Translation of the paper by B. Germansky
“On the systems of Fekete-points of an arc of circumference”

done by L. Brutman and S. De Marchi

Abstract

This paper is the complete translation in English from Hebrew of the paper On the systems
of Fekete-points of an arc of circumference by Baruch Germansky, whose small summary in
English can be found in the journal Riveon Lematematika 3 (1949), 56-57, the same issue
where appeared the original paper. The translation was required by Stefano De Marchi to
Lev Brutman during his stay at the University of Udine in 1997. After his death, we present
this translation as a tribute and a “posteriori work” to a nice man and good mathematician
as was Prof. Lev Brutman.

1 Part A

Let E be the infinite set of points bounded and closed in the z-plane. Let us take from E, n
points, n 2( 2,521, ...,%2n and let us form the geometric mean of the distances of the points,
ielet k = 22l

2

k H |2 — 2]

1<u<v<n

The maximum of this geometric mean, when z1,...,z, vary arbitrarily on E is called the
diameter of the order n of the set E. This diameter is expected at least for one system of n
points from E, and the system is called system of Fekete-nodes (or Fsystem of order n of E).

F-systems play a fundamental role in the theory of trasfnite diameter as well as approximation
theory and interpolation. F-systems were known until my previous paper only for intervals of R,
for circle as well as for any set E whose boundary is the circle. In this work we shall deal with
F-systems for the arc of the circle and we shall give some theorems concerning the distribution
of the location of the points on the arc, as well as the number of such systems of a given order.
As we shall see later, our problem, for a given arc and n sufficiently large, is part of the following
general problem:

Problem. 1: Find F-systems of (n-2)-points on every circle, such that together
with two fixed points, in such a way they give relative maxima for the geometric
mean on the circle.

2 Part B

Let us first prove the following theorem.

Theorem 1 Let A be the arc of the unit circle C in the z-plane with opening o,0 < a < 2.
We shall distinguish two cases:



(1) O0<a<lm

(2) < a<27.

In the case (1), every F-system of Aincludes both the end points of A. The same will be true in
the case (2) for those F-systems of A for which the order n satisfies the following condition
n> 2",
= 27—«
On the other hand, in the case (2) there are no F-systems of A that will include simultaneously
both end points if the order satisfies

27
2<n< .
2r — «
Since in the case (1), the condition 2 < n < Z;i—ia, is also satisfied and since n > 2, we get
that 5
n > T .
2T — «

Therefore we may reformulate the Theorem 1 in a shorter way.

Theorem 2 Let A be the arc of the unit circle C, with opening «,0 < a < 2. In the case (1)
n > 273fa every F-system of of order n includes both the end points of A. Otherwise, in the case

2§n<273f

—, no F-systems of order n can include simultaneously both the end points of A.

Note. We shall see later, that for the case n > 2, n < 27?—3); there are infinite numbers of
2

5. < n there is only one F-system of order n.

F-systems of order n while in the case

3 Part C

Theorem 2 follows from the following theorem.

Theorem 3 When n points z1,...,2n,n > 2 vary on C in arbitrary way then the following
function

(3) Az1,...,2n) = H |2 — 2ul,

1<pu<v<n

assume relative maxima only for those values of the variables z1,.. ., z, which correspond to
the vertices of the reqular polygon of order n inscribed in C. Since all these relative mazima are
the same, therefore the vertices of this regular polygon are the F-system of order n of the circle

C.

Proof. The short proof of this theorem is due to M. Fekete. For n > 2, and z1,...,2,
arbitrary points on C. Denoting in the usual way their conjugates as z1,..., 2, , we can write

4) AQ(zl, ceayZp) = H (zy — 20)(Zy —

1<pu<v<n



= I Gu-a)o-2)=

1<pu<v<n H Ay
_1)%
= % H (Zﬂ - ZV)2'
(2122...2p) 1<piv<n
Let us denote the last rational depending on z1,...,z, by F(z1,...,2,), ie.

