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Abstract

In recent years, various kernels have been proposed in the context of per-
sistent homology to deal with persistence diagrams in supervised learning ap-
proaches. In this paper, we consider the idea of variably scaled kernels, for ap-
proximating functions and data, and we interpret them in the framework of per-
sistent homology. We call them Variably Scaled Persistence Kernels (VSPKs).
These new kernels are then tested in different classification experiments. The
obtained results show that they can improve the performance and the efficiency
of existing standard kernels.
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1. Introduction

Let Ω ⊂ Rv and let X = {x1, . . . ,xn} ⊂ Ω be a set of input data, v, n ∈ N.
Assume that each element xi is uniquely associated to a label (or class) yi ∈ T ,
with T = {c1, . . . , ct}, so that we can define the dataset Z = {(xi, yi) | xi ∈
X , yi ∈ T }. The supervised learning task consists in finding a decision function
s : Ω −→ T such that:

(i) it models the input-output relation in Z;

(ii) it models the input-output relation of unseen labeled instances
{(ξi, yi)}i=1,...,m ⊂ (Ω \ X )× T , m ≥ 1.

The generalization capability required in (ii) is fundamental in the learning
problem, since it is trivial to find a decision function that satisfies (i); for an
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introduction concerning (statistical) learning theory, refer to e.g. [1, §1.3] and
[2].

Kernel methods are well-established tools in supervised machine learning,
as well as in a variety of research and applied fields [3, 4]. The flexibility pro-
vided by kernel-based schemes allows the handling of different kinds of possible
structured data, e.g, graphs and words, which are encoded in some dot product
space where even complex patterns may be distinguished [5, 6, 7, 8].

In the following, our data consist of persistence diagrams, which represent
an output of the so-called persistent homology, in the framework of Topological
Data Analysis (TDA). The usage of topological methods and analysis techniques
to extract significant features and patterns from data is receiving more and
more interest and, in particular, persistent homology captures the evolution
of topological features in the data; for a complete overview concerning TDA,
see e.g. [9, 10, 11]. In the last years, several kernels specifically devoted to
deal with the peculiar structure of persistence diagrams have been proposed
[12, 13, 14, 15], therefore the construction of suitable kernels is a very active
research line in this context.

Here, we introduce what we call the Variably Scaled Persistence Kernels
(VSPKs), which are inspired by the variably scaled kernels introduced in the
context of approximation theory in [16] and employed as a feature augmentation
strategy in [17, 18] for kernel-based learning. Indeed, our aim is to build a bridge
between classical variably scaled kernels and kernels defined in the context of
persistent homology. After defining VSPKs, we design some scaling functions
and we test the performance of the resulting kernels by experimenting with three
different datasets. The obtained results show that the variably scaled setting
may yields to better classification outcomes with respect to the standard setting,
and thus can be considered for further investigations and applications involving
persistence diagrams.

The paper is organized as follows. In Sections 2 and 3, we introduce kernel-
based learning with Support Vector Machines (SVMs) and we recall some no-
tions concerning persistent homology, also presenting some kernels of recent
introduction that are dedicated to persistent diagrams. VSPKs are proposed
and analysed in Section 4, and related numerical experiments are exposed in
Section 5. Finally, in Section 6 we present some conclusions and final remarks.

2. Positive definite and variably scaled kernels

Let κ : Ω×Ω −→ R be a kernel. Given a set of data X = {x1, . . . ,xn} ⊂ Ω,
the n× n matrix K with elements Kij := κ(xi,xj), i, j = 1, . . . , n, is the Gram
matrix of the kernel κ with respect to X . If κ is positive definite (strictly
positive definite) on Ω × Ω, i.e., K is positive semi-definite (definite) for all
possible datasets in Ω, then it is possible to decompose the kernel according to
Mercer theorem [19], and to interpret such decomposition as an inner product
in a Reproducing Kernel Hilbert Space (RKHS) F . Indeed, there exists a (non-
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unique) feature map Φ : Ω −→ F such that

