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Abstract

In this note we present some quantitative results concerning the convergence
proofs of the Greedy Algorithm and the Geometric Greedy Algorithm, presented in
[4], for finding near-optimal points for radial basis functions interpolation.
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1 Introduction

In [4] the authors constructed a data-independent near-optimal points set for interpo-
lation by radial basis functions (RBF). In that paper, there were also presented two
different greedy algorithms for computing near-optimal points for RBF interpolation.

For the sake of completeness, here we briefly recall some notations and results from
[4] useful to understand the rest of the paper.

Let Ω ⊂ R
d be a bounded subset of R

d satisfying a inner cone condition with angle
α and radius r.

The first algorithm, termed Greedy Algorithm, shortly G.A., generates larger and
larger point sets, say Xn = {x0, . . . , xn−1} ⊂ Ω, by adding at each step a new point
corresponding to the point where the power function, PΦ,Xn−1

, of the previous set
attains its maximum. In practice, starting from the set X0 = {x0}, x0 ∈ Ω arbitrarily
chosen, the method constructs Xn = Xn−1 ∪ {xn} where

PΦ,Xn−1
(xn) = ‖PΦ,Xn−1

‖L∞(Ω), ∀n ≥ 1. (1)

Practical experiments showed that the greedy approach fills the current largest hole in
the data, placing the new point nearby the center of the hole.

This observation, suggested to investigate a second algorithm, that we called Ge-

ometric Greedy Algorithm, shortly G.G.A., that was shown to be independent on the
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kernel Φ. Indeed, the method starts from X0 = ∅ and, at the nth step produces the
finite set Xn, of cardinality n, where Xn = Xn−1 ∪ {xn} and

xn = max
x∈Ω\Xn−1

d(x,Ω) . (2)

The distance d in (2), was the L2 norm. It was also observed (cf. [4, Lemma
5.1]) that the G.G.A. generates point sets that are asymptotically equidistributed with
respect to the distance d.

Later, in the paper [3] it was shown that, given a metric ν, sequences of points
generated by means of the G.G.A. are asymptotically equidistributed in the compact
set Ω with respect to the given metric ν. Moreover, it was noticed that the construction
technique of the geometric greedy algorithm is conceptually similar to that used in
producing univariate Leja sequences (cf. [2]). The reason relies on that fact that both
in the case of Leja sequences and in (2), one maximizes a function of distances from
already computed points (taken from a suitable discretization of Ω).

For the G.G.A. we already proved (cf. [4, Lemma 5.1]) that the points generated
are equidistributed in the L2-norm and that hn behaves asymptotically like O(n−1/d).

In this paper, we would like to provide more numerical evidence of the fact that
the G.G.A. generates sequences of points which are equidistributed in Ω with respect
to the L2-norm and whose separation distances, hn, behaves asymptotically also like
O(n−1/d). A quantitative analysis of the constants involved in this asymptotic analysis
is studied, too. Concerning the G.A., we shall notice that

2 Results

Let Ω ⊂ R
d be a bounded subset of R

d satisfying a inner cone condition with angle
α and radius r. Letting Xn = {x1, . . . , xn} ⊂ Ω and hn = supy∈Ω minx∈Xn ‖x − y‖2,
qn = 1

2 minx,y∈Xn
x 6=y

‖x − y‖2 as usual the fill distance and the separation distance, and

Br(x) = {y ∈ R
d : ‖x − y‖2 < r}.

2.1 The G.G.A. case

First of we recall an interesting result proved for set of points quasi-uniformly dis-
tributed, which means that ∃M1,M2 ∈ R+ such that M1 ≤ hn

qn
≤ M2, ∀n ∈ N (cf. [8,

Prop. 14.1]).

Proposition 2.1 There exists constants c1 , c2 ∈ R, n0 ∈ N such that

c1 n−1/d ≤ hn ≤ C2 n−1/d, ∀n ≥ n0.

Proof: Taking the n balls Bqn(xj), than always

n qd
nvol(B1) ≤ vol(Ω) , (3)
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where B1 is the unit ball of R
d, from which the upper bound follows from the assumption

that hn ≤ M2 qn. For the lower bound, one observes that Ω ⊆ ⋃n
i=1 Bhn

(xj), hence

vol(Ω) ≤ n hd
n

√
πd

Γ(d/2 + 1)
(4)

from which the lower bound follows. 2

In many applications one requires a quantitative value to the constants involved,
especially for the upper bound. Here some computations showing that the constants
depend on the volume of the set Ω and the upper bound, M2 for the ratio hn/qn

vol(Ω) ≥ vol



Ω ∩
n⋃

j=1

Bxj
(qn)



 =

n∑

j=1

vol
(
Ω ∩ Bxj

(qn)
)

≥ α

2π

n∑

j=1

min{vol (B0(qn)) , vol (B0(r))}

= n
α

2π

πd/2

Γ(d/2 + 1)
min{(qn)d, rd}

But r does not depend on n and vol(Ω) is fixed, therefore there must be a n0 ∈ N with

vol(Ω) ≥ n
α

2π

πd/2

Γ(d/2 + 1)
(qn/2)d, ∀n ≥ n0.

