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Abstract We have implemented in Matlab/Octave two fast algorithms for
bivariate Lagrange interpolation at the so-called Padua points on rectangles,
and the corresponding versions for algebraic cubature.
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1 The Padua points

In this paper, we discuss an efficient implementation in Matlab/Octave (cf. [11,
10]) of bivariate interpolation and cubature at the so-called Padua points.
Such points are the first known example of optimal points for total degree
polynomial interpolation in two variables, with a Lebesgue constant increasing
like log square of the degree; see [1,2,4,5]. Moreover, the associated algebraic
cubature formula has shown a very good behavior, comparable to that of the
one-dimensional Clenshaw–Curtis rule, cf. [13].

Denoting by P
2
n the set of bivariate polynomials of total degree at most n,

the N = (n + 1)(n + 2)/2 = dim
(

P
2
n

)

Padua points (n > 0) are the set of

M. Caliari
University of Verona
Ca’ Vignal 2
Strada Le Grazie, 15
37134 Verona (Italy)
E-mail: {marco.caliari}@univr.it

S. De Marchi, A. Sommariva, and M. Vianello
University of Padua
Via Trieste, 63
35121 Padova (Italy)
E-mail: {demarchi,marcov,alvise}@math.unipd.it



2

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Fig. 1 The Padua points with their generating curve for n = 12 (left, 91 points) and n = 13
(right, 105 points), also as union of two Chebyshev-like grids: filled bullets = CE

n+1 ×CO
n+2,

open bullets = CO
n+1 × CE

n+2.

points

Padn = {ξ = (ξ1, ξ2)} =

{

γ

(

kπ

n(n + 1)

)

, k = 0, . . . , n(n + 1)

}

where γ(t) is their “generating curve” (cf. [1])

γ(t) = (− cos((n + 1)t),− cos(nt)), t ∈ [0, π] (1)

Notice that two of the points are consecutive vertices of the square, 2n − 1
other points lie on the edges of the square, and the remaining (interior) points
are double points corresponding to self-intersections of the generating curve
(see Fig. 1).

The Padua points (for n even) were introduced for the first time in [4,
formula (9)] (in that formula there is a misprint, n − 1 has to be replaced
by n + 1). Denoting by Cn+1 the set of the n + 1 Chebyshev–Gauss–Lobatto
points

Cn+1 = {zn
j = cos((j − 1)π/n), j = 1, . . . , n + 1}

and
CE

n+1 = {zn
j ∈ Cn+1, j − 1 even}

CO
n+1 = {zn

j ∈ Cn+1, j − 1 odd}
then

Padn = (CE
n+1 × CO

n+2) ∪ (CO
n+1 × CE

n+2) ⊂ Cn+1 × Cn+2

which is valid also for n odd.
The fundamental Lagrange polynomials of the Padua points are

Lξ(x) = wξ

(

Kn(ξ,x) − 1

2
T̂n(ξ1)T̂n(x1)

)

(2)
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where Kn(x,y), with x = (x1, x2) and y = (y1, y2), is the reproducing kernel
of the space P

2
n([−1, 1]2) with the inner product

〈f, g〉 =
1

π2

∫

[−1,1]2
f(x1, x2)g(x1, x2)

dx1
√

1 − x2
1

dx2
√

1 − x2
2

(3)

that is

Kn(x,y) =

n
∑

k=0

k
∑

j=0

T̂j(x1)T̂k−j(x2)T̂j(y1)T̂k−j(y2)

Here T̂j denotes the scaled Chebyshev polynomial of degree j, i.e. T̂0 = T0 ≡ 1,

T̂p =
√

2Tp, Tp(·) = cos(p arccos(·)), and {T̂j(x1)T̂k−j(x2), 0 ≤ j ≤ k ≤ n}
is the product Chebyshev orthonormal basis corresponding to (3) (cf. [8]).
Moreover, the weights wξ are

wξ =
1

n(n + 1)
·











1/2 if ξ is a vertex point

1 if ξ is an edge point

2 if ξ is an interior point

We notice that the {wξ} are indeed weights of a cubature formula for the
product Chebyshev measure in (3), which is exact on “almost all” polynomials
in P

2
2n([−1, 1]2), namely on all polynomials orthogonal to T2n(x1). Such a

cubature formula is derived from quadrature along the generating curve and
is the key to obtaining the fundamental Lagrange polynomials (2); cf. [1].