κ(x,y) = 〈Φ(x),Φ(y)〉F x,y ∈ Ω,

being 〈·, ·〉F the bilinear form related to the RKHS (e.g. Φ(x) = κ(·,x)).
Moreover, the kernel κ induces a distance dκ on Ω

dκ(x,y) := κ(x,x) + κ(y,y)− 2κ(x,y). (1)

Variably Scaled Kernels (VSKs) have been introduced in [16] in the context
of kernel-based approximation, with the aim of overcoming instability issues.
Then, they have been extended to work in a more general setting in [17], as
presented in the following form. Let Λ ⊆ Rν , ν > 0 ∈ N and let κ : Ω̃× Ω̃ −→ R
be a continuous (strictly) positive definite kernel, where Ω̃ = Ω × Λ ⊆ Rv+ν .
Given a scaling function Ψ : Ω −→ Λ, a VSK κΨ : Ω× Ω −→ R is defined as

κΨ(x,y) = κ((x,Ψ(x)), (y,Ψ(y))) (2)

for x,y ∈ Ω. The function Ψ can be interpreted as a feature augmentation map,
which adds ν coordinates (features) to the original sample. In this view, the
VSK setting has been analysed in [17] as a stacking technique, which is capable
of enhancing the prediction performances of classical kernel-based classifiers
such as, e.g., SVMs.

Letting x = (x1, . . . , xd)
ᵀ ∈ Ω, we recall that a binary (i.e. T = {−1,+1})

SVMs classifier is characterised by the decision function

s(x) = sign(h(x)) = sign(〈Φ(x),w〉F + b),

where

w =

n∑
i=1

αiyiΦ(xi) ∈ F .

The coefficients α = (α1, . . . , αn) ∈ Rn are the solution of the following soft
margin problem [20, §18, p. 346–347]

minα∈Rn

1

2

∑n
i=1

∑n
j=1 αiαjyiyjκ(xi,xj)−

∑n
i=1 αi,

s.t.
∑n
i=1 αiyi = 0,

0 ≤ αi ≤ ζ, i = 1, . . . , n,

where [0, ζ]n is the bounding box, with ζ ∈ [0,+∞). Usually, a binary SVMs
classifier is extended to the multiclass setting by considering a one-vs-rest ap-
proach.

3. Persistent homology and kernels

3.1. Basics on persistent homology

In the following, we recall some basic ideas about some tools of persistent
homology. For a more detailed treatment, especially concerning the algebraic
aspects of the construction, we refer e.g. to [10, 21].
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Let our data X = {x1, . . . ,xn} ⊂ Ω be interpreted as a set of vertices
sampled from some manifold M , and suppose that we wish to highlight some of
its intrinsic homological properties. Letting ε > 0, a possible concrete way to
proceed consists of studying

MX ,ε =

n⋃
i=1

B(xi, ε)

as an approximation of M , where B(xi, ε) is the ball of radius ε and centre xi.
We point out that we can associate to MX ,ε a Vietoris-Rips simplicial complex
KX ,ε, where two distinct vertices xi,xj are connected by an edge if and only if
‖xi−xj‖2≤ ε. Formal linear combinations of r-dimensional faces in KX ,ε form
the r-chains group CX ,εr . Moreover, letting [xi0 , . . . ,xir ] be the face constructed
upon distinct vertices xi0 , . . . ,xir in X , i0, . . . , ir ∈ {1, . . . , n}, we define the

linear boundary operator ∂r : CX ,εr −→ CX ,εr−1 as

∂r[xi0 , . . . ,xir ] =

r∑
j=0

(−1)r[xi0 , . . . ,xij−1
,xij+1

, . . . ,xir ].

The r-cycles and r-boundaries groups are defined as ZX ,εr = ker∂r and BX ,εr =
im∂r+1, respectively. Furthermore, the rank of the r-homology group HX ,εr =
ZX ,εr /BX ,εr expresses the concept of r-dimensional holes in KX ,ε.

