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I. INTRODUCTION

The Magnetic Particle Imaging (MPI) is an
emerging medical imaging technology which
attracted the interest of different research groups
in the last years [14]. The technique of the MPI is
based on the detection of a tracer which consists
of superparamagnetic iron oxide nanoparticles
through the superimposition of different magnetic
fields.
When the particles are excited by oscillating
magnetic fields, an electromagnetic induction
phenomenon is induced and measured. The
acquisition of the signal which comes from
the particles is performed moving a field-free
point along suitable sampling trajectories, using
appropriate magnetic gradient fields.
A possible choice is to move along Lissajous
curves [13], but the problem of selecting the set
of sampling points to take along the curve is not
trivial. The first time in which the Lissajous curves
have been considered in polynomial approximation
was in the debut of the Padua points (see [4],
[5], [7]). Due to their excellent properties, efforts
have been made in order to understand more about
the sets of points which can be generated from
Lissajous curves.
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In this view, Lissajous node points, which are
provided with optimal properties similarly to the
Padua points, were introduced and studied [1], [10],
[11]. In [2], [3] three-dimensional Lissajous curves
have been studied. Using conjectured optimal
parameters for these curves, a hyperinterpolation
polynomial approximation has been performed,
which consists in considering a discretized
expansion of a function in series of chosen
orthogonal polynomial up to a fixed total-degree.
The polynomial interpolant of the two-dimensional
case and the hyperinterpolant of the three-
dimensional one are expressed as a Chebyshev
series, which is a particular case of Fourier series.
In applications, we typically deal with objects
represented by underlying discontinuous functions.
It is well-known that the presence of leap points
of discontinuity in the function carries the arise of
the Gibbs phenomenon.
The Gibbs phenomenon causes distortions in the
image reconstruction, providing oscillations near
the leap points of the function which affect the
whole image as well. This phenomenon has already
been treated in literature, for example in [6], [17].
We faced the problem in [9] first using Fourier
spectral filters [12] and then introducing the
adaptive spectral filtering process, showing its
efficiency in some MPI applications.



Here we discuss the reconstruction algorithm pre-
sented in [9], describing a possible implementation
in Matlab using a modified version of the Chebfun
5.3.0 package [21], as we will describe.
Given a discontinuous and piecewise regular func-
tion, the reconstruction algorithm consists of the
followings steps.
• Obtain a first reconstruction by interpolating

the function on the Lissajous nodes.
• Apply the first spectral filtering process.
• Use an edge-detector on the filtered reconstruc-

tion in order to find the edges and the distances
required for the adaptivity.

• Apply the final adaptive filtering procedure on
the first reconstruction.

In the next sections we present the procedure
in the two-dimensional case, showing the three-
dimensional in the last section.

II. LISSAJOUS APPROXIMATION

Let Q2 = [−1, 1]2, n = (n1, n2) ∈ N2 a
vector of relatively prime integers and ε ∈ {1, 2},
we consider the two-dimensional Lissajous curve
γnε : [0, 2π]→ Q2 defined as

γnε (t) := (cos(n2t), cos(n1t− (ε− 1)π/(2n2))) .

The curve γnε is called degenerate if ε = 1, and
non-degenerate if ε = 2.
The set of Lissajous node points associated to the
curve γnε is given by

LSn
ε :=

{
γnε ( πk

εn1n2
) : k = 0, ..., 2εn1n2 − 1

}
.

We further introduce the following index set asso-
ciated to the Lissajous nodes

Γεn :=

{
(i, j) ∈ N2

0 :
i

εn1
+

j

εn2
< 1

}
∪{(0, εn2)}.
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As described in [11], defining the polynomial
space Πεn := span{Ti(x)Tj(y) : (i, j) ∈ Γεn},
where Ti is the i-th Chebyshev polynomial of the
first kind, we express the unique polynomial inter-
polant of a given function f on LSn

ε in Πεn as

Lnf(x, y) =
∑

(i,j)∈Γεn

cijTi(x)Tj(y) . (1)