Finally, extension to degree n = 0 is trivial: if we take as unique Padua
point the point ξ = (−1,−1) given for t = 0 by the generating curve (1) and
the corresponding Lagrange polynomial (2), then it follows that wξ = 2.

2 Fast computation of the interpolation coefficients

The polynomial interpolation formula can be written in the bivariate Cheby-
shev orthonormal basis as

Lnf(x) =
∑

ξ∈Padn

f(ξ)wξ

(

Kn(ξ,x) − 1

2
T̂n(ξ1)T̂n(x1)

)

=

n
∑

k=0

k
∑

j=0

cj,k−j T̂j(x1)T̂k−j(x2) −
1

2

∑

ξ∈Padn

f(ξ)wξT̂n(ξ1)T̂0(ξ2)T̂n(x1)T̂0(x2)

=

n
∑

k=0

k
∑

j=0

cj,k−j T̂j(x1)T̂k−j(x2) −
cn,0

2
T̂n(x1)T̂0(x2) (4)

where the coefficients are defined as

cj,k−j =
∑

ξ∈Padn

f(ξ)wξT̂j(ξ1)T̂k−j(ξ2), 0 ≤ j ≤ k ≤ n (5)
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We can define the (n + 1) × (n + 2) matrix computed corresponding to the
Chebyshev-like grid Cn+1 × Cn+2 with entries

G(f) = (gr,s) =

{

wηf(η) if η = (zn
r , zn+1

s ) ∈ Padn

0 if η = (zn
r , zn+1

s ) ∈ (Cn+1 × Cn+2) \ Padn

In [5] we computed the coefficients (5) by a double matrix-matrix product
involving the matrix G(f). For the sake of completeness, we report again that
construction. Given a vector S = (s1, . . . , sm) ∈ [−1, 1]m, first we define the
rectangular Chebyshev matrix

T(S) =







T̂0(s1) · · · T̂0(sm)
... · · ·

...

T̂n(s1) · · · T̂n(sm)






∈ R

(n+1)×m (6)

Then it is easy to check that the coefficients cj,l, 0 ≤ j ≤ n, 0 ≤ l ≤ n − j are
the entries of the upper-left triangular part of the matrix

C(f) = T(Cn+1) G(f) (T(Cn+2))
t (7)

where, with a little abuse of notation, Cn+1 = (zn
1 , . . . , zn

n+1) is the vector of
the Chebyshev–Gauss–Lobatto points, too. We shall term (7) MM-old algo-
rithm, cf. [5].

First, we present here a more refined matrix algorithm, by exploiting the
fact that the Padua points are union of two Chebyshev subgrids. Indeed, defin-
ing the two matrices

G1(f) =
(

wξf(ξ) , ξ = (zn
r , zn+1

s ) ∈ CE
n+1 × CO

n+2

)

G2(f) =
(

wξf(ξ) , ξ = (zn
r , zn+1

s ) ∈ CO
n+1 × CE

n+2

)

then we can compute the coefficient matrix as

C(f) = T(CE
n+1) G1(f) (T(CO

n+2))
t + T(CO

n+1) G2(f) (T(CE
n+2))

t (8)

by storing and multiplying matrices of smaller dimension than those in (7).
Indeed, in (8) the T matrices have size about n × n/2 and the G matrices
about n/2 × n/2, whereas all matrices in (7) have size about n × n. We term
this method MM (Matrix Multiplication) in the numerical tests.

