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Abstract

It is often observed that interpolation based on translates of radial basis functions or
non-radial kernels is numerically unstable due to exceedingly large condition of the kernel
matrix. But if stability is assessed in function space without considering special bases, this
paper proves that kernel–based interpolation is stable. Provided that the data are not too
wildly scattered, the L2 or L∞ norms of interpolants can be bounded above by discrete `2
and `∞ norms of the data. Furthermore, Lagrange basis functions are uniformly bounded
and Lebesgue constants grow at most like the square root of the number of data points.
However, this analysis applies only to kernels of limited smoothness. Numerical examples
support our bounds, but also show that the case of infinitely smooth kernels must lead
to worse bounds in future work, while the observed Lebesgue constants for kernels with
limited smoothness even seem to be independent of the sample size and the fill distance.

1 Introduction

We consider the recovery of a real–valued function f : Ω → R on some compact domain
Ω ⊆ Rd from its function values f(xj) on a scattered set X = {x1, ..., xN} ⊂ Ω ⊆ Rd.
Independent of how the reconstruction is done in detail, we denote the result as sf,X and
assume that it is a linear function of the data, i.e. it takes the form

sf,X =
N∑

j=1

f(xj)uj (1)

with certain continuous functions uj : Ω → R. To assert the stability of the recovery process
f 7→ sf,X , we look for bounds of the form

‖sf,X‖L∞(Ω) ≤ C(X)‖f‖`∞(X) (2)

which imply that the map taking the data into the interpolant is continuous in the L∞(Ω) and
`∞(X) norm. Of course, one can also use L2(Ω) and `2(X) norms above.
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By putting (1) into (2), we see that we can bound the stability constant C(X) below as follows

C(X) ≥ max
x∈Ω

N∑
j=1

|uj(x)| =: ΛX (3)

where ΛX is the Lebesgue constant which is the maximum of the Lebesgue function λX(x) :=∑N
j=1 |uj(x)| .

It is a classical problem to derive upper bounds for the stability constant in (2) and for its lower
bound, the Lebesgue constant ΛX . As well–known in recovery by polynomials, in both the uni-
variate and the bivariate case, there exist upper bounds for the Lebesgue function. Moreover,
many authors faced the problem of finding near-optimal points for polynomial interpolation.
All these near–optimal sets of N points have a Lebesgue function that behaves in the one
dimensional case like log(N) while as log2(N) in the two dimensional one (cf. [2] and refer-
ences therein). An important example, worth mentioning, of points suitable for polynomial
interpolation in the square whose Lebesgue constant grows as O(log2(N)) are the so-called
Padua-points (see [1]).

However, stability bounds for multivariate kernel–based recovery processes are missing. We
shall derive them as follows. Given a positive definite kernel Φ : Ω × Ω → R, the recovery of
functions from function values f(xj) on the set X = {x1, ..., xN} ⊂ Ω ⊆ Rd of N different data
sites can be done via interpolants of the form

sf,X :=
N∑

j=1

αjΦ(·, xj) (4)

taken from the finite-dimensional space VX := span {Φ(·, x) : x ∈ X} of translates of the
kernel, and satisfying the linear system

AΦ,Xα = f (5)

where AΦ,X := (Φ(xk, xj))1≤j,k≤N is the kernel matrix and f the vector of length N of data
and α the vector of the unknown coefficients. The case of conditionally positive definite kernels
is similar, and we suppress details here.

The interpolant of (4), as in classical polynomial interpolation, can also be written in terms of
cardinal functions uj ∈ VX such that uj(xk) = δj,k. Then, the interpolant (4) takes the usual
Lagrangian form (1).

The reproduction quality of kernel–based methods is governed by the fill distance or mesh
norm

hX,Ω = sup
x∈Ω

min
xj∈X

‖x− xj‖2 (6)

describing the geometric relation of the set X to the domain Ω. In particular, the reproduction
error is small if hX,Ω is small.
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Unfortunately the kernel matrix AΦ,X is ill–conditioned if the data locations come close, i.e.
if the separation distance

qX =
1
2

min
xi, xj ∈ X

xi 6= xj

‖xi − xj‖ . (7)

is small. Then the coefficients of the representation (4) get very large even if the data values
f(xk) are small, and simple linear solvers will fail.

