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Abstract

In this paper we propose a new stable and accurate apprasimntathnique which is extremelyffective for interpolating large
scattered data sets. The Partition of Unity (PU) method iopaed considering Radial Basis Functions (RBFs) as lapalox-
imants and using locally supported weights. In particutag, approach consists in computing, for each PU subdomaitalde
basis. Such technique, taking advantage of the local scHeaxs to a significant benefit in terms of stability, esgéciar flat
kernels. Furthermore, an optimized searching procedwappbed to build the local stable bases, thus rendering #&thod more
efficient.
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1. Introduction

Considering the state of the B 12,13, 21], we propasew method for multivariate approximation which
allows to interpolate large scattered data sets stablyrataly and with a relatively low computational cost.

The interpolant we consider is expressed as a linear cotidainaf some basis or kernel functions. Focusing on
Radial Basis Functions (RBFs), the Partition of Unity (P&Jperformed by blending RBFs as local approximants and
using locally supported weight functions. With this appioa large problem can be decomposed into many small
problems,ﬁé E@S], and therefore in the approxinmgpimcess we could work with a large number of nodes.

However, in some cases, local approximants and conseguast the global one may far from instability
due to ill-conditioning of the interpolation matrices. $hg directly connected to the order of smoothness of the
basis function and to the node distribution. It is well-knothat the stability depends on the flatness of the RBF.
More specifically, if one keeps the number of nodes fixed amgiders smooth basis functions, then the problem of
instability becomes evident for small values of the shaparpater. Of course, a basis function with a finite order of
smoothness can be used to improve the conditioning but theacy of the fit gets worse. For this reason, the recent
research is moved to the study of more stable bases.
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For particular RBFs, techniques allowing to stably and eaigly compute the interpolant, also in that limit
& — 0, have been designed in the recent years. These algorittan'ed RBF-QR methods, are all rooted in a
particular decomposition of the kernel, and they have besldped so far to treat the Gaussian and the Inverse
Multiquadric kernel. We refer td [15, 1177, 118,/19] for furthaetails on these methods.

A different and more general approach, consisting in computiagg truncated Singular Value Decomposition
(SVD) stable bases, namely Weighted SVD (WSVD) bases, hars ppesented ilJn__L’LZ]. We remark that in the cases
where the RBF-QR algorithms can be applied, they produce mdae stable solution of the interpolation problem.
Nevertheless, the present technique appliestdRBF kernel, and to any domain.

In this paper, a stable approach via the PU method, named WY Dwhich makes use of local WSVD bases
and uses compactly supported weight functions, is pregefteus, following|[1B], for each PU subdomain a stable
RBF basis is computed in order to solve the local interpogtiroblem. Consequently, since the local approximation
order is preserved for the global fit, the interpolant wiBuk more stable and accurate. Concerning the stability, we
can surely expect a more significant improvement in the litabion process with infinitely smooth functions than
with functions characterized by a finite order of regularijoreover, in terms of accuracy, the benefits coming from
the use of such stable bases are more significant in a locedagpthan in a global one. In fact, generally, while in
the global case a large number of truncated terms of the SV& beudropped to preserve stability, a local technique
requires only few terms are eliminated, thus enabling thiéhatkto be much more accurate.

Concerning the computational complexity of the algorittime, use of the so-called block-based space partitioning
data structure enables us tifigently organize points among thefidirent subdomainsﬂ[ﬂ 8]. Then, for each subdo-
main a local RBF problem is solved with the use of a stablesbd$ie main and truly high cost, involved in this step,
is the computation of the SVD. To avoid this drawback, teghas based on Krylov space methods are employed,
since they turn out to be reallytective, @]IB] A complexity analysis supports our findings