Moreover, we pursue an alternative computational strategy, based on the
special structure of the Padua points. Indeed, the coefficients cj,l can be rewrit-
ten as

cj,l =
∑

ξ∈Padn

f(ξ)wξT̂j(ξ1)T̂l(ξ2) =
n

∑

r=0

n+1
∑

s=0

gr,sT̂j(z
n
r )T̂l(z

n+1
s )

= βj,l

n
∑

r=0

n+1
∑

s=0

gr,s cos
jrπ

n
cos

lsπ

n + 1
= βj,l

M−1
∑

s=0

(

N−1
∑

r=0

g0
r,s cos

2jrπ

N

)

cos
2lsπ

M
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Input: Gf↔ G(f)

% compute the coefficient matrix by a double FFT

Gfhat = real(fft(Gf,2*n)); % 1-dimensional FFT along columns

Gfhat = Gfhat(1:n+1,:);

Gfhathat = real(fft(Gfhat,2*(n+1),2)); % 1-dimensional FFT along rows

Cf = Gfhathat(:,1:n+1);

Cf = 2*Cf;

Cf(1,:) = Cf(1,:)/sqrt(2);

Cf(:,1) = Cf(:,1)/sqrt(2);

% compute the interpolation coefficient matrix

C0f = fliplr(triu(fliplr(Cf))); % extract the upper left triangular part

C0f(n+1,1) = C0f(n+1,1)/2;

Output: C0f↔ C0(f)

Table 1 Fragment of Matlab/Octave code for the fast computation of the interpolation
coefficient matrix.

where N = 2n, M = 2(n + 1) and

βj,l =











1 j = l = 0

2 j 6= 0, l 6= 0
√

2 otherwise

g0
r,s =

{

gr,s 0 ≤ r ≤ n and 0 ≤ s ≤ n + 1

0 r > n or s > n + 1

Then, it is possible to recover the coefficients cj,l by a double Discrete Fourier
Transform, namely

ĝj,s = Re

(

N−1
∑

r=0

g0
r,se

−2πijr/N

)

, 0 ≤ j ≤ n, 0 ≤ s ≤ M − 1

cj,l

βj,l
= ˆ̂gj,l = Re

(

M−1
∑

s=0

ĝj,se
−2πils/M

)

, 0 ≤ j ≤ n, 0 ≤ l ≤ n − j

(9)

The Matlab/Octave code for the computation of the interpolation coefficient
matrix by a double Fast Fourier Transform (the FFT-based method) is re-
ported in Table 1. We note that all indexes starting from 0 are shifted by 1
(as required in Matlab/Octave) and that we are using the Matlab subindexing
notation to identify submatrices.

According to [5], we call C0(f) the interpolation coefficient matrix

C0(f) = (c′j,l) =

















c0,0 c0,1 · · · · · · c0,n

c1,0 c1,1 · · · c1,n−1 0
...

... . .
.

. .
. ...

cn−1,0 cn−1,1 0 · · · 0
cn,0

2
0 · · · 0 0

















∈ R
(n+1)×(n+1) (10)

which is essentially the upper-left triangular part of the matrix C(f), but the
modification on the last element of the first column.
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Input: X↔ X, grid, C0f↔ C0(f)

% compute the Chebyshev matrices

TX1 = cos([0:n]’*acos(X(:,1)’));

TX2 = cos([0:n]’*acos(X(:,2)’));

TX1(2:n+1,:) = TX1(2:n+1,:)*sqrt(2);

TX2(2:n+1,:) = TX2(2:n+1,:)*sqrt(2);

if (grid == false)

% LnfX corresponds to the set of scattered points [X(:,1),X(:,2)]

LnfX = sum((TX1’*C0f).*TX2’,2);

else

% LnfX corresponds to the grid of points meshgrid(X(:,1),X(:,2))

LnfX = (TX1’*C0f*TX2)’;

end;

Output: LnfX↔ Lnf(X)

Table 2 Fragment of Matlab/Octave code for the evaluation of the interpolation formula
on a vector or on a grid of target points.