Defining CΩ by

CΩ :=
vol(Ω)2d+1πΓ(d/2 + 1)

απd/2
, (5)

we get

CΩ ≥ n(qn)d ≥ n(hn/M2)
d.

Hence,

hn ≤ M2(CΩ/n)1/d = C
1/d
Ω M2

︸ ︷︷ ︸

=:CΩ,M2

n−1/d . (6)

In the next session, we present some numerical experiments that support the the-
oretical results just provided.

2.1.1 Numerical experiments for the G.G.A.

Let Ω = [−1, 1]2, so that d = 2. For our experiments we considered five sets of points

1. Leja-like points generated by using the G.G.A. by means of the formula (2) and L2

norm, obtained by discretizing Ω by 104 random points. For this set we computed
406 points, that we consider here for our experiments.
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2. Points generated by using the G.A. (cf. formula (1)), obtained as described in
[4]: 134 points for the inverse multiquadrics and 200 points for the Wendland
C2 function. In both case the scaling factor was taken equal to 1, the threshold
was set to 1.0e − 6 for the inverse multiquadrics and 1.0e − 3 for the Wendland
function. The domain Ω were discretized with a 300 × 300 grid.

3. Dubiner points in the square, i.e. points equally distributed in the Dubiner metric
in the unit square (cf. [3]). For this set we considered 200 points.

4. P-greedy points. These points were obtained by S. Müller [6], for two positive
definite kernels, the gaussian and the C∈ Wendland’s kernel, by discretizing Ω
by a grid of 300 × 300 points, taking the scaling parameter equal to 1 (i.e. no
scaling). We observe that these points, correspond essentially to the ones com-
puted by the G.A.. They are slightly different due to a different stopping test
used during computations. For this set we considered 300 points computed using
the Wendland’s kernel with shape parameter set to 1, i.e. without scaling.

In Figures 1-5, for all the set of points, we show at the left, the plots of the uniformity
hn/qn while, at the right, the plots of hn/CΩ,M versus 1/

√
n. In Figures 6-10 we show

the plots of hn versus CΩ,M .

A close inspection to these graphs suggests some observations.

1. In almost all graphs, varying n, hn < CΩ,M , which says that a better upper bound
should be derived.

2. From (6), hn/CΩ,M should be bounded by 1/
√

n. For the set of Leja-like points
we see that hn/CΩ,M ≤ n−1/2 for all n. This comes evident in Figures 1-5 (Left
part) where the uniformity hn/qn of the sets of test points is plotted. In all cases
the uniformity is bounded, especially for bigger n. The reason why the inequality
(6) holds only for the Leja-like points, is due to the fact that in the computations
we chose CΩ = n qd

n while it should be CΩ ≥ n qd
n. Therefore, taking bigger values

for the constants CΩ then the ratio hn/CΩ,M will become smaller moving the
graphs below. That is to say, that the choice CΩ = n qd

n does not hold for all sets
of equidistributed points.

In Table 1 we also report the values of max(CΩ,M ) and min(CΩ,M ) compared with
the corresponding values of max(hn), min(hn) and max(qn), min(qn).

2.2 The G.A. case

More intriguing is the case of greedy points generated by the G.A.. In [5], the authors
have introduced the concept of best-packing configurations for an infinite set A ⊂ R

d.
For a set Xn = {x1, . . . , xn} ⊂ R

d of n points we consider

δ(Xn) = min
i6=j

‖xi − xj‖2 ,
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406 Leja-like pts. 134 IM pts. 200 W2 pts. 200 Dubiner pts. 300 P-greedy pts.

max(CΩ,M ) 8.99 8.14 7.92 5.95 6.93
min(CΩ,M ) 1 0.315 1 0.072 1

max(hn) 1.99 1.42 1.42 2.08 2.01
min(hn) 0 0.085 0.009 0 0.003

max(qn) 1 1 1 1 1
min(qn) 0.09 0.05 0.11 0.02 0.06

Table 1: A comparison of max(CΩ,M ) and max(hn), min(CΩ,M ) and min(hn)for the
five different types of point distributions.
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Figure 1: Left: the plots of the uniformity hn/qn for 406 Leja-like points. Right: plots
of hn/CΩ,M and 1/

√
n.

while for an infinite set, we let A ⊂ R
d

δn(A) = sup{δ(Xn) : Xn ⊂ A, card(Xn) = n}

be the best-packing distance. This distance is simply the fill distance in RBF setting.
Moreover, the authors define the idea of greedy best-packing configuration on an infinite
compact subset A ⊂ R

d in the following way:

• select arbitrarily the initial point a0 ∈ A;

• at the step n, an ∈ A is chosen as

min
0≤i≤n−1

‖an − ai‖2 = max
x∈A

min
0≤i≤n−1

‖x − ai‖2 . (7)

Such points were already considered in [2] where it was proposed the name Leja-Bos

points (thanks to L. Bos who suggested the definition (7)).
In [5, Prop. 2.13], it has been proved that in the square [0, 1]2 there exists greedy

best-packing configurations which are not asymptotically uniformly distributed, and
the Leja-Bos points are an example.
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The constructive proof checks the best-packing property by using the Voronoi cell
decomposition associated to the points. In particular, they showed that Leja-Bos points
are not asymptotically uniformly distributed since the subsequence consisting of N(n) =
3 · 22(n−1) + 7 · 2n−2 + 1 points, holds

lim
n→∞

card(TN(n) ∩ [0, 1/2] × [0, 1])

N(n)
= lim

n→∞

(2n−1 + 1)(2n + 1)

N(n)
=

2

3
6= 1

2
, (8)

where TN(n) indicates the subsequence of Leja-Bos points consisting of N(n) points (for
more details cf. [5, Proof of Prop. 2.13]).