As a final introductory element, we recall that the fill distance (6) and the separation distance
(7) are two fundamental ingredients for standard error and stability estimates for multivariate
interpolants, and they will be also of importance here. The inequality qX ≤ hX,Ω will hold
in most cases, but if points of X nearly coalesce, qX can be much smaller than hX,Ω, caus-
ing instability of the standard solution process. Point sets X are called quasi–uniform with
uniformity constant γ > 1, if the inequality

1
γ

qX ≤ hX,Ω ≤ γqX

holds. Later, we shall consider arbitrary sets with different cardinalities, but with uniformity
constants bounded above by a fixed number. Note that hX,Ω and qX play an important role
in finding good points for radial basis function interpolation, as recently studied in [9, 3, 5].

2 Main results

To generate interpolants, we allow conditionally positive definite translation-invariant kernels

Φ(x, y) = K(x− y) for all x, y ∈ Rd, K : Rd → R

which are reproducing in their “native” Hilbert space N which we assume to be norm–
equivalent to some Sobolev space W τ

2 (Ω) with τ > d/2. The kernel will then have a Fourier
transform satisfying

0 < c(1 + ‖ω‖2
2)
−τ ≤ K̂(ω) ≤ C(1 + ‖ω‖2

2)
−τ (8)

at infinity. This includes, for example, Poisson radial functions (cf. [8, 7]), Sobolev/Matérn
kernels and Wendland’s compactly supported kernels (cf. e.g. [12]). It is well-known that
under the above assumptions the interpolation problem is uniquely solvable, and the space VX

is a subspace of Sobolev space W τ
2 (Ω).

In what follows, we assume that the constants are dependent on the space dimension, the
domain, and the kernel, and the assertions hold for all sets X of scattered data locations with
sufficiently small fill distance hX,Ω.

Our main result is the following theorem.
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Theorem 1 The classical Lebesgue constant for interpolation with Φ on N = |X| data loca-
tions X = {x1, . . . , xN} in a bounded domain Ω ⊆ Rd satisfying an inner cone condition has a
bound of the form

ΛX ≤ C
√

N

(
hX,Ω

qX

)τ−d/2

.

For quasi-uniform sets with bounded uniformity γ, this simplifies to

ΛX ≤ C
√

N.

Each single cardinal function is bounded by

‖uj‖L∞(Ω) ≤ C

(
hX,Ω

qX

)τ−d/2

, (9)

which, in the quasi-uniform case, simplifies to

‖uj‖L∞(Ω) ≤ C. (10)

For the L2 norm,

‖uj‖L2(Ω) ≤ C

(
hX,Ω

qX

)τ−d/2

h
d/2
X,Ω (11)

while for quasi-uniform data locations they behave like

‖uj‖L2(Ω) ≤ Ch
d/2
X,Ω. (12)

Proof. Let us start by bounding the uj . Letting Ψ ∈ C∞, having support in the unit ball and
such that Ψ(0) = 1, ‖Ψ‖L∞(Ω) = 1 (i.e. a ”bump” function). We notice that

|uj(x)| ≤
∣∣∣∣Ψ(x− xj

qX

)∣∣∣∣+ ∣∣∣∣uj(x)−Ψ
(

x− xj

qX

)∣∣∣∣ .