Remark 1 It is worth comparing the computational complexity, say c(n), of the
three methods described by formulas (7), (8) and (9) for the computation of the
interpolation coefficients. It is easy to see that, asymptotically, c(n) ∼ 4n3 for
(7), c(n) ∼ 2n3 for (8), and c(n) = O(n2 log n) for (9). Nevertheless, as shown
in Section 4, the matrix multiplication methods turn out to be competitive
with the FFT-based method up to high degrees.

2.1 Evaluation of the interpolant

For a given function f and degree n, the interpolation coefficient matrix C0(f)
can be computed once and for all. Then, it is easy to see that the polynomial
interpolation formula (4) can be evaluated at any x = (x1, x2) ∈ [−1, 1]2 by

Lnf(x) = (T(x1))
t

C0(f) T(x2)

It is also possible to evaluate the polynomial interpolation formula on a set
X of target points, at the same time. Given the vector X1 of the first compo-
nents of a set of target points and the vector X2 of the corresponding second
components, then

Lnf(X) = diag
(

(T(X1))
t
C0(f)T(X2)

)

(11)

The result Lnf(X) is a (column) vector containing the evaluation of the inter-
polation polynomial at the corresponding target points. There exists a nice way
to compute (11) without performing the two whole matrix products, whose
Matlab/Octave code is given in Table 2 (grid == false branch).

If the target points are a Cartesian grid X = X1 × X2, then it is possible
to evaluate the polynomial interpolation in a more compact form

Lnf(X) =
(

(T(X1))
t
C0(f)T(X2)

)t

(12)
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The result Lnf(X) is a matrix whose i-th row and j-th column contains the
evaluation of the interpolation polynomial at the point with first component
the j-th element in X1 and second component the i-th element in X2. In fact,
this is the usual way a Cartesian grid is constructed in Matlab/Octave, via
the built-in function meshgrid (see [11]). Also instance (12) is implemented
in the code (else branch in Table 2).

Remark 2 We notice that the interpolation formulas above can be immedi-
ately extended to arbitrary rectangles [a, b] × [c, d], by the standard affine
transformation. This possibility is automatically managed by the code.

3 Fast computation of the cubature weights

In a recent paper [13], the interpolatory cubature formula corresponding to the
Padua points has been studied. It has been called “nontensorial Clenshaw–
Curtis cubature” since it is a bivariate analogue of the classical Clenshaw–
Curtis quadrature formula (cf. [6]), in the total-degree polynomial space. From
the results of the previous section, we can write

∫

[−1,1]2
f(x)dx ≈ In(f) =

∫

[−1,1]2
Lnf(x)dx =

n
∑

k=0

k
∑

j=0

c′j,k−j mj,k−j

=

n
∑

j=0

n
∑

l=0

c′j,l mj,l =

n
∑

j=0
j even

n
∑

l=0
l even

c′j,l mj,l (13)

where the mj,l are the Chebyshev moments, i.e.

mj,l =

∫ 1

−1

T̂j(t)dt

∫ 1

−1

T̂l(t)dt

We have

∫ 1

−1

T̂j(t)dt =



















2 j = 0

0 j odd

2
√

2

1 − j2
j even

and then, defining the Chebyshev even-moment matrix

M = (mj,l), 0 ≤ j, l ≤ n, j even, l even

the cubature formula (13) can be evaluated by the Matlab/Octave code re-
ported in Table 3, where we have used the fact that only the (even,even) pairs
of indexes are active in the summation process.