Finding an optimal ε? that represents the intrinsic geometric properties of
M is a tough and unstable process. Instead, one may analyse the whole filtration
{MX ,ε | ε > 0}. In particular, letting ε1 < · · · < εu be increasing real numbers,
the nested sequence KX ,ε1 ⊆ · · · ⊆ KX ,εu is obtained. Then, for r ≥ 0 and
i ∈ {1, . . . , u}, we consider the `-persistent homology group

HX ,εir,` = ZX ,εir /(ZX ,εir ∩BX ,εi+`
r ).

The group HX ,εir,` contains the homology classes that persist in the time interval

[i, i + `], i.e., they are born with KX ,εj for some j < i and they are alive with
KX ,εi+` . We point out that such homology classes might persist indefinitely
(we will denote this case as an ∞ level), or they might die with a certain εj ,
i < j ≤ u.

Therefore, each element of the persistent homology groups obtained by con-
sidering the whole filtration can be represented by a birth-death pair (b, d) ∈ R2

+,
b = εh, d = εk for some h ∈ {1, . . . ,m}, k ∈ {1, . . . ,m} ∪ {∞}, h < k. We say
that a birth-death pair is r-dimensional if it is related to r-dimensional homol-
ogy groups. Moreover, letting ε = (ε1, . . . , εu), we define a persistence diagram
Dr(X , ε) related to the filtration KX ,ε1 ⊆ · · · ⊆ KX ,εm as

Dr(X , ε) = {(b, d) | (b, d) ∈ Pr(X , ε)} ∪ B, r ≥ 0, (3)

where Pr(X , ε) denotes the set of r-dimensional birth-death pairs obtained with
the filtration and B = {(z, z) | z ≥ 0}. We remark that Dr(X , ε) is a multiset,
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since a couple (b, d) might appear more than once, i.e., might have multiplicity
greater than one. Furthermore, the bisector B is composed by an infinite number
of elements characterized by infinite multiplicity, and it is added in order to
achieve some uniformity among different persistence diagrams and facilitate the
formulation of proper metrics, as we present below. In Figure 1, we display the
steps and the properties of the discussed analysis by means of a two-dimensional
example. We observe that such analysis captures some intrinsic geometrical
properties of X . In particular, the unique most persistent 0-dimensional pair,
which is significantly far from the others, suggests that a unique connected
component underlies X . Moreover, the persistent 1-dimensional pair indicates
the presence of a 1-dimensional hole in the structure of the dataset, which is
highlighted by the simplicial complex depicted in the bottom left figure.

Figure 1: Given a random set of points X , the construction of the Vietoris-Rips complex along
the filtration is depicted on top and bottom left figures. The persistence diagrams D0(X , ε)
and D1(X , ε) are overlapped in the bottom right figure.

Persistence diagrams show some stability properties with respect to pertur-
bations of the involved dataset [22]. To better clarify this aspect, let us recall
some useful metrics. Let X ,Y ⊂ Ω be two non-empty datasets. The Hausdorff
distance is defined as

dH(X ,Y) = max

{
sup
x∈X

inf
y∈Y
‖x− y‖∞, sup

y∈Y
inf
x∈X
‖x− y‖∞

}
.
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Moreover, letting Dr(X , ε) and Dr(Y, ε) be persistence diagrams for some r ≥ 0
and filtration radii vector ε, we recall the p-Wasserstein distance

dW,p(Dr(X , ε), Dr(Y, ε)) =

(
inf
γ∈Γ

∑
x∈Dr(X ,ε)

‖x− γ(x)‖p∞
) 1

p

,

where Γ = {γ : Dr(X , ε) −→ Dr(Y, ε) | γ is a bijection}. In particular, letting
p→∞, we obtain the bottleneck distance

dW,∞(Dr(X , ε), Dr(Y, ε)) = dB(Dr(X , ε), Dr(Y, ε)) = inf
γ∈Γ

sup
x∈Dr(X ,ε)

‖x−γ(x)‖∞.