(5) F(z1,...,20) = Lgn—l H (Zu _ ZV)Z‘
(z122...2p) <psr<n

This function is denoted in all the z-plane of z1,..., 2, excluding the points zero oo, and it
coincides according to the above calculations, for

(6) =€z, =6 0< ¢, <2mi=1,2,...,n,
with A2(21,..., z,), since for those values of z1, ..., z, the functions A(zy, ..., 2,), A%(21,..., 2,)
and F(z1,...,2,) assume simultaneously their maximum. Therefore, the vanishing of

OF (e%1,. .., e%n) OF (1. .., ¢e'n)
90, Yoy 0,

are the necessary conditions for finding the relative maximum of A(zy,...,z,) on C.

However, for all 1 < v < n, we have

OF (et ... e¥n)  QF ("', ... e"¥n) 0z, 8F(Z1"”’zn)iz

by ozv 0y dzv

Therefore, since for 1 < v < n, z, # 0, the conditions for relative maxima are

0F(z1,.-.,%
(7) %zﬂ,uzl,...,n.
Let us denote the values z1,...,z2,, which give the relative maximum to A by <i,...,S,-

Then, a simple computation shows that conditions (7) are equivalent, if we take in account (5),
to the following ones:

8 = =1,...,n.
( ) _Z Sy — S S v ’ ) T
p=1mu#v
Let us write
9) plz)=(z—a1)...(z =) = 2"+ 12" "+ ... +cn,

then, the equation (8) can be represented as follows

p”(gy) _n—- 1

(10) P @

,v=1...,n.
From this, it follows that the polynomial

(n = 1)p'(2) — 2p"(2),



which is in order (n — 1) at most, has n distinct zeros, and its zeros <1, 2, .. .,s, are so that
the function A(zy,..., 2,) attains its relative maximum value on C.
From this, it follows that

(11) (n—1)p'(2) — 2p"(2) =0,

is equivalent to

d p'(2)

12 — =0.
(12) 46
Therefore
(13) p'(2) = constz™ 1,

On the other hand, according to (9), since p'(z) = nz" "1+ (n —1)c12" 2 +... + c,_1 it follows

(14) 012022...:Cn_1:0,
that is
(15) p(2) = 2" + ¢y.

However, in accordance to (9),

cn=(—1)"¢162... Sp,

therefore, taking into account that |¢,| = 1,v =1,...,n we get
(16) len| = 1.

From this fact, Theorem 3 follows. O

4 Part D

We shall prove now, with the help of Theorem 3, Theorem 1.

Proof. of Theorem 1.

e Let us start with case 1. When 0 < a < 7, some Fsystems of order n,¢i,...,¢, of A does
not include both end points simultaneously. Then the points ¢‘1,...,¢", ¢, =g’ v=1,...,n
with € real and small in absolute value (it simply rotates the points), then these points will be a
new Fsystem which is inside A. Hence, these points give a relative maxima to A(z1,...,2,) on
the circle C. According to Theorem 3, the points ¢‘1,...,s, should be the vertices of the regular
polygon with n sides, inscribed in C. But, from our hypothesis on o,0 < a < 7,n > 2, it follows
that inside A there is no room for all vertices of the regular polygon, since the regular polygon
which has the smallest number of sides, namely 2, requires that all the openings a,a > 7, in
order that all the points will be inside A.

Therefore, our assumption in not true, and the Fsystem which we are dealing with, includes
in the case 1 both end points simultaneously.

e Let us turn to the case 2, 7 < a < 2|pi.

When n > Qf—fa, the proof that any Fsystem of order n, of A, includes both end points

2w

7 L€

of A simultaneously, is analogous to the proof of the case 1. While in the case n <



2% > 27 — «, there is room inside A for the regular polygon having nsides and since these
vertices of the regular polygon give the maximum of A(zy,...,z2,) for all circles C, then they
give a fortiori a maximum of A(z1,...,2,) for the arc A. Thus, any system of n vertices of such
regular polygon which is located inside A, is the Fsystem of order n of A.

Now, let us point out the fact that any system of n points of A, which is different from the
system of the vertices of regular polygon, correspond to the values of A(zy,...,z2,) which is
smaller than the maximum (which was mentioned above) as well as to the fact that this regular
polygon can include at most one endpoint of A. Thus, we conclude that no such Fsystem of A
which in our case includes both endpoints simultaneously.