This formula is equivalent to a truncated Fourier-
Chebyshev series of the function f . In order to per-
form the spectral filtering process to the interpolant
we need to extract the coefficients cij .
In Matlab, we can efficiently perform this pro-
cess by using the functions chebfun2.m and
chebcoeffs2.m of the Chebfun 5.3.0 package
[21]. Actually, we slightly modified the function
chebfun2.m since it already works also for the
Padua points, that are Lissajous nodes of the de-
generate curve with n = (n, n+ 1).
More precisely, given the parameters n, ε using the
function lissapts.m we get the coordinates of
the Lissajous nodes LSn

ε and the related cubature
weights necessary for computing the coefficients cij
in the formula (1) (for more details see [4], [11]).
The function chebfun2.m gives the interpolant
Lnf of the function f and through the function
chebcoeffs2.m we extract the matrix C = (cij)
of the coefficients of the interpolant Lnf .
In Matlab this is equivalent to run the following
lines:
x=lissapts(n,e);
fx=f(x(:,1),x(:,2));
ff=chebfun2(fx,Q_2,’lissa’,pars);
C=chebcoeffs2(ff);

where Q_2 = [−1, 1]2, f is the function to be
reconstructed, n = [n1, n2], e is the ε parameter
of the curve and pars = [n, e].

III. FOURIER SPECTRAL FILTERS

As observed above, the interpolant (1) can be
seen as a Fourier series in the Chebyshev ba-
sis. Moreover, since f is a discontinuous function
the reconstruction is affected by the Gibbs phe-
nomenon. In the previous section we showed that
the coefficients of the series can be easily obtained
numerically by Chebfun, hence we can work on
them applying spectral filters aimed to reduce the



oscillations due to the Gibbs phenomenon.
A real and even function σ is called a spectral filter
of order p if:

1) σ(0) = 1 , σ(l)(0) = 0 for 1 ≤ l ≤ p− 1.
2) σ(η) = 0 for |η| ≥ 1.
3) σ(η) ∈ Cp−1, η ∈ (−∞,∞).

First consider the one-dimensional case. Given the
Fourier series

SNf(x) =

k=N∑
k=−N

ck(f)ek(x) ,

letting

σk := σ

(
k

N

)
, −N ≤ k ≤ N ,

the filtered Fourier series is then

SσNf(x) =

∞∑
k=−∞

σkck(f)ek(x) .

We can extend this procedure to the ν-dimensional
case through a tensor product extension, obtaining

SσNf(x) =
∑
k∈Zν

σkck(f)ek(x) , (2)

where

σk := σ

(
k1

N

)
· ... · σ

(
kν
N

)
.

For more details see [9] and for some examples of
filters see [12]. We stress that our applications are
for ν ≤ 3 and the number of coefficients is finite
and depends on Γεn.
Going back to Matlab and in the two-dimensional
setting, we rearrange the sum in (2) in a different
fashion. Precisely, chosen a filter function σ, the
filtering process consists of a pointwise vector-
matrix multiplication between the filter matrix

Σ = (sij) := σ

(
i− 1

N1

)
σ

(
j − 1

N2

)
(3)

where 1 ≤ i ≤ N1 + 1 , 1 ≤ j ≤ N2 + 1, and the
matrix C of the coefficients cij of the interpolant
(1). The parameters N1, N2 are properly chosen so
that Σ has the same dimension of C.
After that, the function chebfun2.m allows us to
recover the filtered approximating polynomial from

the new coefficients. Specifically:
C=chebcoeffs2(ff);
i=[0,..,N_1];
j=[0,..,N_2];
S=sigma(i/N_1)’*sigma(j/N_2);
C_f=C.*S;
ff_new=chebfun2(C_f,Q_2,’coeffs’);

IV. ADAPTIVE FILTERING

As shown in [15], Fourier spectral filters reduce
the distortions caused by the Gibbs phenomenon,
but they also provide a general smoothing in the
image, causing in particular a loss of focalisation
near the discontinuities.
A possible solution is to consider a filter function
gifted with more adaptivity. Slightly modifying the
filter vector in

σk = σ

(
|k|
N

)
, −N ≤ k ≤ N .

we consider then the following filter function

σp(x) =

exp

(
xp

x2 − 1

)
|x| < 1 ,

0 |x| ≥ 1 ,

observing that we are allowed to let p ∈ R, p >
0. This is a fundamental step for our discussion,
since the parameter p = p(x,N) is the key for the
adaptivity.
First, we can construct a two-dimensional adaptive
filter

σp
k = σp1k1σ

p2
k2
.