The guidelines of the paper are as follows. In Sediibn 2, vesemt the WSVD bases, computed by means of
the Lanczos algorithm, in the general context of global epjnation. Such method is used coupled with the PU
approach which makes use of an optimized searching proeeasishown in Sectidn 3. The proposed approach turns
out to be stable andfcient, as stressed in Sectldn 4. In Secfibn 5 extensive ricahexperiments, carried out with
both globally and compactly supported RBFs dfelient orders of smoothness, support our findings. Morealler,
the MarLaB codes are made available to the scientific community in a tvdable free software package:

httpy/hdl.handle.ng¢3181527447

2. RBF interpolation and WSVD basis

In Subsectio 2]1 we briefly review the main theoretical espeoncerning RBF interpolatiorﬂ [4], while the
remaining subsections are devoted to thieient computation of the WSVD basis via Krylov space methods

2.1. RBF interpolation

Our goal is to recover a functioh : Q — R, Q being a bounded set iRM, using a set of samples défon N
pairwise distinct pointXy ¢ Q, namelyf = [f1,..., fy]7, fi = f(X;), Xi € Xx. To this end, one considers a positive
definite and symmetric kerndl : Q x Q — R to construct an interpolant in the form

N
R(X) = > cid(x X)), xeQ. (1)
=1

The kernels we will consider are always radial, meaning tiinate exist a positivehape parametes and a function
¢ : Rso — R such that for allk,y € Q, ®(X,y) = ¢:(IX — Yil2) = ¢(&llx — Vll2). In Table[1 we report a list of some
strictly positive definite radial kernels with their smooéss degrees. We remark that Gaussian, Inverse MultiQuadri
and Matérn functions are globally supported and strictgifive definite inR™ for any M, whereas Wendland ones
are compactly supported (whose support ilj@]) and strictly positive definite ilRM for M < 3 (see]).

The real cofficientsc = [cy,...,cy]" in (@) are determined by solving the linear syst&m = f, where the
interpolation (or kernel) matria € RN*N is given by

Aj = o(xi, %), B,j=1,...,N. )
2
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RBF (1)
GaussiarC® (GA) e "’
Inverse MultiQuadricC™® (IMQ) (1 + £%r?)~1/?
MatérnC® (M6) e (33 + 66°r2 + 15¢r + 15)
MatérnC* (M4) e (e%r? + 3er + 3)
WendlandC® (W6) (1 - er)® (32¢%3 + 2562r2 + 8er + 1)
WendlandC* (W4) (1 - er)8 (35¢%r2 + 18er + 3)
Table 1. Examples of strictly positive definite radial kdsneith their orders of smoothness and shape paramseted; r = || - |2 is the Euclidean

distance, while-J, denotes the truncated power function.

The so constructed solutidRis a function of thenative Hilbert spaceVq(Q2) uniquely associated with the kernel,
and, if f € Ng(Q), itis in particular theNq (Q)-projection off into the subspace spanned by t@ndard basis

Txy = {O(X, Xj), 1< j < NL

We will denote this subspace A& (Xn).

Although this interpolation method is known to be highly taide in most cases being the matfxseverely ill
conditioned, it has been proven (s@ [11]) that the inteitpmi operatorf - Ris stable as an operator in the function
spaceNs(Q2). This gap has been widely recognized to be caused by theftise standard basis, and a lot afats
have been made in recent years to introduce better or pigréestditioned basis (seﬁZl] for a general theoretical
treatment of this topic, anE[EhEJ 18] for particulastances of stable basis; for an overview see the Hook [16]).

2.2. WSVD basis

We are interested here in the use of W&VD basisntroduced in|L_:L|2], thanks to its flexibility with respecttioe
choice of the kerneb. We recall in the following some relevant properties of thésis, while we refer to the paper
[12] for further details.

To construct a basi®/ = {Uj}'j\l:l of No(Xn) it is enough to assign an invertible dbeient matrixDq, = [dij]i’f‘j:l
such that

N
uj(x) = Zdij‘D(X, Xi),
i

or, equivalently, an invertible value matik, = [u;(Xi ]i'?l‘:l' The two matrices are related As= Vq, - D:ul (see[L_le]),
and in our situation they are defined as follows ( f12]).

