≤ C
(

hτ
X,Ω‖uj‖W τ

2
(Ω) + ‖uj‖ℓ2(X)h

d/2
X,Ω

)

≤ C
(

h
τ−d/2
X,Ω ‖uj‖W τ

2
(Ω) + 1

)

h
d/2
X,Ω

≤ C

(

(

hX,Ω

qX

)τ−d/2
+ 1

)

h
d/2
X,Ω.
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Figure 1: Lebesgue constants for the Sobolev/Matern kernel

This proves Theorem 2 and the second part of Theorem 3. �

3 Examples

We present two series of examples on uniform grids on [−1, 1]2 and increasing
numbers N of data locations.

Figure 1 shows the values ΛX of the Lebesgue constants for the Sobolev/Matern
kernel (r/c)νKν(r/c) for ν = 1.5 at scale c = 20. In this and other exam-
ples for kernels with finite smoothness, one can see that our bounds on
the Lebesgue constants are valid, but the experimental Lebesgue constants
seem to be uniformly bounded. In all cases, the maximum of the Lebesgue
function is attained in the interior of the domain.

Things are different for infinitely smooth kernels. Figure 2 shows the
behavior for the Gaussian. The maximum of the Lebesgue function is at-
tained near the corners for large scales, while the behavior in the interior is
as stable as for kernels with limited smoothness. The Lebesgue constants
do not seem to be uniformly bounded.

A second series of examples was run on 225 regular points in [−1, 1]2 for
different kernels at different scales using a parameter c as Φc(x) = Φ(x/c).
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Figure 2: Lebesgue constants for the Gauss kernel

Figures 3 to 5 show how the scaling of the Gaussian kernel influences
the shape of the associated Lagrange basis functions. The limit for large
scales is called the flat limit [4] which is a Lagrange basis function of the de
Boor/Ron polynomial interpolation [11]. It cannot be expected that such
Lagrange basis functions are uniformly bounded.

In contrast to this, Figure 6 shows the corresponding Lagrange basis function
for the Sobolev/Matern kernel at scale 320. The scales were such that the
conditions of the kernel matrices were unfeasible for the double scale. Figure
7 shows the Lebesgue function in the situation of Figure 5, while Figure 8
shows the Sobolev/Matern case in the situation of Figure 6.
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Figure 3: Lagrange basis function on 225 data points, Gaussian kernel with
scale 0.1
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Figure 4: Lagrange basis function on 225 data points, Gaussian kernel with
scale 0.2
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Figure 5: Lagrange basis function on 225 data points, Gaussian kernel with
scale 0.4
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Figure 6: Lagrange basis function on 225 data points, Sobolev/Matern ker-
nel with scale 320

Figure 7: Lebesgue function on 225 regular data points, Gaussian kernel
with scale 0.4
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Figure 8: Lebesgue function on 225 regular data points, Sobolev/Matern
kernel with scale 320
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