This concludes the proof of Theorem 1. O

We also obtained the result that, in the case we have dealt with, there is an innite number

of Fsystem of order n of A.

5 Part E

In order to study more carefully the location of the points ¢i,...,¢, of the Fsystem of order
n,n > 3, of A in the case when 2 points of the system coincide with the endpoints u and v of
A ( Theorem 1, gives the necessary and sufficient conditions for this). Up to determining these
points as a function of n,u,v, we shall consider the following general maximum problem, for
which the Fsystem, in the case we mentioned before, is one of its solutions.

Problem. 2 Find n points ¢i,¢2,...,5, on the unit circle C,C = A + A such that two
of them, say ¢1,¢, coincide correspondingly with « and v, and the remaining (n — 2) points
2,y .- ySn—1 give to A(u, z2,...,2n—1,v) relatively maximum when zs, ..., z,—1 vary arbitrary on
C. Part of them on A and rest on A.

We shall solve the Problem 2 by giving a common characterization of maximal systems
S1y---5%n, which give the solution of the maximum problem above, by finding the differential
equation for this polynomial

n
(17) p(z) = H (z—q)=2"+c12" ' 4+... +ep_1z24+cp,n>3

v=1

and ¢1 = u, S, = v.
Since <2, ..., $p—1 give to A(u, 22,...,2,-1,v) a relative maximum when zs, ..., z,_1 vary on
C, as before, by means of the following identity

A%(u, 29, ...y 2n_1,0) = F(u, 22, ..., 2p_1,0)
when the absolute value of u,z9,...,2,_1,v are equal to 1 (compare with Part C), it follows
necessarily
8F(U72278...’2n1’v) - 071/ — O’-.-jn_ 1
2y
when 2z, =¢,,v=2,...,n— 1.

Therefore, compare with Part C, for p(z) the following equation is true:
(n—1p'(¢) —p"(c,) =0v=2,...,n—1.

In other words, the points ¢1,¢2,-..,¢, are the zero points of the polynomial



n—1

(18) (n—1)p'(2) —ap'(2) = Z p(n — e,

of degree n — 2 in z. On the other hand, they are the zero points of the polynomial

p(z) _ .n—2
—(z—u)(z—v)_z +....
Therefore, p(z) satisfies the differential equation
19 _ 1 / -G, /! — A p('z)
(19) (n—=1)p'(2) — ap”(2) [EEIEEnE

where ) is constant corresponding to the maximal system from which we started. In addition
to this p(z) satisfies the boundary conditions

(20) p(u) = 0,p(v) = 0.

6 PartF

Now, we shall prove that conversely the value A determines the polynomial p(z) or alternately
the maximum system ¢i,...,¢, when (17), (19) and (20) are satisfied. Indeed, in (19) we
compared the coefficients by the powers 271, 2%, ..., 2772 of both sides of this equation. Taking
into account (18) and the following expansion of the right hand side by decreasing powers of z

(21) /\% = /\p(Z) é Z(:fg =

= A2 Ao+ wn)2" P Aea +w)2 T
oot )\(co'—l + wico —2+... + wy_oc1 + wo__l)zn—a—l +...

et AMep—2 +wien — 34+ ...+ wp—3c1 + wp—2)+

+A(cp—1 +wien =2+ ...+ wp_0c1 FwWp—1) + ...