On the other hand, it is often desiderable to have a cubature formula that
involves only the function values at the nodes and the corresponding cubature
weights. Again, a simple matrix formulation is available, using the fact that
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Input: C0f↔ C0(f)

% compute the even Chebyshev moments

k = [0:2:n]’;

mom = 2*sqrt(2)./(1-k.^2);

mom(1) = 2;

% compute the Chebyshev even-moment matrix

[M1,M2] = meshgrid(mom);

M = M1.*M2;

% compute the moment-based cubature formula

Int = sum(sum(C0f(1:2:n+1,1:2:n+1).*M));

Output: Int↔ In(f)

Table 3 Fragment of Matlab/Octave code for the evaluation of the cubature formula by
moments.

the Padua points are the union of two subgrids of product Chebyshev points.
First, observe that

In(f) =

n
∑

j even

n
∑

l even

c′j,l mj,l =

n
∑

j=0
j even

n
∑

l=0
l even

cj,l m
′

j,l

where m′

n,0 = mn,0/2 for n even, and m′

n−1,0 = mn−1,0 for n odd.
Now, using the formula for the coefficients (5) we can write

In(f) =
∑

ξ∈Padn

λξ f(ξ)

=
∑

ξ∈CE
n+1

×CO
n+2

λξ f(ξ) +
∑

ξ∈CO
n+1

×CE
n+2

λξ f(ξ)

where

λξ = wξ

n
∑

j=0
j even

n
∑

l=0
l even

m′

j,l T̂j(ξ1)T̂l(ξ2) (14)

It is convenient to define the modified Chebyshev even-moment matrix

M0 = (m′

j,l) =















m0,0 m0,2 · · · · · · m0,pn

m2,0 m2,2 · · · m2,pn−2 0
...

... . .
.

. .
. ...

mpn−2,0 mpn−2,2 0 · · · 0
m′

pn,0 0 · · · 0 0















∈ R
([ n

2
]+1)×([ n

2
]+1)

where pn = n for n even, and pn = n − 1 for n odd, the Chebyshev matrix
corresponding to even degrees (cf. (6))

T
E(S) =











T̂0(s1) · · · T̂0(sm)

T̂2(s1) · · · T̂2(sm)
... · · ·

...

T̂pn
(s1) · · · T̂pn

(sm)











∈ R
([ n

2
]+1)×m
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Input: W1↔
`

wξ , ξ ∈ CE
n+1 × CO

n+2

´

t
, W2↔

`

wξ , ξ ∈ CO
n+1 × CE

n+2

´

t

% compute the Chebyshev matrices on the two subgrids

argn1 = linspace(0,pi,n+1);

argn2 = linspace(0,pi,n+2);

k = [0:2:n]’;

l = (n-mod(n,2))/2+1;

TE1 = cos(k*argn1(1:2:n+1));

TE1(2:l,:) = TE1(2:l,:)*sqrt(2);

TO1 = cos(k*argn1(2:2:n+1));

TO1(2:l,:) = TO1(2:l,:)*sqrt(2);

TE2 = cos(k*argn2(1:2:n+2));

TE2(2:l,:) = TE2(2:l,:)*sqrt(2);

TO2 = cos(k*argn2(2:2:n+2));

TO2(2:l,:) = TO2(2:l,:)*sqrt(2);

% compute the modified Chebyshev even-moment matrix

mom = 2*sqrt(2)./(1-k.^2);

mom(1) = 2;

[M1,M2] = meshgrid(mom);

M = M1.*M2;

M0 = fliplr(triu(fliplr(M))); % extract the upper left triangular part

if (mod(n,2) == 0)

M0(n/2+1,1) = M0(n/2+1,1)/2;

end

% compute the cubature weights on the two subgrids

L1 = W1.*(TE1’*M0*TO2)’;

L2 = W2.*(TO1’*M0*TE2)’;

Output: L1↔
`

λξ , ξ ∈ CE
n+1 × CO

n+2

´

t
, L2↔

`

λξ , ξ ∈ CO
n+1 × CE

n+2

´

t

Table 4 Fragment of Matlab/Octave code for the computation of the cubature weights.