We have the stability result [13]

dB(Dr(X , ε), Dr(Y, ε)) ≤ dH(X ,Y),

i.e., the bottleneck distance between persistence diagrams is controlled as long
as the underlying datasets are close in the Hausdorff metric.

3.2. Kernels for persistence diagrams

In order to better measure similarities between persistence diagrams, various
positive definite kernels that are suitable for dealing with the peculiar structure
of persistence diagrams have been introduced and studied in the recent litera-
ture. In our applications, we will consider the following ones.

• The Persistence Scale Space (PSS) kernel [15]

κσ(D1, D2) =
1

8πσ

∑
y∈D1
z∈D2

exp

(
− ||y − z||

2

8σ

)
− exp

(
− ||y − z̄||

2

8σ

)
,

which is 1-Wasserstein stable, i.e.:

‖κσ(D1, D2)‖L2(Ω) ≤
1

2
√
πσ

dW,1(D1, D2)

• The Persistence Weighted Gaussian (PWG) kernel [13]

κG(D1, D2;κ, ω) := exp

(
− 1

2τ2
‖Eκ(µωD1

)− Eκ(µωD2
)‖2F

)
τ > 0,

which is built upon a standard kernel κ and a weight function ω, where

Eκ(µωD1
) :=

∑
x∈D1

ω(x)κ(·,x).
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It is both 1-Wasserstein and bottleneck stable, if we choose as weight
function

ωarc(x) = arctan(C(d− b)δ) x = (b, d), C > 0, δ ∈ Z>0.

Indeed, there exist δ ∈ Z>0 and L > 0 such that

‖Eκ(µωarc

D1
)− Eκ(µωarc

D2
)‖ ≤ LdB(D1, D2).

• The Sliced Wasserstein (SW) kernel [12]

κSW (D1, D2) := exp

(
−SW (D1, D2)

2σ2

)
.

which is based on the so called Sliced Wasserstein distance, which is equiv-
alent to the 1-Wasserstein distance, i.e.,

1

2M
dW,1(D1, D2) ≤ dSW (D1, D2) ≤ 2

√
2 dW,1(D1, D2)

for some positive constant M .

Remark 1. We observe that the PWG and SW kernels are in the form

κ(Dr(X , ε), Dr(Y, ε)) = exp (−βd(Dr(X , ε), Dr(Y, ε)))

for some β > 0, where d(·, ·) is the distance induced by the underlying metric
in the case of the SW (for more details, we refer to the cited seminal papers),
while for the PWG kernel the distance is induced by the kernel (see (1)).

4. Variably Scaled Persistence Kernels

In the following, our purpose is to interpret the idea underlying VSKs in the
context of persistent homology. The main difference between standard kernels
and kernels for persistence diagrams is the structure of the input data. Since
persistent diagrams consists of a collection of topological features, i.e. birth-
death couples in R2

+, introducing a scaling function whose output lies outside
R2

+ would be meaningless. Hence, letting Dr(ε) = {Dr(X , ε) | X ⊂ Ω}, we
propose the following definition.

Definition 1. Let κ : Dr(ε)×Dr(ε) −→ R be a kernel for persistence diagrams
and let Ψ : Dr(ε)→ Dr(ε). A variably scaled persistence kernel κΨ on Dr(ε)×
Dr(ε) is defined as

κΨ(Dr(X , ε), Dr(X , ε)) := κ(Ψ(Dr(X , ε)),Ψ(Dr(Y, ε)))

for Dr(X , ε), Dr(Y, ε) ∈ Dr(ε).