Definition 2.1. A WSVD basiq{ is a basis forNg (Xn) characterized by the matrices
Dy= YW-Q-=Y2 and Vi = YW-1.Q-3¥2, where YW-A- YW=0Q-2-QT,

is a singular value decomposition of the scaled kernel matg, = YW - A- VW, andW,; = &;;W is a diagonal
matrix of positive weights.

Notice that the definition uses a set of positive weights et employed in the original formulation as cubature
weights to construct the basis. Nevertheless, these veeitghhot change the numerical behavior of the basis, hence
we will assume from now om; ™= 1/N, 1 < i < N. Moreover, for notational convenience, the diagonal elemefz
will be denoted ag; > -+ - > on.

This basis has been introduced to mimic in a discrete semsprtiperties of theigenbasis The latter is con-
structed starting from the operafor. L,(Q) — L,(Q),

TLfI(x) = fg O(x, y)f(y)dy, 3)
3
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through the following Theorem (see e.E[ZZ]).

Theorem 2.1(Mercer’s Theorem)If the kerneld is continuous and positive definite on a boundedset RM, the
operator T has a countable set of eigenfunctigpgy and eigenvalue$ii}x. The eigenfunctions are orthonormal
in Lo(Q) and orthogonal inNg () with [lekllx,@ = 4.+ Moreover, the kernel can be expressed in terms of the
eigencouples as

DX Y) = > Ag¥ee(y), X,y € Q.
k

where the series converges uniformly and absolutely.

For its use in interpolation iWg(Q), it is convenient to use the basi§xekk, that is normalized itNg (). With
this normalization, the basis has the following properties

Property 2.1. The eigenbasisvAxek}k has the following properties:

i. itis No(Q)-orthonormal,

ii. itis Ly(€)-orthogonal with normiy,
i, ( VAkew FL@ = (VA Fne@), YT € No(Q),
V. Ak > AgerandAg —» 0as k— oo,

V. Yk Ak = ¢(0) measQ).

As provenin ], the WSVD basis enjoys the same properttesnithe inner product df,(Q) is replaced with
its discrete versiofi;(Xn), as summarized in the following statement.

Property 2.2. The WSVD bas;i{suk}E:l has the following properties:

i. itis Ng(Q)-orthonormal,

ii. itis ¢2(Xn)-orthogonal with normry,
i, (ug, f)fz(XN) = ok(Uk, f)Nm(Q), Ve No(Q),
V. oy >--->0N >0,

V. TR 0k = ¢(0) measQ).

Since the interpolation is &4 (Q)-projection, we can rewrite the interpold®in terms of theNg (Q2)-orthonormal

WSVD basis as "

R() = >~ (. U ng o) U(X), (4)

k=1
and, thanks to poink{lii) of Properfy 2.2, this can be furttesvritten as

N
RO = D i (F, U0 U()- (5)
k=1

The latter form of the interpolant shows thits also the solution of the discrete least-squares appietiamproblem
min||f — gll,xy) @mong all functions iy € No(Xn). If we instead solve the minimization problem over the pane
sparus, ..., Un}, m< N, we find a solutiorR™ given by the truncation of the interpolant, i.e.,

RT() = > o3 (., U000 Ue(X). (6)
k=1

Observe that it makes sense to consider the last minimizptiablem and its solutioR™ for somem < N instead of
the original interpolation problem, since in this way weveaut the portion of the subspas&, (Xy) corresponding
to small singular values, and this corresponds to solveitiead systeni({2) by means of a low-rank approximation of
the matrixA. A detailed discussion of this approach can be found ih 12 we remark here that this method strictly
depends on the behavior of the singular valuea.dflamely, if we consider smoother RBFs, then by udiig (6 pindt
of the standard approach a better stabilization of thepelation process is expected.