Then, let ξ = (ξ1, ξ2) be the nearest point of discon-
tinuity with respect to x = (x1, x2) in the euclidean
norm. For i = 1, 2, we call di(xi) = |xi − ξi|. We
state the following result (whose proof is in [9]).

Theorem 1. Let f : R2 → R be a piecewise
analytic function. Then, defining

p = (p1, p2) = ((Nη∗1d1(x1))1/2, (Nη∗2d2(x2))1/2) ,

where η∗1 , η
∗
2 are suitable parameters, we get the

asymptotic exponential decay of the error |f −
SσpN f | away from the points of discontinuity of f ,
where

SσNf =
∑
k∈Zν

σp
kck(f)ek(x)



This adaptive filtering process generates some
striped distortions in the reconstruction, as observed
in [15]. In order to solve this problem, we can
consider a different unique adaptive parameter p =
p1 = p2 which depends on the two-dimensional
euclidean distance d(x) from the nearest disconti-
nuity. We conjecture what follows.

Conjecture 2. Let Φ : [0,+∞) → [0,+∞) be a
function such that:
• Φ(0) = 0 ,
• Φ is a regular and increasing function in

[0,+∞) ,
• Φ has a saturation property, that is there exists
ε > 0 such that

Φ(x) ≥ x

for x ∈ [0, ε].
Hence there exists at least one function with the
previous properties, possibly dependent on the set-
ting of the experiments, such that using the adaptive
parameter

p = ηNΦ(d(x))

we can improve the final result of the process in
terms of resolution of Gibbs phenomenon and image
reconstruction.

A possible family of functions which have the
described properties and which we consider for our
experiments is

Φβ(x) = xβ ,

where 0 < β < 1. Therefore we can define and use
a new parameter

pβ = ηN(d(x))β .

The implementation of the adaptive filtering in
Matlab is mostly similar to the one presented in the
previous section. In addiction, we need first to know
the position of the discontinuities in order to obtain
the distances required for the adaptivity. Therefore,
after a first non-adaptive filtering we use an edge-
detector in the filtered image. In our applications
we used the Canny edge-detector [8] which is
implemented in Matlab as a default function, but
one could consider other solutions.

After that, we have to repeat the filtering process
described in the previous section for each possible
distance, since the key for adaptivity is that the
adaptive filter function changes with the point of
evaluation. Due to this fact, the adaptive filtering
process is computationally havier than the non-
adaptive one.
We wrote a code and did some experiments
and simulations with different functions, Lissajous
curves of increasing grades and with some simu-
lated data from a MPI scanner.

Figure 2: Original MPI phantoms

Figure 3: First reconstruction. SSIM= 0.665,
SSIM= 0.616.

Figure 4: Final reconstruction using the adaptive
filtering. SSIM= 0.701, SSIM= 0.649.

V. THE THREE-DIMENSIONAL CASE

Moving to the three-dimensional case, let a =
(a1, a2, a3) ∈ N3, we consider the Lissajous curve



in the cube Q3 defined as

γa(t) = (cos (a1t), cos (a2t), cos (a3t)) ,

where t ∈ [0, π].

Figure 5: t→ (cos(30t), cos(33t), cos(37t)).

As described in [2], [3], restricting to admissible
triples it is possible to approximate a function
f : [−1, 1]3 → R through a series of orthonormal
polynomials up to total-degree m,

Hmf(x) =
∑

0≤i+j+k≤m

cijkφ̂ijk(x) .

where φ̂ijk(x) = T̂i(x1)T̂j(x2)T̂k(x3) with T̂l the
normalized Chebyshev polynomial of first kind.
Hmf is known as hyperinterpolant of f .
We can express then Hmf(x) as a Fourier series
and extend the implementations of the filtering
processes of the two-dimensional case to this set-
ting. Due to computational constraints (hardware
limitations), we considered a rough discretization
in the code and we could not perform detailed ex-
periments in this setting. Nevertheless, we observed
that the process is still efficient and its validity is
guaranteed by some considerations on the tensor
product pattern (cf. [15], [20]).
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