7



As in other contexts, a proper scaling function Ψ needs to be designed. Let
D̃r(X , ε) = Dr(X , ε) \ B and let ψ : Dr(ε) → R2

+ be an auxiliary function
defined as

ψ(Dr(X , ε)) =
1

W

∑
x∈D̃r(X ,ε)

w(x)x (4)

where w : R2
+ −→ R+ is a weight function and W =

∑
x∈D̃r(X ,ε) w(x). We ob-

serve that D̃r(X , ε) contains a finite number of elements (generators), therefore
the sum in (4) is always defined (see also Remark 4). We propose the following
alternative scaling functions Ψ.

1. We define
Ψa(Dr(X , ε)) = Dr(X , ε) ∪ ψ(Dr(X , ε)).

2. Letting ρ ∈ N, we first define the set D̃r(X , ε, ρ) which consists of the ρ

most persistent elements in D̃r(X , ε). Then, we define the function

Ψρ(Dr(X , ε)) = D̃r(X , ε, ρ) ∪ ψ
(
Dr(X , ε) \ D̃r(X , ε, ρ)

)
∪ B.

We remark that (Dr(X , ε) \ D̃r(X , ε, ρ)) ∈ Dr(ε), therefore Ψρ(Dr(X , ε))
is well defined.

We observe that Ψa plays the role of a feature augmenting map, since an ad-
ditional generator is added in the persistence diagram. On the other hand, Ψρ

performs a feature extraction procedure. Indeed, the resulting persistence dia-
gram consists of the most ρ persistent elements, B and the remaining elements,
which are possible large in numbers, are compressed into a single generator.

Remark 2. Since Dr(X , ε) contains an infinite number of elements for all
X ⊂ Ω by definition, the VSPK κΨ is still well defined on Dr(ε) × Dr(ε).
Moreover, if κ is (strictly) positive definite, so it is κΨ.

Remark 3. Referring to Remark 1, if κ is a PWG or SW kernel, then κΨ

can be directly expressed in terms of the distance dΨ(·, ·) induced in the variably
scaled setting.

For the auxiliary function ψ, we propose the following weights.

1. Let w1(x) = 1/|D̃r(X , ε)|, being |D̃r(X , ε)| the cardinality of the multiset,
i.e., each element is counted with its multiplicity. We denote as centre of
uniform mass the resulting auxiliary function

ψ1(Dr(X , ε)) =
1

|D̃r(X , ε)|

∑
x∈D̃r(X ,ε)

x.

2. Let x = (b, d) ∈ D̃r(X , ε), where b, d ∈ R+ are the birth-death time of the
element x (see (3)), and let w2(x) = d− b be the length of the persistence
interval of x. We denote as centre of persistence the auxiliary function
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ψ2(Dr(X , ε)) =
1∑

x=(b,d)∈D̃r(X ,ε)(d− b)
∑

x=(b,d)∈D̃r(X ,ε)

(d− b)x.

While the centre of uniform mass is the barycentre of the elements of the
multiset, the centre of persistence assigns different weights according to the
persistence of the elements. This is a natural choice to be analysed, since el-
ements with low persistence are more likely to be related to noise structures
resulting in the filtration, while elements of large persistence are linked to more
representative geometrical features of the dataset (see the example in Figure 1).

Remark 4. If we take x ∈ Dr(X , ε) in (4), additional conditions on the weight
function w are needed to guarantee the convergence of the sum. However, such
infinite setting is not meaningful to be analysed, since elements in the bisector
carry no topological information concerning the dataset. As a further obser-
vation, the centre of persistence might be formally computed by summing over
Dr(X , ε), as in this case w(x) = 0 for x ∈ B.

5. Experiments

Our aim is to show how the SVM classifier may benefit of the introduced
VSPKs.

In the experiments the kernels are handled using Python 3.8 and the modulus
scikit-learn [23] on a 2.6 Ghz Dual-Core Intel Core i5. Persistence diagrams are
constructed via the modulii persim [27], ripser [28] and GUDHI [30]. Free and
open source PYTHON software is available at

https://github.com/reevost/vspk_paper .