22 w0=1w1:u+vw2=u2+uv+v2...
( 7 7 7

w1 =u T +u" o4+ w0

Wne1 =u" T U 204w 2

Then, we obtain the following representation

(23) I(n—1)c; = A



2(n —2)ez = Mey + wr)
3(n — 3)03 = )\(62 + wicr + wg)
on—0)ceg = Mcg-1 +wice2+ ... w201 +wy—1)

(n=1)ep—1 = Mep—2 + wicn—3 + ... + wp_3c1 + wp—2)

(24) 0=Aep-1+wicn—2+...+wn—2c1 +wp_1)-
From (23) we can calculate the values c1,ca,...,cy—1 as polynomials g1(A),g2(A), ..., gn-1(A)
of exact degree 1,2,...,n — 1 with the coefficients that are the polynomials in wi,wa,...,wy—2

whose coefficients are again rational positive numbers depending on n. These polynomials,
go(A),0 =1,...,n —1, have a factor \ at least. That is,
AU'
(25) Co =qs(N) = — +...=xr;(A\),1 <o <n-1.
ol(n—o)n—c+1)...(n—-1)

If we substitute instead of ¢;,0 = 1,...,n — 1, the polynomials ¢,(A) in equation (24), we get
that A satisfies necessarily the following algebraic equation:

(26) AMgn—1(A) + wign—2(A) + ... + wp—2q1(A) + wp—1) =0,

that is of exact degree n.
We claim that A satisfies also the following equation:

(27) anl()\) + lenf2(/\) +...+ wn72(h()‘) + wp—1 = 0.

This fact is trivial if A # 0. Otherwise, if A = 0 we see from (18) and (19) that necessarily

(28) 01202:---2071—1:0-
Therefore,
(29) p(z) = 2" + cy.

On the other hand, from (29), together with (20), we get

Thus, in accordance with (22), we have

4. 4wt = =0,

u—v

Wpn—1=u""

and from this, taking into account (25) we found that A\ = 0 is the root of (27). Equation (25)
shows that c¢1,...,c,—1 are determined uniquely by A.
In order to prove our claim in a simple way, we have also to calculate ¢, as a function of
A. To this end, we put 0 in both sides of (19) instead of z. We shall obtain, by using (18), the
equation
(n—1)cp_1 = el
uv

In accordance with (25) it gives



(30) Aen, = Auv(n — 1)rp—1(N).

Then, the required expression for ¢, follows:

(31) cn = (n — Duvrp—1(A),

under the condition A # 0. But this is also correct when A = 0. In fact, as we have seen
before, for A\ = 0 by using (29) and (20) we get

(32) cp = —u" = —v".
On the other hand, the polynomials g,(\),oc = 1,...,n — 1 are related by the following identity:

(n—1)gn—1(A) = AMgn—2(A) + w1gn-3(A) + ... + wn—3q1(A) + wr—2).
From this, in view of (25) the following identity follows:

(33) (n = 1)rn—1(A) = gn—2(A) + wign-3(A) + ... + wp—3q1(A) + wn—2.
If we put in (33) the value 0 instead of A, we shall have, in view of (25)
(34) (n —1)rp—1(0) = wp—2.
However, by (22) and (32)

wt gttt (cumyut ol — guun !

Wn—2 = = = =—
U —v u—v u—v uv

Cn

This, together with (34) shows that (31) is satisfied also for A = 0. Notice, that since

uv = w? — wo,

the representation (31) can also be written in the form
cn = (n = 1)(w? — wo)rp_1(N).

Namely, ¢, can be represented as a polynomial in A with the coefficients which are polyno-
mials in wy, ... ,w,—9 with the coefficients that are rational positive numbers depending on n.

7 Part G

Now we shall take into account that the algebraic equation (27) has no more than n — 1 distinct
roots and therefore there are no more than n — 1 maximal systems <1, ...,<, of the type we are
dealing with.

On the other hand, it is obvious that there is one maximal system from the following n — 2

types.

My : gl(o), 50),...,930) ,



(0) (0)

with u = ¢;7,v = g5~ where no one of the

(0) (0)

n — 2 points ¢, ..., ¢, ; does not belong
to A (that is they belong to A).

M - gl(l),gél), e ,gsl) ,
1) (1)

with u = ¢; 7, v = ¢’ where one point of the
n — 2 points gél), . S_)l
to A and the rest to A.

and so on. At the step k

belongs

My, : g%k),gék),...,g,gk) ,

with u = c{k), v = q(Lk) where k points of the

n — 2 points gék), cee 7(1k_)1 belong
to A and the rest n — k — 2 to A.