4
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On the other hand, this method has some disadvantages.itigsstquired to compute a singular value decom-
position of the (possibly large) kernel matrix, and in thel enly a few elements of the decomposition are used. This
is computationally expensive, but in the next section we @4plain how to overcome this problem. Second, this
method requires to neglect part of the information to rednstbility, and, in some cases, this removal is too big to
obtain a meaningful approximant. A solution to this problsmrovided by the coupling with a localization method,
and it is the main topic of this paper.

2.3. Fast computation through Krylov space methods

We present here a way to compute an approximation of the WS4k bhat makes use of the Lanczos algorithm.
The method is discussed in__[13], and it aims at reducing timepcdational cost of the procedure by approximating
the truncated SVD oA.

We start by a general description of the Lanczos algorithmrther details can be found inl [@2@ 24]. Let
Km(A, f) = sparif, Af,..., A™1f} be the Krylov subspace of ordergenerated by the matri& and the vector .
The Lanczos method computes an orthonormal fasig, of Kim(A, f) through a Gram-Schmidt orthonormalization,
i.e., the Lanczos basig )", , is computed by the following recurrence formula:

Bis1Pi1 = AP —a@ip —Bip_,  With Bipy =0. (7)

Letting Py, € RN*™ the matrix having the vectong as columns, and lettingl, be the (n+ 1) x m tridiagonal
matrix defined as

ar B - O
B2 @ - 0

Ho=|: 0 gy ®)
o - Pm-1  am
o --.- 0 Bm

the algorithm can be formulated in matrix form as
APy = PryiHm,  Hm = (—H’“) (9)
m m+1Mm, m her'; B

whereey, € R™ is the unit vector anti is a scalar value.

Once we compute the matrices, the solution of the initialesyscan be approximated &s= Pny, wherey € R™
is such thatmy = || f]|.€1. _

The idea is to use the matrbty, to approximate the SVD oA, and sinceA has usually a good low-rank approxi-
mation, we expect to do so with < N. Specifically, letH, = UnZnV,, be a singular value decompositionidf;,
whereUy, € RMDX(MD) v/ e R™M are unitary matrices and

- (5)
with £, the diagonal matrix with singular values, 1 < i < mon the diagonal.

Since the last row oL, is the zero vector, the decomposition does not change if meve this row and the last
column ofUy,. Thus, to simplify the notation we will denote ti, the matrix without the last column, so that the
decomposition becomesy, = UnZn V1.

Now we want to define an approximation of the WSVD basis udiregapproximate SVD of. We define a set
of functions{ﬁk}k’“:l € No(Xn) which shows similarities with the WSVD basis, even if it dowt form a basis, since
they do not spae(Xn). Anyway, we will go on calling such set of functions, withuse of notation, basis.

Definition 2.2. The approximate WSVD basis is characterized by the matrices
D4, = Pm- Vm.zal/z and Vg = Pmi1- U 2#/2.

where AR, = Pr,1Hnm is the Lanczos decomposition of A of order m &hg= U=,V is a singular value decom-
position ofHn,.
5
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The next statement clarifies the connection between the agsb As it is evident by construction, the basis
strongly depends on the particular functibe Ng(Q).

Property 2.3. The approximate WSVD bagig], , has the following properties:

i. itis near Ng(Q)-orthonormal, meaning that itd/o (Q)-Gramian is the identity matrix plus a rank one matrix,
ii. itis ¢»(Xn)-orthogonal with normor,
iil. (Ui, Teyxyg) = ok(Ui, Pag ) If T is the function used to construct the basis,
V. o1>-->0m>0,
v. it coincides with the WSVD basis if mN.

This basis allows to solve again the least square approkimptoblem. Namely, iff € Ng(Q) is the function
used for the Lanczos algorithm, the approxim@ftdefined as

m
R™(x) = Z i H(F, U ey U(X),
kel

minimizes the distancgf — gll,,(x,) for g € sparu, ..., un}, m < N. Moreover, thanks to property {iii) of Property
[2.3,R™ can be written in terms oW, (Q)-inner products as

m

R0 = > (F, Bt (). (10)

k=1

Notice that propertyfv) of Properfy 2.3 proves tﬁ_%ItE RN =R
ApproximatingR™ with its fast computable versid®" solves #iciently the problems. We will see in the following
sections how to successfully couple this technique witrsadamain decomposition method.