We validate the following hyperparameters. About the considered kernels,
we follow the guidelines provided by the authors of the seminal papers.

• Concerning the SVM classifier, we validate ζ ∈ {10j | j = −3, . . . , 3}.

• Concerning the PSS kernel, we take σ ∈ {10j |j = −3, . . . , 3}∪{5 ·10j |j =
−3, . . . , 2}.

• Concerning the PWG kernel, the parameters C and τ of the PWGK are
chosen in {10j |j = −2, . . . , 2}, while δ is set to 10 (see [24, Theorem 3.2]).
Moreover, as underlying standard kernel we use the Gaussian.

• Concerning the SW kernel, σ is obtained following the procedure carried
out in [12, §4].

To assess the performance of the classifiers, we consider the following scores.

• The accuracy score

accuracy =
true positives + true negatives

true positives + true negatives + false positives + false negatives
.
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• The f1-score

f1-score = 2 · precision · recall
precision + recall

,

where

precision =
true positives

true positives + false positives
,

recall =
true positives

true positives + false negatives
.

5.1. Alzheimer’s Disease diagnosis

The Open Access Series of Imaging Studies (OASIS) is a project aimed at
making neuroimaging data sets of the brain freely available for the scientific
community. In particular, OASIS-3 is a compilation of MRI and PET imaging
and related clinical data for 1098 participants who were collected across sev-
eral ongoing studies in the Washington University Knight Alzheimer Disease
Research Center over the course of 15 years. Imaging data is accompanied by
dementia and APOE status and longitudinal clinical and cognitive outcomes
[25].

We consider a subset of the full study group, in order to have a balanced set
of data.

A summary of demographic and neuropsychological details of the subjects
considered in our study is presented in Table 1.

AD
(mean)

AD
(st.dev.)

Control
(mean)

Control
(st.dev.)

No. of subjects 225 - 248 -
Gender (F/M) 114/111 - 126/122 -
Hand preference (A/L/R) 5/23/197 - 6/26/216 -
Age at entry 74.41 7.60 65.21 9.62
Education (years) 14.77 3.08 16.04 2.51
MMSE 20.33 6.38 29.27 1.30

Table 1: Demographic details and baseline cognitive status measures of the study population.

For each subject, we build the persistence diagrams using the estimation of
cortical thickness on 34 points in both right and left hemisphere of the brain,
for a total of 64 values. For simplicity, in the study we consider the same
coordinates of the above mentioned points for all subjects. The coordinates
are computed with the scipy toolbox [26]. From this coordinates we build the
persistence diagrams and we extract 1 and 2-dimensional topological features,
i.e., we obtain the generators associated with H1 and H2 homological groups.

In Figure 2 we show two examples of persistence diagrams, and in Figure 3
we highlight the generator added as centre of persistence.
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Figure 2: Persistence diagrams of an AD subject with a MMSE of 30 (left) and the persistence
diagram of a control subject with a MMSE of 7 (right).

Figure 3: 1-dimensional (left) and 2-dimensional (right) persistence diagram of an AD subject.
The red dot is the added centre of persistence via Psia and ψ2.

We evaluate the performance achieved by a SVMs classifier that makes use
of the presented PSS, PWG and SW kernels, both in the classical and in the
variably scaled settings.

In each test, we perform a random 70%/30% splitting of the dataset for
training and testing, and we consider 5-fold cross validation on the training set
for the tuning of the hyperparameters. The results displayed in Tables 2 3 4
have been averaged over 10 runs of tests.

For the variably scaled setting, we consider Ψa for both H1 and H2 dia-
grams, while Ψρ, with ρ = 10, is employed with H1 only, since H2 diagrams are
limited in the number of generators, and therefore compressing features is not
meaningful.