At the step n — 2

My g: ™2 )
with u = gfn_Q),v = §7(1n_2) where all the
n — 2 points gén_Q), .. ,gT(Ln__IQ) belong
to A.

Notice that these maximal systems are determined from the fact that A(u, z9,...,2,-1,v) is
a continuous bounded function of the variables zs,...,2,-1 when 2o,...,2,_1 vary on C under
the constraint that k of them are located on A and the rest n — k — 2 on A.

From this, it follows that there are uniquely determined maximal systems My, k=0,1,...,n—
2. Moreover, notice that if the opening « of A, satisfies the condition

27
2r —a T

then, by Theorem 1, every F-system of order n of A is necessarily a maximal system of type
My of C.
Then, the following theorem is true.

Theorem 4 Let n be any natural number, n > 2, and let A be the arc of the unit circle C with
opening o which satisfies foa < n(or(%)%r > a > 0) then there is a unique F-system of
order n belonging to A.

8 Part H

From the uniqueness of the maximal systems My, k = 0,1,...,n — 2, it follows the fact that if
the arc A is symmetric with respect to the real axis of the zplane, namely v = %, then also the
points of the maximal systems are symmetric, too. Therefore also the coefficients B of the
polynomials
n
k — k
(35) pr(z) = H (z — gl(,k)) ="+ cg ) =1 T 051215 + cg“),
v=1
are also real numbers satisfying the conditions
(36)c) = (—1)" ke =12, n—1. k) = (—1)n—k

n—v’ n



And since, in the case n > 273304 the maximal system My is an F-system of order n belonging to

A, the condition v = @ implies that in the case the F-system of order n of A is also symmetric
(0) (0)

with respect to real axis of the zplane, then the coefficients of this polynomial ¢;”,..., ¢, are
real numbers satisfying

BN = (-9 v=1,2,....n—1 0 = (—1)"
This condition guarantees obviously that ws,...,w,—1 are real numbers and therefore by equa-
tion (27) the roots of them, A, ..., A,_2 determine the algebraic equation with real coefficients,

the roots of which, are also real numbers (distinct!) represented as follows:
(38) Ae = (n— 1))

as seen from the first representation on the system (23).
It is worth to note also that if

w=e? v=e" a=2¢

then the numbers wy, ..., w,_o are expressed in the following simple form
i 1
(39) w, = HD9)
sin(¢)
9 Partl

In these two last sections, we shall present some remarks which are essentially due to Fekete.

In the symmetric case, u = v, we saw that instead of solving (27) we can solve two other alge-
braic equations of smaller order whose coefficients are polynomials of the variables wq, ..., wy_2.
Indeed, from the representation (37) it follows that for even n and odd k,v = %,

20,(,]“) =0,
which by (25) is equivalent to
(40) rz(Ag) =0.

While, in the case k even, the same representation (37) gives for v = § — 1

(k) _ (k)
Culy = Culiys
or
(41) ra1(Ak) = g (M)-

In the same way we obtained, under the condition that n is odd and k is odd (k is even)
(42) raa (W) £ 7541 () = 0.

Therefore the calculation of Ag, which determine the system M, may be performed by solving
the pairs of algebraic equation of degree [§] at most in all cases. In other words, the polynomial
which is the left hand side of (27) is decomposed in all the cases into 2 polynomial factors.

10



10 Part L

However the very interesting question is the following one:

Which root among the n — 1 roots of (27) belongs to the system My? Namely, in view of
the conditions which we know for F-systems of A, which do belong to M;?7 Which to M», and
so on?

Moreover, with no calculations, just with the help oh these roots at all the n —1 polynomials
p(z) and finding the zero points?

The answer to this question is the following.

It is enough to order the roots of (27) in the case the arc A is located to the right to the arc
A in increasing order, then the first one will belong to My, the second to Mi, and so on. The
largest root,the last in the sequence, will belong to M,,_o.

This fact, was discovered by M. Fekete already in 1938 and the proof is based on the con-
tinuous change of the systems M), as we change ¢ (or @ ) and the uniqueness of these systems
for all specific ¢,0 < ¢ < w. These results will be published very soon.
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