and the matrices of interpolation weights on the subgrids of Padua points,

W1 =
(

wξ, ξ = (zn
r , zn+1

s ) ∈ CE
n+1 × CO

n+2

)t

W2 =
(

wξ, ξ = (zn
r , zn+1

s ) ∈ CO
n+1 × CE

n+2

)t

It is then easy to show that the cubature weights {λξ} can be computed in
the matrix form

L1 =
(

λξ, ξ = (zn
r , zn+1

s ) ∈ CE
n+1 × CO

n+2

)t
= W1 ·

(

T
E(CE

n+1))
t
M0T

E(CO
n+2)

)t

L2 =
(

λξ, ξ = (zn
r , zn+1

s ) ∈ CO
n+1 × CE

n+2

)t
= W2 ·

(

T
E(CO

n+1))
t
M0T

E(CE
n+2)

)t

where the dot denotes the Hadamard (or Schur) product (entrywise product).
The corresponding Matlab/Octave code is reported in Table 4. The definition
of the weights matrices Li, i = 1, 2, makes use of transposes in order to be
compatible with the Matlab/Octave meshgrid-like structure of the matrices
Wi (see also (12)).

An alternative approach for the computation of the cubature weights is
based on the observation that (14) itself is a double Discrete Fourier Transform,
in some sense “dual” with respect to that for the interpolation coefficients
(the roles of the points and of the indexes are interchanged). An FFT-based
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implementation is then feasible, in analogy to what happens in the univariate
case with the Clenshaw–Curtis formula (cf. [15]). The algorithm is quite similar
to that in Table 1, and we do not describe it for brevity. A comparison of the
computational complexities shows that c(n) ∼ n3 for the MM method and
c(n) = O(n2 log n) for the FFT-based method.

It is worth recalling that the cubature weights are not all positive, but the
negative ones are few and of small size. Indeed, the cubature formula is stable
and convergent for every continuous integrand, since

lim
n→∞

∑

ξ∈Padn

|λξ| = 4

as it has been proved in [13].

Remark 3 As with interpolation, the code automatically manages cubature
over arbitrary rectangles [a, b] × [c, d].

4 Numerical tests

In this section we present some numerical tests on the accuracy and perfor-
mance of the various implementations of interpolation and cubature at the
Padua points. All the experiments have been made by the Matlab/Octave
package Padua2DM (see Section 5), run in Matlab 7.6.0 on an Intel Core2 Duo
2.20GHz processor. Similar results have been obtained with the self-compiled
3.2.3 version of Octave.

n 20 40 60 80 100 300 500 1000
MM-old 0.001 0.002 0.004 0.006 0.010 0.119 0.302 1.624

MM 0.002 0.003 0.003 0.008 0.008 0.101 0.298 1.353
FFT 0.001 0.001 0.001 0.002 0.003 0.034 0.115 0.387

Table 5 CPU time (in seconds, average over 100 runs) for the computation of the interpo-
lation coefficients at a sequence of degrees.

n 20 40 60 80 100 300 500 1000
MM 0.001 0.001 0.001 0.002 0.003 0.027 0.092 0.554
FFT 0.001 0.001 0.002 0.002 0.004 0.028 0.111 0.389

Table 6 CPU time (in seconds, average over 100 runs) for the computation of the cubature
weights at a sequence of degrees.

In Tables 5 and 6 we show the CPU times (seconds) for the computation
of the interpolation coefficients and cubature weights at a sequence of degrees,
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by the MM and the FFT-based algorithms. Concerning interpolation (Ta-
ble 5) we also give a comparison with a Matlab/Octave implementation of the
algorithm in [5], termed MM-old. Despite of the remarkable difference in the
theoretical computational complexities, the matrix multiplication methods are
comparable or even superior than the FFT-based up to high degrees. This is
a well-known phenomenon in the computation of Discrete Fourier Transforms
(see, for instance, [3, § 10.5]). Indeed, due to the use of optimized BLAS (Ba-
sic Linear Algebra Subprograms) by Matlab/Octave, the matrix multiplication
methods are much more competitive than operation counts indicate.