Furthermore, we use ψ2 as auxiliary function. Indeed, as highlighted in Table
5, ψ2 definitely outperforms ψ1 in our setting. Moreover, we observe that the
performances achieved by the auxiliary function alone, i.e., taking the centres
of mass or persistence in place of the persistence diagram, are definitely not
competitive with respect to the classical and variably scaled settings.
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Ψ ψ Accuracy f1-score validation time (s)

SW (H1) - - 0.741 0.716 220
VSP-SW (H1) Ψa ψ2 0.732 0.700 223
VSP-SW (H1) Ψρ ψ2 0.731 0.693 184
SW (H2) - - 0.741 0.712 183
VSP-SW (H2) Ψa ψ2 0.753 0.720 300

Table 2: OASIS-3 dataset. Results of SVMs classification obtained considering H1 and H2

persistence diagrams and using the SW kernel.

Ψ ψ Accuracy f1-score validation time (s)

PWGK (H1) - - 0.749 0.723 18165
VSP-PWG (H1) Ψa ψ2 0.750 0.726 18082
VSP-PWG (H1) Ψρ ψ2 0.759 0.735 8731
PWG (H2) - - 0.716 0.699 4422
VSP-PWG (H2) Ψa ψ2 0.709 0.683 4713

Table 3: OASIS-3 dataset. Results of SVMs classification obtained considering H1 and H2

persistence diagrams and using the PWG kernel.

Ψ ψ Accuracy f1-score validation time (s)

PSS (H1) - - 0.743 0.721 9238
VSP-PSS (H1) Ψa ψ2 0.752 0.728 9045
VSP-PSS (H1) Ψρ ψ2 0.750 0.723 3330
PSS (H2) - - 0.781 0.762 2825
VSP-PSS (H2) Ψa ψ2 0.775 0.755 3120

Table 4: OASIS-3 dataset. Results of SVMs classification obtained considering H1 and H2

persistence diagrams and using the PSS kernel.

accuracy f1-score

ψ1 0.56 0.55
ψ2 0.65 0.72

Table 5: OASIS-3 dataset. Results of SVMs classification obtained by using the centre of
mass and persistence alone in place of the persistence diagrams.

We observe that VSPKs are competitive with respect to the classical setting,
improving the performance in some cases. Moreover, the usage of Ψρ leads to a
consistent saving in validation time.
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5.2. Orbit recognition

As second experiment, we follow the idea proposed in [29] and we analyse
the linked twisted map, which models fluid flows. The corresponding orbits are
computed via the discrete system{

xn+1 = xn + ryn(1− yn) mod 1

yn+1 = yn + rxn+1(1− xn+1) mod 1

where (x0, y0) ∈ [0, 1]× [0, 1] is the initial position and r > 0 is a real parameter
that influences the orbit. The topological structure of the orbit changes with
the initial position and r, as displayed in Figures 4 and 5, where we depict the
first 1000 iterations {(xn, yn) : n = 0, . . . , 1000}.

Figure 4: Fixed (x0, y0) ∈ [0, 1]2, the orbits resulting from the linked twisted map taking
r = 2.5, 4.1, 4.3, from left to right, respectively.

Figure 5: Fixed r = 4.3, the orbits resulting from the linked twisted map taking different
starting points (x0, y0) ∈ [0, 1]2.

In the following tests, accordingly to [29], we choose a set of five parameters
r = 2.5, 3.5, 4, 4.1, 4.3 as set of classification labels. For each label, we compute
the first 1000 points of 50 orbits, with random starting point. Therefore, the
dataset consists of 250 elements. Then, we compute the persistence diagram
related to each orbit.

Here, since each persistence diagram has a huge number of generators (≈
105), we empirically reduce the persistence diagrams by restricting to the most
10 persistent elements. More precisely, here Ψa is computed with respect to such
10 elements, while in the case of Ψρ the discarded less persistent generators are
compressed in a unique element via ψ2. Moreover, since we are dealing with
2-dimensional orbits, we compute the H1 homology group only.
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As in Section 5.1, we consider a 5-fold cross validation on the training set,
and the results displayed in Tables 6, 7 and 8 are averaged over 10 runs with
70%/30% training-test split of the data.