3. Partition of unity method using stable bases

The main idea is to use the stable basis introduced in théqu®gection in order to generate local stable approx-
imants and accumulate them into the global fit.

3.1. A stable computation of the PU interpolant

Let Q ¢ RM be an open and bounded domain, andﬂlqi}?zl be an open and bounded coveringbgatisfying
some mild overlap condition among the subdomains (or pajdge The setl(x) = {j : x € Q;j}, forx € Q, is
uniformly bounded orQ2, with Q C U?:l Q;j. Associated with the subdomains we choose partition ofyuméight
functionsW;, i.e. a family of compactly supported, nonnegative andioous functions subordinate to the subdo-
mainQ;, such that®_; Wj(x) = 1 onQ and supp{V;) € Q;.

In order to have a better stabilization of the global fit, coalgs to define stable approximants of the fofm (10) on
each subdomaif;. In other words, for each (local) matri; € RN*Ni, i.e. thej-th interpolation matrix associated
with the subdomairf;, a low-rank approximation is computed and thus the so-¢alsSVD-PU approximant is
given by:

d
I(x) = Z RYOOW (%), xeQ, (11)
j=1

whereW; : Qj — R is a partition of unity weight function andy, = Xy N Q;. As evident,li'jnj defines a local stable
RBF approximant o; of the form:

mj ) ) )
R = Do) ™ (fio B0 TP (0, x € Q. (12)
k=1
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According to EB], if we assume to haveksstable partition of unity, then the derivatives of the weitunctions
satisfy
Cp M
ID°WijllL(@y) < Pk Bl <k VBeNY,
j
wheres; is the diameter 0€2; andC; > 0 is a constant. As nonnegative functioifs e CK(RM), we may consider a
Shepard weight.e.,
¢i(x) :
Wi(X) = ————, =1,...,d,
19 kel (x) Px(X) :
¢j(x) being compactly supported functions with supportgnsuch as the Wendland functioEJ[ZG].
Before computing the global fit by mean of local stable appnaxts obtained with the Lanczos procedure, we
briefly sketch in the sequel some relevant properties. Sino# () of Property 213 implieRY = RNi = R;, we can
recover the PU interpolant, by considerird, i.e.:

d d N;

. - 4 |

1(x) = Y RIW;(x) = > > (@) i, U)o IV (), x e (13)
=1

i =1 k=1

Remark 3.1. If the functionsﬁ?‘j, j=1,...,d, satisfy the interpolation conditiortF_qNi (xi) = f(x;) for eachx; € Q;,
then the global PU approximant inherits the interpolatiaoperty of the local interpolants, i.e.

d
I(x) = > RPOOW 06 = > FaW(x) = F0x).
=1 jel(xi)
In order to be able to formulate error bounds, we need sontieduassumptions on regularity & and define
thefill distance
hxy. = sUpmIn [IX — Xillz.
xeQ XiEXN

Specifically, we require that an open and bounded covqmqul is regularfor (2, Xn). This means to fulfill the
following properties|[25]:

i. for eachx € Q, the number of subdomaitsy; with x € Q; is bounded by a global consta@t
ii. there exists a consta@; > 0 and an anglé e (0, 7/2) such that every subdomai satisfies an interior cone
condition with angle) and radius = C,hx, q;
iii. the local fill distance$1xNj .o, are uniformly bounded by the global fill distanikg, o.

Remark 3.2. The first property ensures théf3) is actually a sum over at most C summands. Moreover, it isigruc
for an gficient evaluation of the global approximant that only a camsthnumber of local interpolants has to be
evaluated. It follows that it should be possible to locatesth C indices in constant time. The second and third
properties are significant for estimating errors of RBF npelants.