The results suggest that, tendentially, the FFT-based method is preferable
for interpolation, whereas the MM method is better for cubature. Indeed,
the MM algorithm is more efficient than the FFT-based one in the cubature
instance, since the matrices have lower dimension due to restriction to even
indexes, and is competitive with the FFT up to very high degrees.

In Figure 2 we report the relative errors of interpolation (top) and cubature
(bottom) versus the polynomial degree for the classical Franke test function
in [0, 1]2 (cf. [9]), namely

f(x1, x2) =
3

4
exp(−((9x1 − 2)2 + (9x2 − 2)2)/4)

+
3

4
exp(−(9x1 + 1)2/49 − (9x2 + 1)/10)

+
1

2
exp(−((9x1 − 7)2 + (9x2 − 3)2)/4)

− 1

5
exp(−(9x1 − 4)2 − (9x2 − 7)2)

(15)

The interpolation errors are in the max norm on a suitable control mesh,
normalized to the maximum deviation of the function from its mean. Here a
second advantage of the FFT-based method for interpolation appears: it is
able to attain close to machine precision, whereas the MM algorithm stag-
nates around 10−13. On the contrary, the MM algorithm seems more stable
for cubature than for interpolation setting, and reaches the machine precision
error level. These observations have been confirmed by many other numerical
experiments.

In Figures 3 and 4 we show the interpolation and cubature errors versus
the number of points (i.e., of function evaluations), for a Gaussian

f(x1, x2) = exp(−(x2
1 + x2

2)), (x1, x2) ∈ [−1, 1]2 (16)

and a C2 function (with third derivatives singular at the origin)

f(x1, x2) = (x2
1 + x2

2)
3/2, (x1, x2) ∈ [−1, 1]2 (17)

Interpolation and cubature at the Padua points are compared with tensorial
formulas, and in the case of cubature also with the few known minimal formulas
(cf. [12]).
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Fig. 2 Relative errors of interpolation (top) and cubature (bottom) versus the interpolation
degree for the Franke test function (see (15)) in [0, 1]2, by the Matrix Multiplication (MM)
and the FFT-based algorithms.

We see two opposite situations. Concerning interpolation, the Padua points
perform better than tensor-product Chebyshev–Lobatto points only with reg-
ular functions. On the other hand, nontensorial cubature at the Padua points
performs always better than tensorial Clenshaw–Curtis cubature (which, as
known, uses tensor-product Chebyshev–Lobatto points). However, it is less
accurate than tensorial Gauss–Legendre–Lobatto and minimal formulas on an-
alytic entire functions, whereas it appears the best one, even with respect to
the minimal formulas, on less regular functions. This phenomenon, confirmed
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Fig. 3 Relative interpolation errors versus the number of interpolation points for the Gaus-
sian (top, see (16)) and the C2 function (bottom, see (17)) in [−1, 1]2; Tens. CL = Tensorial
Chebyshev–Lobatto interpolation.

by many other examples (cf. [13]) and present also in 3d with nontensorial
cubature at new sets of Chebyshev hyperinterpolation points (cf. [7]), is quite
similar to that studied in the one-dimensional case for the classical Clenshaw–
Curtis formula (cf. [14]), but is still theoretically unexplained in the multivari-
ate setting. Nevertheless, numerical cubature at the Padua points seems to
provide one of the best algebraic cubature formulas presently known for the
square.
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Fig. 4 Relative cubature errors versus the number of cubature points (CC = Clenshaw–
Curtis, GLL = Gauss–Legendre–Lobatto, OS = Omelyan–Solovyan) for the Gaussian f(x) =
exp (−|x|2) (top) and the C2 function f(x) = |x|3 (bottom); the integration domain is
[−1, 1]2, the integrals up to machine precision are, respectively: 2.230985141404135 and
2.508723139534059.