Ψ ψ Accuracy f1-score

SW (H1) - - 0.832 0.831
VSP-SW (H1) Ψa ψ2 0.814 0.812
VSP-SW (H1) Ψρ ψ2 0.833 0.832

Table 6: Orbit Recognition. Results of SVMs classification on H1 persistence diagrams using
the SW kernel.

Ψ ψ Accuracy f1-score

PWG (H1) - - 0.858 0.866
VSP-PWG (H1) Ψa ψ2 0.858 0.866
VSP-PWG (H1) Ψρ ψ2 0.846 0.853

Table 7: Orbit Recognition. Results of SVMs classification on H1 persistence diagrams using
the PWG kernel.

Ψ ψ Accuracy f1-score

PSS (H1) - - 0.806 0.803
VSP-PSS (H1) Ψa ψ2 0.824 0.821
VSP-PSS (H1) Ψρ ψ2 0.826 0.823

Table 8: Orbit Recognition. Results of SVMs classification on H1 persistence diagrams using
the PSS kernel.

5.3. 3D shape segmentation

Here, we follow an experiment proposed also in [12]. We consider some
categories of the mesh segmentation benchmark introduced in [31], which con-
tains different 3D shapes of several categories. In each sample, every face is
represented as a triplet of 3D points, and it is labeled with respect to a corre-
sponding segmentation index. In our dataset, we consider 72546 faces in the
category Ant, 59546 faces in the category Airplane, 50902 faces in the category
Bird and 66248 faces in the category Octopus. A H1 persistence diagram is
then computed for each face by using the geodesic distance on the 3D shape;
for more details concerning the dataset, we refer to [32], while in Figure 6 we
display some examples of shape segmentation.
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Figure 6: Examples of 3D shapes and corresponding segmentation labels. From top left,
clock-wise, Ant, Airplane, Bird and Octopus.

For each category, the classification task consists in predicting the segmen-
tation index corresponding to the persistence diagram. As in the previous sub-
sections, we consider a 5-fold cross validation on the training set, and the results
displayed in Tables 9 and 10 are averaged over 10 runs with 70%/30% training-
test split of the data.

We remark that the elements of the persistence diagrams in this experiment
are limited in numbers and free of noisy generators, because of the particular
construction of the diagrams obtained via the geodesic metric. Therefore, the
usage of Ψρ is not significant.

PSS (H1) VSP-PSS (H1) SW (H1) VSP-SW (H1)

Ant 0.781 0.793 0.753 0.746
Airplane 0.677 0.688 0.717 0.704
Bird 0.612 0.598 0.636 0.629
Octopus 0.771 0.773 0.755 0.746

Table 9: Accuracy achieved by the SVMs classifiers in the carried out tests. In the variably
scaled setting, we used Ψa and ψ2 functions.
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PSS (H1) VSP-PSS (H1) SW (H1) VSP-SW (H1)

Ant 0.744 0.751 0.710 0.700
Airplane 0.580 0.582 0.580 0.563
Bird 0.619 0.616 0.624 0.617
Octopus 0.704 0.707 0.679 0.666

Table 10: f1-score achieved by the SVMs classifiers in the carried out tests. In the variably
scaled setting, we used Ψa and ψ2 functions.

6. Conclusions and future work

In this paper, we proposed VSPKs for dealing with persistence diagrams in
the context of persistent homology. The proposed framework, which is directly
inspired by the variably scaled setting explored in kernel-based approximation
and learning, may enhance the performance and the efficiency of existing kernels
for persistence diagrams, as suggested by the obtained results. Future work
consists of investigating more on the design of the scaling function, which plays
a key role in the construction of the kernel. In this view, the analysis of VSPKs
in the context of algebraic topology may provide useful insights.
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