After defining the spac€X(RM) of all functionsf € CX whose derivatives of ordes| = k satisfy Df f(x) =
O(|Ix|I3) for ||x]l. — O, we consider the following convergence result m 26]:

Theorem 3.1. LetQ ¢ RM be open and bounded and suppose thatXx;,i = 1,...,N} C Q. Letsp € C'V‘(RM) be a
strictly positive definite function. L({m,—}‘j’:l be a regular covering foQ, Xy) and Iet{W,-}‘J?':l be k-stable fO‘Qj}?:l.
Then the error between & N,;(Q2), whereN, is the native space @f, and its PU interpolan{L3) can be bounded by:

kv
IDPH(x) - DPI(¥)| < Che o Flue-

forall x e Q and all|g] < k/2.
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3.2. The PU algorithm: the Lanczos procedure

For each subdomain, in order to generate the local stabl®xippation matrix, the Lanczos method is applied to
the matrixA; € RN*Ni and to the function value; € RN associated with the subdomay. In this way the matrix

Hm, and the Lanczos bas{ﬁ“)}r‘jl are computed for each subdomain. Then, for each interpalatioblem a local
stable basis is formed.

By using a diferent stopping criterion in the Lanczos algorithm, withpexs to the one employed i13], we can
compute stable bases for a wider family of RBFs, both gletigfined and compactly supported. The main problem
in the Lanczos procedure concerns the stopping critersee$t ep 3 of theLanczos Algorithm). From Property

2.2 (point (v)) and Properfy 2.3 (poimt (v)) a reliable one is

<T, (14)

for a certain fixed toleranceg which is supposed to be equal for all the subdomains.
From Propert{f 213 (point{V)), the fact that we impose as maxh number of iterations, in theinczos Algorithm
at St ep 2, exactly the number of nodes §y, i.e. Nj, naturally follows.

I NPUTS: N;j, number of data itf2;; A;, the local interpolation matrix;
f;, the function values associatedy;
7, the tolerance used as stopping criterigpnthe radial basis
function.

QUTPUTS: (1j), ..., Y, the new basis i®;; Hm,, the tridiagonal matrix.

Step 1: Setﬁ(l” =0; p(()’) = 0: p(lJ) _

IF5ll2
Step 2: Fori=1:N;
) = ol - il
ai(j) - (f).(j)’ pl(j))
[3'(1') - f)u(j) _ a/i(i) pl(i)
AL = 1z
Step 3: If Al = 00rl(0) - § Sy <
break
pl(J’r)l — ﬁl(j)/ﬂi(i)l

Table 2. TheLanczos Algorithm. Routine performing the Lanczos procedure.

Then, once the matrikln, is found forQ; the stable basis is computed by calculating the singularevdécom-
position of Hy,, and a local approximant on each subdomain in the farm (12pisputed. Then the local fits are
accumulated into the global one.

The use of stable bases by decomposing the initial probléonnrany small ones leads to a larger benefit in
terms of accuracy than employing a global approach. In fashé uses a global method the approximant results
stable, but a large number of terms in the Lanczos procedareaglected. This surely leads to a decrease of the fit
accuracy. Whereas the local method turns out to be reallyratesince, dealing with small problems, less terms in
the computation of the basis are eliminated to preservdiggab

Extensive numerical experiments support our findings.



R. Cavoretto et a). Applied Numerical Mathematics 00 (2015[13-13 9

3.3. The PU algorithm: the block-based algorithm structure

The key step of the PU method consists in organizing theeseattdata among the subdomains. To this aim
the kd-tree partitioning structures are widely useéd, [Hawever, they are not specifically implemented for the PU
method.

Here a novel partitioning procedure, specifically the skeddlock-based partitioning structuyéuilt for bivariate
and trivariate interpolation in order to determine the poiselonging to the dierent PU subdomains, is considered,
[8]. Even if such partitioning structure is robust enoughwiark on 2D or 3D irregular domains, we present such
efficient technique for a scattered data set lying in the uniasg.e.Q = [0, 1]°.