5 Code

The software Padua2DM runs both in Matlab and in Octave. It consists of two
main functions: pdint for interpolation and pdcub for cubature on rectangles.

• pdint: calls three other functions: pdpts, that produces Padua points;
pdcfsFFT that constructs the interpolation coefficient matrix (10) using
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the FFT-based method, and pdval that evaluates the interpolant on a set
of target points. For completeness we also provide the function pdcfsMM,
which computes the interpolation coefficient matrix using the Matrix Mul-
tiplication (MM) method described in Section 2.

• pdcub: calls, as for pdint, the function pdpts, and pdwtsMM which com-
putes the cubature weights using the MM method. For completeness we
included also the function pdwtsFFT which uses the FFT-based method to
compute the weights.

The package provides many demonstration scripts, whose names are demo_*,
which basically reproduce all numerical experiments presented in the paper.
The auxiliary functions testfunct, cubature_square, omelyan_solovyan_rule
are used within the demo scripts.

For more details concerning input and output parameters and the usage of
single functions, see the corresponding help.

The package has been successfully tested on Matlab 6.1.x, 6.5.x, 7.6.x and
Octave 3.0.x, 3.1.x, 3.2.x.

The software is available from Netlib (http://www.netlib.org/numeralgo/)
as na29 package, as a single .tgz (tar zipped) archive.

References

1. Bos, L., Caliari, M., De Marchi, S., Vianello, M., Xu, Y.: Bivariate Lagrange interpola-
tion at the Padua points: the generating curve approach. J. Approx. Theory 143, 15–25
(2006).

2. Bos, L., De Marchi, S., Vianello, M., Xu, Y.: Bivariate Lagrange interpolation at the
Padua points: the ideal theory approach. Numer. Math. 108, 43–57 (2007).

3. Boyd, J. P.: Chebyshev and Fourier Spectral Methods, Second edition, Dover, New York
(2001).

4. Caliari, M., De Marchi, S., Vianello, M.: Bivariate polynomial interpolation on the
square at new nodal sets. Appl. Math. Comput. 165, 261–274 (2005).

5. Caliari, M., De Marchi, S., Vianello, M.: Algorithm 886: Padua2D: Lagrange Inter-
polation at Padua Points on Bivariate Domains. ACM Trans. Math. Software 35-3,
21:1–21:11 (2008).

6. Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic
computer. Numer. Math. 2, 197–205 (1960).

7. De Marchi, S., Vianello, M., Xu, Y.: New cubature formulae and hyperinterpolation in
three variables. BIT Numerical Mathematics 49(1), 55–73 (2009).

8. Dunkl, C.F. and Xu, Y.: Orthogonal polynomials of several variables, Cambridge Uni-
versity Press, Cambridge, 2001.

9. Franke, R.: A critical comparison of some methods for interpolation of scattered data,
Naval Postgraduate School Monterey CA, Tech. Rep. NPS-53-79-003, March 1979.

10. GNU Octave, http://www.gnu.org/software/octave/.
11. MATLAB, http://www.mathworks.com/products/matlab/.
12. Omelyan, I.P., Solovyan, V.B.: Improved cubature formulae of high degrees of exactness

for the square. J. Comput. Appl. Math. 188, 190–204 (2006).
13. Sommariva, A., Vianello, M., Zanovello, R.: Nontensorial Clenshaw–Curtis cubature.

Numer. Algorithms 49, 409–427 (2008).
14. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw–Curtis?. SIAM Rev. 50,

67–87 (2008).
15. Waldvogel, J.: Fast construction of the Fejér and Clenshaw–Curtis quadrature rules.

BIT Numerical Mathematics 46, 195–202 (2006).