Since the interpolant IXΨ
(
· −xj

qX

)
to Ψ

(
x−xj

qX

)
on X is uj , by using standard error estimates

(cf. [13, Corol. 11.33]), we get

‖uj‖L∞(Ω) ≤ 1 +
∥∥∥∥IXΨ

(
· − xj

qX

)
−Ψ

(
· − xj

qX

)∥∥∥∥
L∞(Ω)

≤ 1 + C h
τ−d/2
X,Ω

∥∥∥∥Ψ( ·
qX

)∥∥∥∥
N

. (13)

For the L2 norm, we obtain the inequality

‖uj‖L2(Ω) ≤ q
d/2
X ‖Ψ‖L2(Ω) + Chτ

X,Ω

∥∥∥∥Ψ( ·
qX

)∥∥∥∥
N

. (14)

Hence, we simply need to estimate the native space norm of Ψ( ·
qX

).∥∥∥∥Ψ( ·
qX

)∥∥∥∥2

N
≤ C

∫ ∣∣∣qd
XΨ̂(qXω)

∣∣∣2 (1 + |ω|2)τdω

≤ Cqd
X

∫ ∣∣∣Ψ̂(t)
∣∣∣2(1 +

∣∣∣∣ t

qX

∣∣∣∣2
)τ

dt

≤ Cq
d−τ/2
X

∫ ∣∣∣Ψ̂(t)
∣∣∣2 (1 + |t|2)τ dt ≤ C1 q

d−τ/2
X ‖Ψ‖2

L2
.
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Thus, the estimates (9)–(12) easily follow.

Finally we give the claimed bound for the Lebesgue constant. Let

pf,X(x) =
N∑

j=1

f(xj)Ψ
(

x− xj

qX

)
be the interpolant of the function f to X written in terms of translates of the function Ψ.
Then

‖IXpf,X‖L∞(Ω) ≤ ‖pf,X‖L∞(Ω) + ‖IXpf,X − pf,X‖L∞(Ω) .

The first term is bounded by ‖f‖`∞(X), since pf,X is a sum of functions with nonoverlapping
supports. For the second term, since pf,X ∈ N we get

‖IXpf,X − pf,X‖L∞(Ω) ≤ Ch
τ−d/2
X,Ω ‖pf,X‖N .

Then, it remains to estimate ‖pf,X‖N . For τ ∈ N, we have

‖pf,X‖N ≤ C

∑
|α|≤τ

‖Dαpf,X‖2
L2

1/2

≤ C

∑
|α|≤τ

N∑
i=1

|f(xj)|2
∥∥∥∥DαΨ

(
x− xj

qX

)∥∥∥∥2

L2

1/2

≤ C

∑
|α|≤τ

N∑
i=1

|f(xj)|2qd−2τ
X ‖DαΨ‖2

L2

1/2

≤ Cqd−2τ
X ‖Ψ‖W τ

2

(
N∑

i=1

|f(xj)|2
)1/2

≤ Cqd−2τ
X ‖Ψ‖W τ

2

√
N‖f‖`∞(X) .

This concludes the proof. �

But the Lebesgue constants are only upper bounds for the stability constant in function
space. In fact, we can do better:

Corollary 2 Interpolation on sufficiently many quasi–uniformly distributed data is stable in
the sense of

‖sf,X‖L∞(Ω) ≤ C
(
‖f‖`∞(X) + ‖f‖`2(X)

)
(15)

and
‖sf,X‖L2(Ω) ≤ Ch

d/2
X,Ω‖f‖`2(X) (16)

with a constant C independent of X.

Proof. The results easily follow from Theorem 1.�
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Remarks

1. Note that, in the right-hand side of the inequality (16), the `2 norm is the norm weighted
by the cardinality of X, i.e. a properly scaled discrete version of the L2 norm.

2. The assumption (8) is crucial and, as we shall show below, we are not able to extend the
results to kernels with infinite smoothness, such as the Gaussian. The next section will
provide examples showing that similar results are not possible for kernels with infinite
smoothness.

3. All the previous results can be proved also by using a sampling inequality (cf. [14, Th.
2.6]), as shown in the note [4].

2.1 Examples

We ran a series of examples for uniform grids on [−1, 1]2 and increasing numbers N of data
locations. Interested readers may refer to the link

http://profs.sci.univr.it/∼demarchi/RBFStability/LebesgueRBF.zip

where a complete description of these examples is given as well as with illustrative pictures
and all the M-files used to produce them.
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