At first, a partition of unity structure, composed thgircular patche; of radius:

2
5= \/;» (15)

and whose centres, j = 1,...,d, are a grid of points o, is generated. As irh__[i4], the number of PU subdomains
is chosen so that/d ~ 4. This choice and(15) lead to a reliable partition of unttysture since, in this way, patches
form a covering of the domaif.

In order to find the points belonging to theféirent subdomains and consequently solve, with the use lesta
basesd small interpolation problems, we propose a new partitigrétructure. It leads to a natural searching pro-
cedure that turns out to be really cheap in terms of commutaticomplexity. To this aim we first cov€r with ¢?
square blocks, where the numigpof blocks along one side of the unit square is:

4= M' (16)
In this way the width of blocks is equal to the subdomain radithis choice can appear trivial, but on the contrary it
enables us to consider in the searching process an optimizader of blocks.

Blocks are numbered from 1 @¥ (bottom to top, left to right). Thus, with a repeated use otiksort routine
the setXy is partitioned by the block-based partitioning structurte g subsetsXy,, k = 1,..., ¢?, whereXy, are the
points stored in th&-th neighbourhoodi.e. in thek-th block and in its eight neighbouring blocks. In such fraraek,
we will be able to get an optimal procedure to find the nearesttg. In fact, given a subdomai®;, whose centre
belongs to thek-th block, we search for all data lying in thieth subdomain only among those lying in tkeh
neighbourhood.

Remark 3.3. The same partitioning structure, in case of Compactly SuepdRBFs (CSRBFs), must be considered
locally for each subdomain. In fact, in order to build thehjgtable approximation matrix, among all points lying in
the j-th subdomain, only those belonging to the support@fBRBF must be considered.

Remark 3.4. Among several routines which can be employed to determaadighboring points, we choose the
block-based data structure. Anyway, we stress that therithgo, here proposed, works in any dimension M, while
the block-based data structure is only implemented fot 2] 3, [E] Thus in higher dimensions such structure must
be replaced by standard routines, such as kd-trés, |1, 4D, 1

4. Complexity analysis

Since the stable WSVD-PU algorithm is characterized by trestruction of local RBF stable approximants,
we consider the local data sets, composed\byoints, j = 1,2,...,d. Thus, the complexity of this algorithm is
influenced by the following computational issues:

i. organize by means of a partitioning structure the nodesranthe subdomains,
ii. compute the stable basis on each subdomain

Concerning the ficient organization of points, an extensive complexity gsial briefly shacked in Subsectionl4.2,
can be found in|]8]. The cost associated to the computati@iatal stable basis is investigated in Subsedfioh 4.1.
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4.1. Computation of a stable basis

Performing the Lanczos procedure on a maBixe R™" requiresO(kr?), wherek is the number of vectors
computed by the algorithm, i.&.is thegoodlow rank approximation, (a priori unknown in our casEb, [9].

GivenAj e RNNi the interpolation matrix defined on ti, the Lanczos method forms the matkiy, for Q;
afterm; iterations. Usually we hav@; < N;, butin some cases the maximum number of iteratpsan be reached
and so, in a more general settimg, < N;. This routine requires:

O(m;N?) < O(N?), (17)

time complexity. Thus for each subdomain the upper boundh®@icomputational time of the Lanczos procedure is
given by the right-hand side df {1L7).

In case of sparse matrices, such as the ones arising fromsthefuCSRBFs, the Lanczos procedure can be
performed in:O(m;(N; + fi)) time complexity, where s the number of non-zero entries.

Then a singular value decomposition is applied to the madrix We remark that performing a singular value
decomposition on a matrig € R™k requiresO(4nk + 8nk? + 9k%) time complexity.

The singular value decomposition for each subdomain isiegpb the matrixHm ; once more we stress that
m; < N;j. Thus for each subdomain the singular value decompositiorbe performed in:

O(4ntm; + 8m;nt’ + 9nT) ~ O(m;) (18)
time complexity.