2.2.1 Numerical experiments for the G.A.

On the basis of the above considerations, it seems natural that a simple direction
of investigation, for checking if the points generated by the G.A. are asymptotically
distributed w.r.t. the L2 metric, is to verify if they form a greedy best-packing set and
how far are from the Leja-Bos points.

So far, we have not any theoretical results but only numerical experiments. To
this aim, we computed the root mean square error, RMSE, of the fill-distances between
the Leja-Bos points (the best-packing set) and the set of points, considered in the
previous session §2.1.1. What is immediately visible is that, for almost all point sets
computed by the G.A. they distribute as Leja-Bos points. Indeed, all errors in Table 2
are decreasing at the number of points increases, independently of the kernel used for
their computation. The worse error, as expected, is obtained for the Dubiner points
(in bold) which are not related to any radial kernel.

134 IM pts. 200 W2 pts. 200 Dubiner pts. 300 P-greedy pts. 406 Leja-like pts.

RMSE 0.0775 0.0773 0.1270 0.0543 0.0233

Table 2: A comparison of the root mean square errors, between the fill-distances of
Leja-Bos points and the set of points already considered in §2.1.1.

For completeness, in Figures 11 and 12, we show 406 Leja-Bos points, the Voronoi
tiles associated to the Leja-Bos points and their mutual fill-distances.

2.2.2 Remarks

1. Except for the Dubiner points, the greedy points computed by the G.A. behave
as the greedy best-packing points. It seems reasonable to prove that they could
not be uniformly equidistributed in the L2 norm.

2. In all experiments we noticed that the fill distances between Leja-Bos points and
the corresponding points considered in §2.1.1, behave almost similarly. For the
case of 406 Leja-Bos and Leja-like points see Figure 12.

3. It is worth mention that the problem of finding well-distributed points depending
on the kernel, can be viewed as a special instance of the more general disk covering
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problem that, in 2 and 3-dimensions, are known as disks and spheres packing,
respectively (cf. e.g. in [1, 9]). Therefore, in 2d and 3d, we have two possibilities
to check if the points generated by the greedy algorithm are optimal:

(a) form a greedy best-packing configuration;

(b) solve a disk or sphere packing problem.

Acknowledgements

This work has been supported by ex 60% funds of the University of Verona.

References

[1] Boll, D.W., Donovan, J, Graham, R. L. and Lubachevsky, B. D. Improving Dense

Packings of Equal Disks in a Square, Elect. J. Combinatorics, Vol. 7 (2000), R 46.

[2] De Marchi, S. On Leja sequences: some results and applications, Appl. Math.
Comput., Vol. 152(3) (2004), 621-647.

[3] Caliari, M., De Marchi, S., and Vianello, M. Bivariate polynomial interpolation on

the square at new nodal sets, Appl. Math. Comput., Vol. 165(2) (2005), 261-274.

[4] De Marchi, S., Schaback, R. and Wendland, H. Near-Optimal Data-independent

Point Locations for Radial Basis Function Interpolation, Adv. Comput. Math.,
Vol. 23(3) (2005), 317-330.
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Figure 2: Left: the plots of the uniformity hn/qn for 134 points for the inverse multi-
quadrics. Right: plots of hn/CΩ,M and 1/

√
n.
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Figure 3: Left: the plots of the uniformity hn/qn for 200 points for the Wendland’s
function. Right: plots of hn/CΩ,M and 1/

√
n.
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Figure 4: Left: the plots of the uniformity hn/qn for 200 Dubiner points. Right: plots
of hn/CΩ,M and 1/

√
n.
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Figure 5: Left: the plots of the uniformity hn/qn for 300 P-greedy points. Right: plots
of hn/CΩ,M and 1/

√
n.
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Figure 6: The plots of hn and CΩ,M for 406 Leja-like points.
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Figure 7: The plots of hn and CΩ,M for 134 inverse multiquadrics points.
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Figure 8: The plots of hn and CΩ,M for 200 Wendland C2 points.
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Figure 9: The plots of hn and CΩ,M for 200 Dubiner points.
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Figure 10: The plots of hn and CΩ,M for 300 P-greedy points.
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Figure 11: 406 Leja-Bos and Leja-like points (above). The Voronoi tiles for the 406
Leja-Bos points (below)
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Figure 12: The plots of the fill-distances for 406 Leja-Bos and Leja-like points