4.2. The partitioning structure

Let us now focus on the block-based partitioning structieeduto organize th8l data sites in blocks. We re-
mark that such féicient organization of points is specifically implemented 2® data sets. Anyway, the proposed
WSVD-PU algorithm is robust enough to work in any dimendibnprovided that a dierent partitioning structure is
performed.

Let ng be the number of data sites belonging to a strip. The proeasked to store the points among thedient
subdomains is based on recursive calls fuacksortroutine which requireg)(nlogn), wherenis the number of
elements to be sorted. Thus, lettiNgq the average number of points lying in a strip, the computaticost needed
to organize theN points among the éierent subdomains is:

O(N logN + i nslog rTS) ~ O(gN log N). (19)
s=1

Concerning the searching procedure, for each subdomaiicksgut procedure is used to order distances. Thus
observing that the data sites in a neighbourhood are at8t])? and taking into account the definitionsegénds,
the complexity can be estimated by:
N N 2N 2N
O(—Io —)z (—Io —)zOl. 20
307 g 307 9d °95q (1) (20)

The estimate[{20) follows from the fact that we built a pastitng structure strictly related to the size of the subdo-
mains and ad hoc for the PU method.

Remark 4.1. The same computational cqg@0), in case of CSRBFs, must be considered locally for each snaihp
to build the sparse interpolation and evaluation matrickssuch steps we usually have a relatively small number of
nodes N, with N; < N, where the index j identifies the j-th subdomain.

10
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5. Numerical experiments

This section is devoted to point out, by means of extensivaarical simulations, stability and accuracy of the
WSVD-PU interpolant. To this aim comparisons with the seddPU interpolant will be carried out.

Experiments are performed consideriNg= (2¢ + 1)%, k = 6,7, 8, uniformly random Halton nodes, a grid of
d = | VN/2J2 subdomain centres and a grid®# 40 x 40 evaluation points, which are contained in the unit square
Q =10,1] x [0, 1].

In order to show the high stability of the proposed methodcampute the Root Mean Square Error (RMSE), i.e.

1S ... =
RMSE = Jggﬁ(xi)—f(xi)lz, (21)

for different values of the shape parameter in the rangg§10-2, 10°]. Moreover, in order to point out the versatility
of the proposed method, ftérent kernels with dierent order of smoothness are considered, see [Thble 3. fidre er
(21) is computed using as test function the well-known Fegmfunction:

N % exp[— (9x — 7)? Z (9y-3)] % exp[—(gx 4P (9y- 7)2] _

In Figure[1 we compare the RMSEs obtained by means of the WBWDnterpolant (solid line) with the ones
obtained performing the classical PU method (dashed lias)tolerance value if{14) we set 20. These graphs
point out that the use of the WSVD-PU local approach revedésger stability than the standard PU interpolant.
Moreover, the use of a local method enables us to improve M8/Rfor the optimal shape parameter in case of
flat kernels, see Figufg 1 and Table 3. This is consistenttiétact that in a local stable methodffdirently from
], we have to solve small linear systems and thereforetéems are neglected ib{112). Furthermore, from Figure
[@ we can note that the WSVD-PU method turns out to be mfiextive with flat kernels, while for more picked
bases the improvement of using stable bases becomes be&gégithe order of bases function decreases. Thus, from
our numerical experiments, we can observe three kinds aiiehdepending on tlierent RBF regularity classes.
Specifically, the features of such classes, whidfedboth in terms of stability and accuracy from the standasis)
can be summarized as:

i. for C* kernels: improvement of stability and of the optimal accyra
ii. for CK kernels, withk > 1: improvement of stability and same optimal accuracy;
iii. for CY kernels: same stability and same optimal accuracy.

Moreover, since we are interested in pointing out thiency of the proposed WSVD-PU algorithm, in Table
[4 we also report the CPU times obtained by using our stabéggdotation method with the Gaussian RBF as local
approximant, for each of the threefldirent data sets. Tests have been carried out on a Intel(R T} i3 CPU
M330 2.13 GHz processor.
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